Укороченная секретируемая аспартил-протеиназа 2

Иллюстрации

Показать все

Изобретение относится к области биохимии, в частности к полипептиду укороченной секретируемой аспартил-протеиназы 2, который способен эффективно вызывать опосредованные антителами и клеточные иммунные реакции на C.albicans и состоящему из аминокислотной последовательности, соответствующей SEQ ID NO:1; или функционально эквивалентному полипептиду, который имеет аминокислотную последовательность, полученную из SEQ ID NO:1 посредством одной или более консервативных замен аминокислот, причем указанный полипептид по меньшей мере на 80% идентичен аминокислотной последовательности SEQ ID NO:1 на протяжении всей длины SEQ ID NO:1. Также раскрыт полинуклеотид, кодирующий указанный полипептид, экспрессионный вектор, содержащий указанный полинуклеотид, клетка-хозяин для продукции указанного полипептида, содержащая указанный вектор. Раскрыты композиции для лечения или профилактики инфекции Candida albicans, содержащие указанный полипептид или полинуклеотид в эффективном количестве, а также способ лечения и профилактики инфекции Candida albicans с использованием указанных композиций. Также раскрыт набор для диагностирования инфекции Candida albicans, содержащий указанный полипептид и/или указанный полинуклеотид и реагент для определения комплексов, которые включают указанный полипептид. Изобретение позволяет эффективно вызывать опосредованные антителами и клеточные иммунные реакции на C.albicans и не имеет недостатков, которые присутствуют у полноразмерной аспартил-протеиназы дикого типа. 8 н. и 10 з.п. ф-лы, 7 ил., 1 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к укороченной форме секретируемой аспартил-протеиназы 2 (Sap2), а также к молекулам нуклеиновой кислоты, которые ее кодируют. Такой укороченный Sap2 полипептид (tSap2) очень стабилен, имеет полную иммуногенность при интравагинальном применении и обеспечивает полную защиту по отношению к контрольному интравагинальному заражению грибом рода Candida. Кроме того, настоящее изобретение относится к композиции, которая содержит tSap2, и к применению tSap2 при получении указанной композиции.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Инфекции, вызываемые Candida albicans и другими родственными видами, продолжают устойчиво распространяться по всему миру (Nyirijesy American Family Physician (2001) 63:697-702). Широкий спектр кандидозов и их клинических форм стимулирует повышенный интерес к пониманию разнообразия грибов и компонентов системы клетка-хозяин, участвующих в патогенезе этих заболеваний. С.albicans является симбионтом человека, его взаимодействие с иммунной системой хозяина играет важную роль как при симбиозе, так и в управлении указанной инфекцией. Для целей создания иммунологических средств борьбы с кандидозами были исследованы несколько потенциальных антигенных мишеней, ответственных за реакцию хозяина на воздействие С.albicans. К наиболее изученным антигенным мишеням относятся маннопротеины (МП), некоторые из которых имеют адгезивные или рецепторподобные функции, белки теплового шока, енолаза (фосфопируватгидратаза) и секретируемые аспартил-протеиназы (Sap) (Schaller et. al., J. of Invet. Dermatology (2000) 114: 712-717). Наряду с недавними достижениями в области механизмов противокандидозных иммунных ответов эти исследования легли в основу дальнейшего изучения в сфере избирательного применения некоторых вышеописанных мишеней в качестве потенциальных терапевтических или профилактических вакцин, а также для получения антител для пассивной вакцинации.

Ранее было установлено, что для развития инфекции вида C.albicans крайне необходима экспрессия одного из белков семейства Sap - Sap2, a интравагинальная или даже назальная иммунизация полноразмерным Sap2 дикого типа придает повышенную степень защиты против инфекции Candida (de Bernardis, Infect and Imm.(2002) 70, 2725-2729). Однако было показано, что белок Sap2 дикого типа обладает ферментативной активностью, очень нестабилен и потенциально токсичен (Schaller et al., Infect and Imm (2003), 71, 3227-3234), что ограничивает выбор вакцин.

Таким образом, существует потребность в антигене Sap2, который способен эффективно вызывать опосредованные антителами и клеточные иммунные реакции на C.albicans и не имеющий недостатков, которые присутствуют у полноразмерного Sap2 дикого типа.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение удовлетворяет указанным потребностям в получении, обеспечивает укороченный полипептид Sap2 дикого типа (tSap2). tSap2 согласно настоящему изобретению стабилен, имеет высокую иммуногенность при интравагинальном применении и обеспечивает полную защиту по отношению к контрольному интравагинальному заражению грибом рода Candidas.

В своем первом аспекте настоящее изобретение относится к полипептиду, который содержит в себе любую из следующих аминокислотных последовательностей:

(a) аминокислотную последовательность, соответствующую SEQ ID NO:1;

(b) аминокислотную последовательность, которая по меньшей мере на 80% идентична аминокислотной последовательности, соответствующей SEQ ID NO:1 на протяжении всей длины SEQ ID NO:1, причем указанная аминокислотная последовательность соответствует полипептиду, функционально эквивалентному полипептиду, который имеет аминокислотную последовательность, соответствующую SEQ ID NO:1;

(c) аминокислотную последовательность, которую кодирует последовательность нуклеотидов, которая гибридизуется при жестких условиях гибридизации с последовательностью, комплементарной SEQ ID NO:2, причем указанная аминокислотная последовательность содержит по меньшей мере 15 аминокислот и соответствует полипептиду, который функционально эквивалентен полипептиду, имеющему аминокислотную последовательность SEQ ID NO:1;

(d) аминокислотная последовательность, которая является фрагментом аминокислотной последовательности, соответствующей SEQ ID NO:1, и где вышеуказанная аминокислотная последовательность имеет по меньшей мере 15 аминокислот в длину и кодирует полипептид, который функционально эквивалентен полипептиду, имеющему аминокислотную последовательность, соответствующую SEQ ID NO:1;

при этом последовательность аминокислот указанного полипептида, который содержит любую из последовательностей аминокислот (a)-(d), не соответствует SEQ ID NO:3 и SEQ ID NO:7.

В предпочтительном варианте реализации полипептид согласно настоящему изобретению имеет аминокислотную последовательность, соответствующую SEQ ID NO:1.

В другом своем аспекте настоящее изобретение относится к полинуклеотиду, который включает последовательность нуклеиновой кислоты, выбранную из следующих вариантов:

(a) последовательность нуклеиновой кислоты, соответствующую SEQ ID NO:2;

(b) последовательность нуклеиновой кислоты, которая комплементарна последовательности (а);

(c) последовательность нуклеиновой кислоты, которая кодирует аминокислотную последовательность, соответствующую SEQ ID NO:1;

(d) последовательность нуклеиновой кислоты, последовательность которой по меньшей мере на 80% идентична последовательности SEQ ID NO:2 на протяжении всей длины SEQ ID NO:2, причем указанная последовательность нуклеиновой кислоты кодирует полипептид, который функционально эквивалентен полипептиду, имеющему аминокислотную последовательность, соответствующую SEQ ID NO:1;

(e) последовательность нуклеиновой кислоты, которая гибридизуется в жестких условиях гибридизации с последовательностью (b), причем указанная последовательность нуклеиновой кислоты содержит по меньшей мере 45 нуклеотидов и кодирует полипептид, который функционально эквивалентен полипептиду, состоящему из аминокислотной последовательности, соответствующей SEQ ID NO:1;

(f) последовательность нуклеиновой кислоты, которая представляет собой фрагмент последовательности нуклеиновой кислоты, соответствующей SEQ ID NO:2, причем указанная последовательность нуклеиновой кислоты содержит по меньшей мере 45 нуклеотидов и кодирует полипептид, который функционально эквивалентен полипептиду, состоящему из аминокислотной последовательности, соответствующей SEQ ID NO:1;

при этом последовательность указанного полинуклеотида не представляет собой последовательности SEQ ID NO:4 и SEQ ID NO:8.

Согласно предпочтительному варианту реализации настоящего изобретения указанный полинуклеотид имеет последовательность, соответствующую SEQ ID NO:2.

Еще в одном своем аспекте настоящее изобретение относится к вектору, который содержит полинуклеотид согласно настоящему изобретению. Кроме того, настоящее изобретение относится к клетке-хозяину, содержащей вышеуказанный вектор.

Еще в одном своем аспекте настоящее изобретение относится к композиции, которая содержит по меньшей мере один полипептид и/или по меньшей мере один полинуклеотид согласно настоящему изобретению. В предпочтительном варианте реализации указанная композиция представляет собой препарат вакцины. Дополнительно, композиция согласно настоящему изобретению может содержать один или более дополнительный компонент, выбранный из эксципиента, растворителя, адъюванта, виросомы и т.п.

Еще в одном аспекте настоящее изобретение относится к применению полипептида согласно настоящему изобретению в качестве иммуногена и/или антигена. Согласно предпочтительному варианту реализации настоящего изобретения полипептид согласно настоящему изобретению применяют в препарате вакцины. Более того, настоящее изобретение относится к применению по меньшей мере одного указанного полипептида и/или по меньшей мере одного указанного полинуклеотида согласно настоящему изобретению при получении фармацевтического препарата для лечения или профилактики инфекции Candida. Предпочтительно инфекция Candida представляет собой инфекциию Candida albicans.

Применение согласно настоящему изобретению подразумевает использование одного или более дополнительного компонента, выбранного из: наполнителя, разбавителя, адъюванта, носителя и т.п. Предпочтительно в качестве носителя применяют виросому. Если в качестве носителя используют виросому, то полипептид и/или полинуклеотид согласно настоящему изобретению могут быть связаны с поверхностью виросомы. В качестве альтернативы или дополнительно полипептид и/или полинуклеотид может содержаться в полости виросомы. Еще одной альтернативой служит применение полипептида и/или полинуклеотида согласно настоящему изобретению совместно с виросомой, причем указанную виросому применяют в качестве отдельного компонента.

В предпочтительном варианте реализации инфекция Candida затрагивает слизистые оболочки и/или весь организм. В другом предпочтительном варианте реализации инфекция Candida затрагивает слизистую оболочку, а заболевание, вызванное указанной инфекцией, выбрано из вульвовагинального или эзофагеального кандидоза.

Еще в одном своем аспекте настоящее изобретение относится к набору, который содержит по меньшей мере один полипептид и/или по меньшей мере один полинуклеотид согласно настоящему изобретению. В предпочтительном варианте реализации указанный набор предназначен для диагностики инфекции Candida in vitro. Предпочтительно инфекция Candida представляет собой инфекцию Candida albicans. Указанный набор согласно настоящему изобретению может дополнительно содержать реагент для обнаружения комплексов, включающих указанный полипептид. Предпочтительно выявление комплексов осуществляют с применением способа анализа, выбранного из группы иммуногистохимических способов анализов, иммуноферментного анализа (ELISA), радиоиммуноферментного анализ (RIA), анализа Вестерн-блотинг (Western blot analysis), анализа с применением сортировки клеток, активируемой флуоресценцией (FACS analysis), иммунофлуоресцентного анализа и иммуноанализа с эмиссией света.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Фигура 1 демонстрирует повышенную стабильность препарата укороченной Sap2 (tSap2) по сравнению с активной формой фермента Sap2 дикого типа. 3 мкг (для способа электрофореза в SDS-ПААГ) или 0,3 мкг (для Вестерн-блот) рекомбинантно экспрессированных Sap2 и tSap2 подвергали инкубации в фосфатном буферном растворе (ФРБ) в течение разных промежутков времени (от 30 мин до 24 или 48 ч) при комнатной температуре и при 37°С. После инкубации оба препарата подвергали электрофорезу в SDS-ПААГ и окрашивали Кумасси синим. Фигура 1А: результаты SDS-ПААГ электрофореза tSap2, окрашенного Кумасси синим при комнатной температуре (слева) и при 37°С (справа). Фигура 1В: результаты SDS-ПААГ электрофореза Sap2, окрашенного Кумасси синим при комнатной температуре (слева) и при 37°С (справа). Фигура 1C: результаты Вестерн-блота tSap2 с поликлональной анти-Sap2.

Фигура 2 демонстрирует, что укороченный Sap2 (tSap2) индуцирует более высокий уровень антител в вагинальной жидкости иммунизированных крыс по сравнению с активной в формой фермента Sap2 (Sap2) дикого типа. Было обнаружено, что в основном увеличивается выработка иммуноглобулина А, главного иммуноглобулина, участвующего в защитных свойствах слизистых оболочек. С помощью ELISA измерили уровень антител в вагинальной жидкости крыс, прошедших иммунизацию препаратом Sap2 дикого типа, и крыс, прошедших иммунизацию препаратом укороченной рекомбинантной Sap2 (tSap2). Наличие антител в вагинальной жидкости выражали в единицах спектральной поглощательной способности, которую считывали при λ=405 нм.

На Фигуре 3 показано, что на экспериментальной модели контрольного заражения животных, иммунизация крыс белком (tSap2) укороченной формы приводит к подавлению вагинальной инфекции C.albicans быстрее, чем лечение белком (Sap2) дикого типа. Две группы по пять женских особей оварэктомированных крыс троекратно с недельными интервалами иммунизировали интравагинальным путем: одна группа получала 100 мкг/доза Sap2 дикого типа (квадраты), в то время как другая - 50 мкг/доза Sap2 укороченной формы (треугольники). Спустя одну неделю после последней иммунизации всех крыс инфицировали вызывающей вагинопатию дозой C.albicans штамма SA-40. Клиренс клеток гриба у обработанных крыс оценивался путем подсчета колоний образующих единиц (КОЕ) C.albicans в вагине через 21 день после заражения. В частности, дрожжевые клетки (1 мл образца вагинальной жидкости) культивировали на агаре Сабуро, содержащем хлорамфеникол, при температуре 28°С в течение 72 ч, а затем их подсчитывали.

Фигура 4 показывает, что полученные на основе виросом препараты, содержащие Sap2 белок, индуцируют более высокий уровень анти-Sap2 иммуноглобулинов G и А в вагине иммунизированных крыс, чем усеченный белок сам по себе. Уровень антител оценивали с помощью ELISA, который проводили в пулах вагинальной жидкости крыс, обработанных различными препаратами. Наличие антител в вагинальной жидкости выражали в единицах спектральной поглощательной способности, которую считывали при λ=405 нм.

Фигура 5 показывает, что в вагине инфицированных крыс укороченный белок, связанный с виросомами, обеспечивает более высокую скорость клиренса инфекции по сравнению с самим белком. Скорость клиренса оценивали путем мониторинга состояния вагинальной инфекции у иммунизированных и зараженных крыс. Колониеобразующие единицы (КОЕ) подсчитывали через 1, 2, 7, 13, 21 и 28 дней после заражения.

На фигуре 6 показано, что укороченный белок в комплексе с виросомами обеспечивает более высокую скорость инфекционного клиренса, чем тот же белок сам по себе. Добавление мукозного адъюванта HLT (термолабильного токсина F.Coli) к препарату на основе виросом не дает какого-либо преимущества относительно защитных реакций организма. За течением вагинальной инфекции наблюдали в течение 28 дней.

Фигура 7 демонстрирует эффект инравагинального введения моноклональных антител (mAbs), направленных на tSap2 (NL2/2A8 и NL2/9b9). Изотипически сходное неспецифичное антитело (моноклональное антитело к енолазе; NL2/7C9), так же как и штамм SA40 C.albicans, служили в качестве контроля. Специфичность каждого моноклинального антитела проверяли способом Вестерн-блота; за 30 мин до заражения интравагинально вводили все моноклональные антитела в одинаковых концентрациях, рассчитанных по белку. Оба моноклональных антитела к tSap2 (NL2/2A8 и NL2/9b9) обеспечивали защитные свойства у крыс за счет индуцирования очень быстрого клиренса клеток гриба из вагины по сравнению с контрольными крысами, то есть с теми, которые получили только клетки C.albicans или моноклональное антитело к енолазе. В условиях теста эффект моноклональных антител к Sap2 в значительной степени сопоставим с действием флуконазола, популярного противогрибкового препарата, или пепстатина, хорошо известного Sap-ингибитора.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения

Аминокислоты и аминокислотные остатки, описанные в данном документе, обозначены согласно принятым одному или трем буквенным кодам, которые описаны в учебниках, хорошо известных специалистам в данной области: Stryer, Biochemistry, 4th Ed., Freeman and Co., New York, 1995 и Creighton, Proteins, 2nd Ed., Freeman and Co., New York, 1993. В данном документе термины «пептид» и «полипептид» используют как синонимы и их значение, в широком смысле слова, относится к молекуле, состоящей из двух или более аминокислотных остатков или аналогов аминокислот. Остатки аминокислот могут быть соединены пептидными связями или в качестве альтернативы другими связями, например сложноэфирными, эфирными и т.д. В данном документе оба термина «аминокислота» и «аминокислотный остаток» относятся к естественным и/или искусственным или синтетическим аминокислотам, включающим как D, так и L энантиомерные формы и аналоги аминокислот.

Термины «tSap2», « tSap2 полипептид» и «tSap2 белок» используют взаимозаменяемо, и они относятся к укороченной форме Sap2 белка дикого типа, из которого удалены 76 аминокислот с N-конца. Термины «Sap2», «Sap2 полипептид/белок», «Sap2 дикого типа» и «Sap2 полипептид/белок дикого типа» используют взаимозаменяемо и они относятся к нативной полноразмерной форме Sap2 (форме дикого типа), которая соответствует SEQ ID NO:3. Sap2 дикого типа состоит из 398 аминокислот, первые 56 из которых кодируют предварительную (prepro) последовательность, а остальные аминокислоты (57-398) кодируют зрелую форму Sap2.

«Идентичность последовательности» родственных полипептидов и полинуклеотидов можно определить посредством стандартных методик. Как правило, используют специальные компьютерные программы с алгоритмами, учитывающими особые требования. Чтобы определить идентичность между двумя последовательностями, для целей настоящего изобретения использовали BLASTP-программу (для сравнения аминокислотных последовательностей) и BLASTN-программу (для сравнения последовательностей нуклеотидов), как описано, например, Altschul S et al., Nucl Acid Res 25: 3389-3402 (1997). BLAST-программу можно получить в Национальном Центре Биотехнологической Информации (НЦБИ) и других источниках (например, BLAST-справочник, Altschul S et al., NCB NLM NIH Bethesda MD 20894; Altschul S et al., J. Mol. 215: 403-410 (1990)). Для целей настоящего изобретения использовали BLASTN- и BLASTP-алгоритмы со следующими настройками:

BLASTN

Параметры оценки: Совпадение/Несовпадение 1, -2

Цена разрыва: Присутствие: 5, Расширение: 2

Фильтры и Маскирование: Выбрана зона низкой сложности

Специфичные видовые повторы для: выбраны (человек)

Шаблон для таблицы соответствия только - выбраны

Шаблон строчных букв не выбран

BLASTP

Параметры оценки:

Матрикс: BLOSUM62

Цена разрыва: Присутствие: 11, Расширение: 1

Поправки к составу: статистика на основе состава

Фильтры и Маскирование: ни один не выбран

Расширенные программные опции

-G Значение для открытого промежутка [целое число]

По умолчанию =5 для нуклеотидов 11 для белков

-Е Значение для расширения промежутка

По умолчанию =2 нуклеотиды 1 белки

-q Штраф при несовпадении нуклеотида [целое число]

По умолчанию =-3

-r Успех при совпадении нуклеотида [целое число]

По умолчанию =1

-е ожидать значение [вещественное число]

-W длина машинного слова [целое число]

По умолчанию =11 нуклеотиды 3 протеины

-у Расхождение (X) для BLAST-расширений в битах (по умолчанию, если зеро)

По умолчанию =20 для BLASTN 7 для других программ

-X Расхождение значения Х для промежуточного выравнивания (в битах)

По умолчанию =15 для всех программ, кроме BLASTN, для которого не применимо

-Z Окончательное расхождение значения Х для промежуточного выравнивания (в битах)

50 для BLASTN 25 для других программ

Для сравнения последовательностей в качестве последовательности, с которой сравнивают родственную последовательность, применяли полные последовательности tSap2 (SEQ ID NO:1 и 2 соответственно). А именно, чтобы определить степень идентичности полипептида неизвестной природы по отношению к tSap2 полипептиду согласно настоящему изобретению, аминокислотную последовательность вышеупомянутого первого полипептида сравнивают с аминокислотной последовательностью полипептида tSap2, с последовательностью SEQ ID NO:1 на всем протяжении SEQ ID NO:1. Аналогично определяли идентичность полинуклеотида неизвестного происхождения по отношению к полинуклеотиду tSap2 согласно настоящему изобретению, последовательность нуклеиновой кислоты вышеупомянутого первого нуклеотида сравнивают с последовательностью нуклеиновой кислоты, соответствующей SEQ ID NO:2 на всем протяжении SEQ ID NO:2.

Эталон «жестких условий» для гибридизации соответствовал описанному у Ausubel et al. (Eds.), Current Protocols in Molecular Biology, John Wiley & Sons (2000). К примеру жестких условий гибридизации относятся обработка 0.1 М раствором хлорида и цитрата натрия /0,1% раствором додецилсульфата натрия в течение 15 мин при температуре 68°С.

Полипептид считается «функционально эквивалентным» по отношению к полипептиду, который имеет аминокислотную последовательность SEQ ID NO:1, если он по существу имеет те же характеристики, что и полипептид tSap2 с последовательностью SEQ ID NO:1. «По существу те же характеристики» значит, что по меньшей мере одно из свойств, которое может быть приписано tSap2 (такие, как повышение стабильности, увеличение антигенности по сравнению с Sap2 дикого типа), также присутствует у функционально эквивалентного полипептида. Стабильность полипептида можно определить следующим образом: полипептид подвергают инкубации в течение разных промежутков времени, а затем окрашивают Кумасси синим (см. Пример 1, Фигура 1). Стабильность увеличивается по сравнению со стабильностью Sap2 дикого типа, если функционально эквивалентный полипептид поддается обнаружению в течение более длительного времени или присутствует в большем количестве после аналогичного периода времени, что и Sap2 дикого типа. Антигенность полипептида можно определить путем измерения титра антител, полученных при иммунизации животных, как, например, в модели вагинальной инфекции Candida у крыс (см. Пример 4 и 5). Антигенность «увеличивается» по сравнению с антигенностью Sap2 дикого типа, если функционально эквивалентный полипептид вызывает более высокие титры иммуноглобулина А и иммуноглобулина G, чем Sap2 дикого типа (см. Фигуру 2).

Отдельные аминокислоты tSap2 полипептида можно консервативным образом заменить аминокислотами эквивалентного размера, заряда и/или полярности. Более того, к любому концу tSap2 полипептида можно присоединить соответствующий линкер или метку (например, гистидиновую метку), чтобы способствовать внедрению tSap2 в носитель и/или слиянию с антигенами-мишенями и/или облегчить очистку и/или обнаружение tSap2.

Термин «эпитоп», используемый в данном документе, относится к тем участкам молекулы, которые распознаются Т и В клеточными рецепторами. Термин «антиген» используют в данном документе для описания молекулы, которая связывается с Т клеточным рецептором или антителом и иммуногенность которой можно повысить или усилить с помощью адъювантов, описанных в данном документе.

Термин «адъювант» относится к веществу, которое отлично от антигена-мишени и способно усиливать активацию эффекторных клеток иммунного ответа. Под термином «адъювантная система» понимают комбинацию различных иммуностимулирующих белков, таких как полипептид tSap2 согласно настоящему изобретению с адъювантами, например хемотоксинами или термолабильными токсинами, с целью увеличить эффект стимулирования иммунной системы; по сравнению с эффектом каждого компонента системы, применяемого отдельно, так же как и их комбинацию с соответствующей системой носителей (виросомы), что дополнительно может увеличить стимулирующий иммунный эффект.

Термин «введение» или «применение» означает использование одного или более tSap2 полипептидов или белоксодержащих композиций согласно настоящему изобретению в качестве лекарства, пролекарства, метаболита лекарства или вакцины индивидуумом, который в этом нуждается. Вакцина представляет собой антигенный препарат, который применяют для формирования иммунитета против заболевания. Препарат вакцины обычно содержит антиген, состоящий из целых вызывающих заболевание организмов (убитых или ослабленных) или частей таких организмов (например, антигенный белок или ДНК), и применяется для формирования иммунитета против заболевания, которое вызывает вышеуказанный организм. Вакцины бывают натуральными, синтетическими или полученными способом рекомбинантных ДНК. Вакцины могут быть терапевтическими и профилактическими (например, для предотвращения или облегчения течения будущей инфекции, вызванной любым естественным или «диким» патогенном).

«Эффективное количество» - это количество фармацевтического препарата, которое само по себе или с дополнительными дозами стимулирует желаемый ответ.

В данном документе термин «виросома» относится к полученной in vitro везикуле, которая состоит из липидов и по крайней мере одного белка оболочки вирусного. Липиды получают или из биологического источника (например, из яиц, растений, животных, клеточных культур, бактерий, вирусов), или синтетическим путем (химический синтез). Виросома может быть восстановленной оболочкой вируса, которую можно получить из разных вирусов и которая не содержит инфекционного нуклеокапсида и генетического материала исходного вируса, например, такой, как иммуностимулирующая восстановленная виросома гриппа (IRIV). Таким образом, виросома - это особый тип липидной везикулы, заключающей в своей липидной мембране по меньшей мере один белок оболочки вируса. В данном документе под термином «белок оболочки вируса» подразумевают любой белок, кодируемый оболочечным вирусом, который частично или полностью служит источником для виросомы согласно настоящему изобретению, а указанный белок находится в липидной мембране виросомы. Иногда белки оболочечных вирусов функционируют как «вирусные белки слияния», когда они участвуют в слиянии вирусов или виросом с мембранами клеток-мишеней. Белки оболочки могут быть рекомбинантными белками при условии, что биохимические свойства белка позволяют физически соединить его с липидной мембраной. Такие оболочечные белки отвечают за функциональные свойства виросом. Используемая в настоящем изобретении виросома также может быть химерной виросомой, которая состоит из белков оболочечных вирусов, происходящих по меньшей мере от двух разных штаммов вирусов. В отличие от вирусных систем виросомы безопасны, поскольку удален инфекционный нуклеокапсид вируса.

Полипептиды

Настоящее изобретение обеспечивает укороченный Sap2 полипептид, который содержит любую из следующих аминокислотных последовательностей:

(a) аминокислотную последовательность, соответствующую SEQ ID NO:1;

(b) аминокислотную последовательность, последовательность которой по меньшей мере на 80% идентична аминокислотной последовательности, соответствующей SEQ ID NO:1 на всем протяжении SEQ ID NO:1, причем указанная последовательность аминокислот кодирует полипептид, функционально эквивалентный полипептиду, который имеет аминокислотную последовательность SEQ ID NO:1;

(c) аминокислотную последовательность, кодируемую последовательностью нуклеотидов, которая гибридизуется в жестких условиях гибридизации с последовательностью, комплементарной SEQ ID NO:2, причем вышеуказанная аминокислотная последовательность содержит по меньшей мере 15 аминокислот и кодирует полипептид, который функционально эквивалентен полипептиду, имеющему аминокислотную последовательность, соответствующую SEQ ID NO:1;

(d) аминокислотную последовательность, которая является фрагментом аминокислотной последовательности SEQ ID NO:1, причем вышеуказанная аминокислотная последовательность содержит по меньшей мере 15 аминокислот и кодирует полипептид, который функционально эквивалентен полипептиду, имеющему аминокислотную последовательность, соответствующую SEQ ID NO:1;

при этом последовательность полипептида, который содержит любую из последовательностей аминокислот (a)-(d), не представляет собой последовательность SEQ ID NO:3 и SEQ ID NO:7.

В предпочтительном варианте реализации настоящего изобретения полипептид имеет последовательность аминокислот, соответствующую SEQ ID NO:1.

Согласно другим предпочтительным вариантам реализации полипептид (b) содержит аминокислотную последовательность, которая по меньшей мере на 85, 90, 95, 96, 97, 98 или 99% идентична аминокислотной последовательности SEQ ID NO:1. Также предпочтительно использовать полипептиды, которые состоят из последовательности аминокислот, которая по меньшей мере на 85, 90, 95, 96, 97, 98 или 99% идентична аминокислотной последовательности SEQ ID NO:1.

В предпочтительном варианте реализации последовательность аминокислот (с) и (d) имеет длину по меньшей мере 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250 или 300 аминокислот.

Полинуклеотиды

Настоящее изобретение дополнительно обеспечивает полинуклеотид, кодирующий укороченный полипептид Sap2 (tSap2), который содержит последовательность нуклеиновой кислоты, выбранную из нижеследующих:

(a) последовательности нуклеиновой кислоты, соответствующей SEQ ID NO:2;

(b) последовательности нуклеиновой кислоты, которая комплементарна последовательности (а);

(c) последовательности нуклеиновой кислоты, которая кодирует аминокислотную последовательность, соответствующую SEQ ID NO:1;

(d) последовательности нуклеиновой кислоты, которая по меньшей мере на 80% идентична последовательности, соответствующей SEQ ID NO:2 на всем протяжении SEQ ID NO:2, причем указанная последовательность нуклеиновой кислоты кодирует полипептид, который функционально эквивалентен полипептиду, имеющему аминокислотную последовательность, соответствующую SEQ ID NO:1;

(e) последовательности нуклеиновой кислоты, которая гибридизуется в жестких условиях гибридизации с последовательностью (b), причем указанная последовательность нуклеиновой кислоты имеет по меньшей мере 45 нуклеотидов в длину и кодирует полипептид, который функционально эквивалентен полипептиду, состоящему из аминокислотной последовательности, соответствующей SEQ ID NO:1;

(f) последовательности нуклеиновой кислоты, которая является фрагментом последовательности нуклеиновой кислоты, соответствующей SEQ ID NO:2, причем указанная последовательность нуклеиновой кислоты имеет по меньшей мере 45 нуклеотидов в длину и кодирует полипептид, который функционально эквивалентен полипептиду, состоящему из аминокислотной последовательности, соответствующей SEQ ID NO:1;

при этом указанный полинуклеотид не имеет последовательность, соответствующую SEQ ID NO:4 или SEQ ID NO:8.

В предпочтительном варианте реализации полинуклеотид согласно настоящему изобретению имеет последовательность нуклеиновой кислоты, соответствующую SEQ ID NO:2.

Согласно дополнительному предпочтительному варианту реализации указанный полинуклеотид содержит последовательность нуклеиновой кислоты, которая по меньшей мере на 85, 90, 95, 96, 97, 98 или 99% идентична последовательности нуклеиновой кислоты SEQ ID NO:2. Также предпочтительно применять полинуклеотид, который состоит из последовательности нуклеиновой кислоты, которая по меньшей мере на 85, 90, 95, 96, 97, 98 или 99% идентична последовательности нуклеиновой кислоты, соответствующей SEQ ID NO:1.

В предпочтительном варианте реализации последовательность нуклеиновой кислоты (е) и (f) имеет длину по меньшей мере 60, 75, 90, 195, 120, 135, 150, 300, 450, 600, 750 или 900 нуклеотидов.

Еще в одном своем аспекте настоящее изобретение относится к вектору, который содержит полинуклеотид согласно настоящему изобретению. Кроме того, настоящее изобретение относится к клетке-хозяину, которая содержит вышеуказанный вектор.

Композиции и способы применения

Настоящее изобретение относится к композиции, которая содержит по меньшей мере один полипептид и/или по меньшей мере один полинуклеотид согласно настоящему изобретению. В предпочтительном варианте реализации указанная композиция представляет собой препарат вакцины. Дополнительно композиция согласно настоящему изобретению может содержать один или более дополнительный компонент, выбранный из эксципиента, растворителя, адъюванта, виросомы и т.п.

Еще в одном своем аспекте настоящее изобретение относится к применению полипептида согласно настоящему изобретению в качестве иммуногена и/или антигена. В предпочтительном варианте реализации полипептид согласно настоящему изобретению применяют в препарате вакцины. Более того, настоящее изобретение относится к применению по меньшей мере одного полипептида и/или по меньшей мере одного полинуклеотида согласно настоящему изобретению при получении фармацевтической композиции для лечения или профилактики инфекции Candida. Предпочтительно инфекция Candida представляет собой инфекцию Candida albicans.

Применение согласно настоящему изобретению может включать применение одного или более дополнительного компонента, выбранного из наполнителя, разбавителя, адъюванта, носителя и т.п. В предпочтительном варианте реализации в качестве носителя применяют виросому. Если в качестве носителя применяют виросому, то полипептид и/или полинуклеотид согласно настоящему изобретению могут быть связаны с поверхностью виросомы. В качестве альтернативы или в качестве дополнения, указанные полипептид и/или полинуклеотид могут содержаться в полости виросомы. Еще одной альтернативой служит применение полипептида и/или полинуклеотида согласно настоящему изобретению совместно с виросомой, когда виросому применяют в качестве отдельного компонента.

В предпочтительном варианте реализации инфекция Candida поражает слизистые оболочки и/или весь организм. В другом предпочтительном варианте реализации инфекция Candida представляет собой инфекцию слизистой, а заболевание, вызванное указанной инфекцией, выбрано из вульвовагинального или эзофагеального кандидоза.

Настоящее изобретение обеспечивает новую в предпочтительном варианте реализации пептидную вакцину против кандидозов, которая не несет риска побочных токсических эффектов, связанных с использованием Sap2 дикого типа, и демонстрирует более высокую стабильность по сравнению с Sap2 дикого типа, в то же время обеспечивая мощную стимуляцию иммунных реакций по отношению к инфекции C.albicans. Укороченная стабильная форма Sap2, которую можно синтезировать способом рекомбинантных ДНК, решает хорошо известные проблемы, связанные с получением, очисткой и стандартизацией природного антигена (de Bernardis, Infect and Imm. 2002 70, 2725-2729). Соответственно, новый Sap2 полипептид, у которого отсутствуют первые 76 аминокислот N-конца полипептида дикого типа, можно без труда синтезировать в клетках прокариот или эукариот в виде рекомбинантного продукта, в качестве варианта в виде 6-гистидин-меченного белка для облегчения очистки. Укороченный полипептид Sap2 (tSap2) согласно настоящему изобретению обладает высокой стабильностью. Указанный рекомбинантный tSap2 высокореактивен в вестерн-блотах как с моноклинальными антителами, которые вырабатываются против нативного Sap2, так и с анти-Sap антителами, присутствующими в сыворотке крови инфицированных пациентов. Более того, моноклональные антитела, активные в отношении tSap2, распознают фермент дикого типа.

Иммунизация tSap2 обеспечивает антитело-опосредованную защиту по отношению к инфекции С.albicans в экспериментальной модели вагинитов у крыс. Настоящее изобретение показывает, что моноклональные антитела, направленные на tSap2 полипептид, обеспечивают пассивную защиту в отношении вагинального заражения грибами (Фигура 7). Таким образом, настоящее изобретение обеспечивает новые средства для активной и пассивной защиты от очень распространенной, часто хронической и иногда не поддающейся лечению микотической инфекции у женщин.

Для дальнейшего усиления иммуностимулирующего эффекта tSap2 полипептида согласно настоящему изобретению указанные композиции могут содержать tSap2 полипептид и один или более адъювант.

В качестве альтернативы полипептид tSap2 может быть связан с поверхностью носителя, такого как виросома, описанными в данном документе способами. В качестве альтернативы полипептид tSap2 может быть инкапсулирован в носитель описанными в данном документе способами. В качестве другой альтернативы tSap2 полипептид может быть одновременно инкапсулирован в носитель и связан с его поверхностью. Тем не менее композиция, которая содержит связанный или инкапсулированный полипептид tSap2, может дополнительно содержать один или более адъювант.

Адъювант можно выбрать из адъюванта Фройнда (полного и неполного), микобактерий, таких как БЦЖ, M.vaccae или Corynebacterium parvum, токсинов холеры или столбняка, термолабильных токсинов E.Coli, смесей Quil-сапонинов (сапонинов из Quillaja saponaria molina), таких как QS-21 (SmithKline Beecham), MF59 (Chiron) и разных водомасляных эмульсий (например, IDEC-AF), MALP-2, Иском-вакцин (ISCOMs). He ограничиваясь вышеперечисленным, можно применять другие адъюванты: минеральные соли или минеральные гели, такие как гидроксид алюминия, фосфат алюминия, фосфат кальция; поверхностно-активные вещества, такие как лизолецитин, плюрониловые полиоли, полианионы, пептиды, гемоцианин лимфы улитки и динитрофенол; иммуностимулирующие молекулы, такие как сапонины, производные мурамил-дипептидов и мурамил-трипептидов; короткие участки последовательности нуклеиновой кислоты, такие как ГЦ-богатые динуклеотиды, ГЦ-богатые олигонуклеотиды, монофосфорил Липид А и полифосфазены; макро- и м