Система и способ терморегулирования электронного дисплея
Иллюстрации
Показать всеИзобретение относится к области терморегуляции и может быть использовано в системах охлаждения или нагрева для электронных дисплеев. Варианты исполнения заявленного изобретения в общем случае относятся к различным модификациям терморегуляции для электронных дисплеев. Один вариант содержит изолированную газовую камеру замкнутого контура, где первая камера состоит в контакте с поверхностью дисплея и передает тепло между изолированным газом и поверхностью дисплея. Вторая камера находится в газовом сообщении с первой камерой и выполнена с возможностью нагрева или охлаждения изолированного газа и повторного ввода изолированного газа в первую камеру. Другой вариант использует ограниченную конвекцию для облегчения охлаждения сборки задней подсветки для электронного дисплея, воздушный занавес для дополнительного нагрева или охлаждения внешней поверхности визуализации дисплея, линейный поляризатор с изолирующим зазором для уменьшения солнечной нагрузки дисплейного пакета, а также систему с текучей средой для контакта текучего охладителя с поверхностью дисплея с целью его охлаждения. Технический результат: повышение эффективности процесса терморегуляции электронного дисплея. 2 н. и 6 з.п. ф-лы, 23 ил.
Реферат
ОБЛАСТЬ ПРИМЕНЕНИЯ
Иллюстративные варианты исполнения в общем случае относятся к системам нагрева/охлаждения для электронных дисплеев.
УРОВЕНЬ ТЕХНИКИ
Электронные дисплеи обычно используются в помещениях, в окружении с контролируемой температурой. Хотя температура, окружающая дисплей, может быть относительно стабильной (около комнатной температуры), компоненты дисплея могут выделять большое количество тепла. Если это тепло не отводить должным образом, то оно может повредить дисплей или сократить его срок службы. Для отвода тепла от электронных компонентов в дисплее через как можно больше боковых стенок дисплея традиционно используются кондуктивные и конвективные системы передачи тепла. В то время как в прошлом такие системы передачи тепла пользовались своей долей успеха, современные электронные дисплеи требуют более значительных возможностей для охлаждения (а в некоторых случаях - и нагрева).
Современные электронные дисплеи теперь используются в среде вне помещения, а также в других ситуациях, когда окружающая температура может и увеличиваться выше и понижаться ниже комнатной температуры. Главным фактором может стать в дополнение к передаче тепла от окружающего воздуха радиационный теплообмен от Солнца через поверхность дисплея. В некоторых применениях и местоположениях общая энергия через такую поверхность дисплея составляет 200 ватт или более. Далее, рынку требуются дисплеи более большие, более яркие и, в некоторых случаях, с высоким разрешением. С увеличением размеров электронного дисплея будет поглощаться от Солнца больше тепла, и больше тепла будет передаваться в дисплеи. Для того чтобы "конкурировать" с окружающим светом от Солнца, а также с отражениями от окружающих поверхностей, дисплеи должны производить больше света, что обычно также приводит к большей генерации тепла дисплеем и/или его сборкой задней подсветки.
Кроме того, в некоторых приложениях температура может падать гораздо ниже комнатной температуры. От подвергания такой низкой температуре некоторые компоненты электронного дисплея могут давать сбои или безвозвратно разрушаться. Например, воздействию низких температур могут быть подвержены характеристики жидкокристаллического материала в жидкокристаллических дисплеях (LCD).
Сущность иллюстративных вариантов исполнения
Иллюстративные варианты исполнения могут содержать один или более раскрываемых ниже признаков термоконтроля. Раскрыто множество признаков термоконтроля, и эти признаки могут быть использованы как по отдельности, так и в любой комбинации. Точная комбинация признаков будет зависеть от конкретных потребностей охлаждения/нагрева рассматриваемого дисплея, что зависит от типа дисплея, размера дисплея и его конкретного окружения. Варианты исполнения могут быть реализованы на электронном дисплее любого типа, включая, но этим не ограничиваясь, LCD дисплей, светодиодные (LED) дисплеи, дисплеи на органических светодиодах (OLED), дисплеи полевого излучения, дисплеи на электронно-лучевой трубке, плазменные дисплеи и проекционные дисплеи. Иллюстративный вариант исполнения будет осуществлен на ЖК дисплеях.
Один термический признак относится к изолированной газовой системе охлаждения. Газовая система охлаждения предпочтительно представляет собой замкнутый контур, который включает в себя первую газовую камеру, содержащую прозрачную переднюю пластину, и вторую газовую камеру, содержащую охладительное пространство. Первая газовая камера предшествует и является такой же по протяженности, что и видимая поверхность электронного дисплея. Прозрачная передняя пластина может быть установлена перед поверхностью электронного дисплея, определяя глубину первой газовой камеры. Внутри охладительного пространства может быть расположен охлаждающий вентилятор камеры или эквивалентное средство, которое может использоваться для движения газа по контуру изолированной газовой охладительной камеры. Когда газ проходит первую газовую камеру, он контактирует с поверхностью электронного дисплея, поглощая тепло с поверхности дисплея. Поскольку газ и соответствующие поверхности первой газовой камеры являются прозрачными, качество изображения остается превосходным. После того, как газ прошел прозрачную первую газовую камеру, газ может быть направлен в заднее охладительное пространство, где он охлаждается.
Другой термический признак может использовать изолированную газовую систему как нагревательное устройство - либо вместо, либо в добавление к его охладительным возможностям. Изолированная газовая система нагрева также является системой с замкнутым контуром с первой газовой камерой перед поверхностью дисплея и второй камерой, содержащей пространство нагрева или пространство нагрева/охлаждения. Нагревательные элементы могут быть помещены внутрь пространства для того, чтобы нагревать газ внутри второй камеры. По мере того, как газ принудительно подается в первую камеру, он может передавать свое тепло поверхности дисплея. После этого газ может вернуться в пространство для другого цикла нагрева. Пространство может функционировать только как пространство охлаждения, только как пространство нагрева или как комбинация пространства нагрева/охлаждения, все зависит от конкретного дисплея и его конкретного рабочего окружения.
В некоторых вариантах исполнения пространство изолированной газовой камеры может вмещать электронные компоненты, используемые для управления электронным дисплеем. Эти электронные компоненты могут включать в себя, но этим не ограничиваясь, трансформаторы, печатные платы, процессоры, резисторы, конденсаторы, батареи, двигатели, источники питания, устройства освещения, проводку и жгут проводки, а также переключатели. Если пространство используется как пространство охлаждения, то холодный газ внутри пространства может дополнительно способствовать охлаждению электронных компонентов, которые во время работы, как и положено, будут выделять тепло. Далее, если пространство используется как источник тепла для дисплея, то естественное тепло от электронных компонентов тоже может нагревать газ в пространстве, уменьшая количество энергии, которое необходимо прикладывать к нагревательным элементам.
В некоторых вариантах исполнения для дальнейшего уменьшения солнечной нагрузки на электронном дисплее может быть использован линейный поляризатор. Такой поляризатор может быть использован в комбинации с изолированной газовой камерой, либо может быть помещен просто перед электронным дисплеем с изолирующим зазором между поляризатором и дисплеем. Изолирующий зазор уменьшает количество тепла, передаваемого между поляризатором и дисплеем.
Некоторые электронные дисплеи, такие как, например, LCD, требуют наличия сборки задней подсветки для формирования изображения на поверхности дисплея. Сборки задней подсветки обычно являются большими источниками тепла для дисплея. Поэтому некоторые варианты исполнения для охлаждения узла задней подсветки дисплея могут использовать систему ограниченной конвекции. Система ограниченной конвекции может содержать пластину ограниченной конвекции, которая расположена в непосредственной близости к сборке задней подсветки, образуя зазор. Газ нагнетается через зазор, способствуя более эффективному охлаждению сборки задней подсветки. В некоторых вариантах исполнения стенка пространства может составлять пластину ограниченной конвекции.
Некоторые варианты исполнения могут также включать в себя устройство воздушного занавеса, которое нагнетает воздух (теплый или холодный) поверх внешней поверхности сборки дисплея.
Наконец, некоторые варианты исполнения могут использовать сборку с текучей средой, которая, чтобы охладить поверхность дисплея, контактирует с текучей средой. Текучая среда может являться по существу чистой формой текучей среды охладителя, которая прокачивается через переднюю полость, которая включает в себя поверхность дисплея.
Краткое описание чертежей
Лучшему пониманию иллюстративных вариантов исполнения способствует ознакомление с нижеследующим подробным описанием и с сопроводительными чертежами, в которых одинаковые ссылочные позиции относятся к идентичным частям, и в которых:
Фиг.1 представляет собой вид в перспективе иллюстративного примера вместе с иллюстративным электронным дисплеем.
Фиг.2 представляет собой покомпонентный вид в перспективе иллюстративного варианта исполнения, показывающий компоненты изолированной газовой системы охлаждения.
Фиг.3 представляет собой вид сверху иллюстративного варианта исполнения охладительной камеры.
Фиг.4 представляет собой фронтальный вид в перспективе варианта исполнения изолированной охладительной камеры, в частности, передней прозрачной поверхности первой газовой камеры.
Фиг.5 представляет собой задний вид в перспективе варианта исполнения изолированной охладительной камеры, на котором показаны размещенные в пространстве опционные электрические компоненты.
Фиг.6 представляет собой задний вид в перспективе варианта исполнения изолированной охладительной камеры, на котором показаны элементы поверхности, которые могут быть включены в пространство.
Фиг.7 представляет собой вид сверху иллюстративного варианта исполнения охладительной камеры, на котором показаны элементы поверхности, которые могут быть включены в пространство.
Фиг.8 представляет собой фронтальный вид в перспективе варианта исполнения изолированной охладительной камеры с содержащимися термоэлектрическими модулями.
Фиг.9 представляет собой вид сверху иллюстративного варианта исполнения охладительной камеры с содержащимися термоэлектрическими модулями.
Фиг.10 представляет собой покомпонентный вид в перспективе иллюстративного варианта исполнения, на котором показаны компоненты изолированной газовой системы охлаждения.
Фиг.11 представляет собой вид сверху иллюстративного варианта исполнения нагревательной камеры.
Фиг.12 представляет собой задний вид в перспективе варианта исполнения нагревательной камеры, на котором показаны опционные электрические компоненты и нагревательные элементы.
Фиг.13 и 14 представляют собой поперечные сечения иллюстративных вариантов исполнения для использования линейного поляризатора с изолированной газовой системой или с изолирующим зазором.
Фиг.15А и 15В представляют собой виды сбоку иллюстративных вариантов исполнения системы охлаждения ограниченной конвекции с пластиной ограниченной конвекции.
Фиг.16 представляет собой вид сверху иллюстративного варианта исполнения, в котором охлаждающее пространство используется в качестве пластины ограниченной конвекции.
Фиг.17А-17С представляют собой поперечные сечения вариантов исполнения, в которых охлаждающее пространство используется в качестве пластины ограниченной конвекции.
Фиг.18 представляет собой вид в плане спереди дисплея, использующего устройство воздушного занавеса.
Фиг.19 представляет собой поперечное сечение дисплея, использующего устройство воздушного занавеса.
Фиг.20 представляет собой иллюстрацию, показывающую компоненты для дисплея с жидкостным охлаждением.
Подробное описание
Следует понимать, что сущность и объем раскрытых вариантов исполнения включает в себя дисплеи с терморегуляцией, включающие в себя, не ими не ограниченные, LCD. С целью упрощения объяснения варианты исполнения могут быть описаны применительно к компонентам LCD дисплеев. В качестве примеров, но без намерения ограничения, варианты исполнения могут быть использованы вместе с дисплеями, выбранными из LCD, светодиодных (LED), органических светодиодных (OLED), автоэмиссионных (FED) дисплеев, дисплеев на электронно-лучевых трубках, плазменных и проекционных дисплеев. Кроме того, варианты исполнения могут быть использованы с дисплеями других типов, включая те, которые еще не созданы. В частности, имеется в виду, что варианты исполнения хорошо подходят для использования с полноцветными, плоскими панельными дисплеями на OLED. Далее, в частности, предполагается, что варианты исполнения могут быть использованы с относительно большими LCD дисплеями высокого разрешения. Хотя описанные здесь варианты исполнения хорошо подходят для условий наружного использования, их можно также использовать для применений в помещениях (например, в заводских условиях, при работе с охладителями или морозильниками), где тепловая стабильность дисплея может быть под угрозой.
Изолированная газовая система охлаждения
Как показано на фиг.1, когда дисплей 10 подвергается элементам (воздействия) вне помещения, температура внутри дисплея 10 без определенного рода охлаждающего устройства может значительно изменяться. Поэтому дисплей 10 может не функционировать заданным образом, либо может иметь сильно сокращенный срок службы. Прямой солнечный свет является особенно проблематичным для создания увеличений внутренней температуры дисплея 10.
На фиг.1 дисплейная область показанного электронного дисплея включает в себя узкую газовую камеру, которая находится перед поверхностью электронного дисплея и такая же по протяженности. Показанный дисплей оборудован также опционным устройством 114 воздушного занавеса. Устройство 114 воздушного занавеса подробно описано ниже. На выбор дисплей может иметь отражательный экран 119 (shield) для уменьшения отражения солнечных лучей от поверхности дисплея. Дополнительно в среде вне помещения корпус 70 предпочтительно имеет цвет, отражающий солнечный свет.
Как показано на фиг.2, иллюстративный вариант исполнения электронного дисплея 10 включает в себя изолированную газовую охлаждающую камеру 20, содержащуюся внутри корпуса 70 дисплея. Прозрачная первая газовая камера определяется разделителями 100 и прозрачной передней пластиной 90. На переднюю пластину 90 может быть нанесена вторая прозрачная передняя пластина 130, чтобы помочь предотвратить поломку передней пластины 90 и защитить внутренность дисплея. Охладительная камера 20 окружает дисплейный пакет 80 и связанную сборку 140 задней подсветки.
Дисплей 10 может включать в себя средство для охладительного газа, содержащегося внутри второй газовой камеры. Это средство может включать в себя один или более вентиляторов 60, которые могут быть расположены в основании корпуса 70 дисплея. Вентиляторы 60 могут втягивать холодный воздух и нагнетать более холодный втянутый воздух поверх по меньшей мере одной внешней поверхности заднего охладительного пространства 45. При необходимости для охлаждения воздуха, который контактирует с внешней поверхностью пространства 45, может быть использован также воздушный кондиционер (не показан). В качестве альтернативы вентиляторы 60 могут просто втягивать внешний воздух.
Как показано на фиг.3, варианты исполнения изолированной газовой охладительной камеры 20 могут содержать замкнутый контур, который включает в себя первую газовую камеру 30 и вторую газовую камеру 40. Первая газовая камера включает в себя прозрачную пластину 90. Вторая газовая камера содержит охладительное пространство 45. Термин "изолированный газовый" подчеркивает тот факт, что газ внутри изолированной газовой охладительной камеры 20 по существу изолирован от внешнего воздуха в корпусе дисплея. Поскольку первая газовая камера 30 расположена перед поверхностью 85 электронного дисплея, то газ должен быть по существу свободен от пыли или иных загрязнений, которые могут отрицательно влиять на отображаемое изображение. Чтобы помочь предотвратить от проникновения в первую газовую камеру 30 загрязнений и пыли может быть использован опционный фильтр (не показан).
Изолированный газ может быть практически любым прозрачным газом, например, обычным воздухом, азотом, гелием или любым другим прозрачным газом. Этот газ, предпочтительно, является бесцветным, так чтобы не влиять на качество изображения. Кроме того, нет необходимости в том, чтобы изолированная газовая охладительная камера 20 была герметично уплотнена относительно внешнего воздуха. Достаточно лишь, чтобы газ в камере был изолирован до такой степени, чтобы пыль и загрязнения не могли по существу проникать в первую газовую камеру.
В показанной на фиг.3 конфигурации замкнутого контура первая газовая камера 30 находится в газовом сообщении со второй газовой камерой 40. Внутри охладительного пространства 45 может быть предусмотрен вентилятор 50 охладительной камеры, который используется для движения газа вокруг изолированной газовой охладительной камеры 20. Первая газовая камера 30 включает в себя по меньшей мере одно первое стекло 90, установленное перед поверхностью 85 электронного дисплея.
На фиг.4 передняя пластина 90 дистанционными элементами 100 может быть отодвинута вперед от поверхности 85 электронного дисплея. Дистанционные элементы 100 определяют глубину узкого канала, проходящего перед поверхностью 85 электронного дисплея. Дистанционные элементы 100 могут быть независимыми или, альтернативно, они могут быть выполнены интегрально с каким-либо другим компонентом устройства (например, интегрально с передней пластиной 90). Поверхность 85 электронного дисплея, дистанционные элементы 100 и передняя прозрачная пластина 90 определяют первую газовую камеру 30. Камера 30 через входное отверстие 110 и выходное отверстие 120 находится в газовом сообщении с пространством 45.
Как показано на фиг.3, задняя поверхность первой газовой камеры 30 предпочтительно содержит поверхность 85 электронного дисплея дисплейного пакета 80. Когда изолированный газ первой газовой камеры 30 проходит дисплей, он касается поверхности 85 электронного дисплея. Непосредственное касание охладительным газом поверхности 85 электронного дисплея увеличивает конвективную передачу тепла от поверхности 85 электронного дисплея. В иллюстративных вариантах исполнения поверхность 85 электронного дисплея содержит заднюю поверхность первой газовой камеры 30. Соответственно, термин "поверхность электронного дисплея" означает переднюю поверхность типового электронного дисплея (в отсутствии описанных здесь вариантов исполнения).
В иллюстративном варианте исполнения поверхность 85 электронного дисплея, передняя пластина 90 и опционная вторая передняя пластина 130 могут быть составлены из стеклянной подложки. Однако ни поверхность 85 дисплея, ни передняя прозрачная пластина 90, ни опционная вторая прозрачная передняя пластина 130 не обязательно должны быть стеклянными. Таким образом, термин "стекло" может использоваться здесь взаимозаменяемо с термином "пластина", однако при этом ни в коем случае не требуется стеклянный материал. Кроме того, поверхность 85 электронного дисплея не должна содержать стенки задней поверхности переднего газового отсека 30. Может быть использована дополнительная пластина. Однако при использовании поверхности 85 электронного дисплея в качестве стенки задней поверхности газового отсека 30 будет меньше поверхностей, с которыми сталкивается видимый свет, проходя сквозь дисплей. Кроме того, устройство при этом будет легче и дешевле в производстве.
Хотя показанный вариант исполнения использует поверхность 85 электронного дисплея. Поверхности 85 электронного дисплея могут быть добавлены некоторые изменения и/или покрытия, а также и другим компонентам системы (например, антиотражающие покрытия) для аккомодации охлаждающего газа или для того, чтобы улучшить оптические характеристики устройства. В показанном варианте исполнения поверхность 85 электронного дисплея может представлять собой переднюю стеклянную пластину пакета жидкокристаллического (ЖК) дисплея. Однако для вариантов исполнения настоящей системы охлаждения может подходить почти любая поверхность дисплея. Хотя не обязательно, но предпочтительно позволить охлаждающему газу в первой газовой камере 30 непосредственно касался поверхности 85 электронного дисплея. Таким образом будет максимизирована конвективная передача тепла от компонентов дисплея к циркулирующему газу.
На фиг.4 передняя пластина 90 первой газовой камеры 30 является прозрачной и расположена перед поверхностью 85 электронного дисплея. Показанные стрелки представляют перемещение изолированного газа через первую газовую камеру 30. Как видно на чертеже, изолированный газ пересекает первую газовую камеру 30 в горизонтальном направлении. Хотя система 20 охлаждения может быть построена таким образом, чтобы перемещать газ как в горизонтальном, так и в вертикальном направлении, предпочтительно перемещать газ в горизонтальном направлении. Таким образом, если в первую газовую камеру 30 все же попадет пыль или загрязнения, они будут стремиться упасть на дно камеры 30 снаружи относительно области визуализации дисплея. Система может двигать воздух слева направо или, альтернативно, справа налево. После того, как газ проходит первую газовую камеру 30, он выходит через выходное отверстие 120. Выходное отверстие 120 определяет входной переход в заднее охладительное пространство 45.
Фиг.5 условно показывает заднее охладительное пространство (для ясности описания показанное прозрачным). Один или более вентиляторов 50 могут обеспечивать усилие для перемещения изолированного газа через изолированную газовую охладительную камеру внутри пространства. В то время как первая газовая камера 30 была предназначена для сбора тепла от поверхности 85 дисплея, вторая газовая камера 40 предназначена для извлечения тепла из газа и удаления тепла из охладительной камеры 20. Вторая камера 40 может иметь различные очертания и признаки для того, чтобы содержать в себе внутренние структуры в соответствии с данным предназначением электронного дисплея.
При необходимости в любом месте по всей второй газовой камере 40 могут быть размещены различные электронные компоненты 200. Электронные компоненты 200 могут включать в себя, не ограничиваясь ими, трансформаторы, печатные платы, процессоры, резисторы, конденсаторы, батареи, двигатели, источники питания, осветительные устройства, проводку и жгут проводки, а также переключатели. Эти компоненты могут быть установлены непосредственно на стенках камеры или поддерживаться на стержнях или стойках 209. Таким образом, охладительное пространство может быть построено не только извлекать тепло из первой газовой камеры 30, но и для того, чтобы охлаждать эти разнообразные электронные компоненты 200. (Дополнительно, как описывается далее, если изолированная газовая система используется для нагрева дисплея, эти электронные компоненты могут способствовать нагреву изолированного газа.)
На фиг.6 и 7 видно, что для улучшения рассеяния тепла из пространства 45 могут добавляться различные поверхностные элементы 150. Эти поверхностные элементы 150 обеспечивают большую площадь поверхности, которая испускает тепло из газа внутри второй газовой камеры 40. Эти элементы 150 могут быть расположены в многочисленных местоположениях на поверхности пространства 45.
Из фиг.8 и 9 следует, что на по меньшей мере одной поверхности пространства 45 может быть расположен один или более термоэлектрических модулей 160 для дальнейшего охлаждения газа, содержащегося во второй газовой камере 40. Термоэлектрические модули 160 могут использоваться независимо или вместе с поверхностными элементами 150. Альтернативно термоэлектрические модули 160 могут использоваться для нагрева газа в пространстве, если изолированная газовая система используется для нагрева дисплея в холодном внешнем окружении.
На фиг.10 показан иллюстративный способ отвода тепла в газе, содержащемся в заднем пространстве 45. Для всасывания воздуха и продувки этого воздуха по передней и задней поверхностям пространства 45 может быть установлен вентилятор 60. И опять, вентилятор 60 может всасывать кондиционированный воздух в корпус дисплея 70 или просто всасывать внешний окружающий воздух. Дополнительно в этой конфигурации вентилятор 60 может также принудительно подавать воздух мимо компонентов электронного дисплея, генерирующих тепло (например, дисплейного пакета 80 и сборки 140 задней подсветки) для дальнейшего повышения возможности охлаждения всего дисплея. Следует заметить, что этот вариант исполнения может быть объединен с далее подробно описываемым способом ограниченного конвективного охлаждения. Нагретый выхлопной воздух может выходить через одно или более отверстий 179, расположенных на корпусе 70 дисплея.
Изолированная газовая система нагрева
Как сказано выше, изолированная газовая система может использоваться также и для нагрева электронного дисплея. На фиг.11 и 12, нагревательные элементы 220 могут быть расположены внутри второй газовой камеры 40 и работать, нагревая газ, проходящий по второй газовой камере 40. Эти нагревательные элементы могут быть любыми из многих общедоступных нагревательных элементов или термоэлектрических модулей. Эти элементы всегда представляют собой просто материал, который обладает высоким электрическим сопротивлением и, таким образом, генерирует тепло, когда по нему протекает электрический ток. Нагревательные элементы могут быть, но этим не ограничиваются, любыми из следующих: проволока или лента из нихрома, нанесенные трафаретной печатью на металлических (обычно стальных) пластинах с керамической изоляцией металлические или керамические дорожки, CalRod (обычно тонкие катушки из нихромового провода в керамическом связующем, загерметизированные внутри прочной металлической оболочки), нагревательная лампа и резистивная керамика с положительным температурным коэффициентом (РТС).
Как говорилось ранее, пространство 45 может содержать электрические компоненты 200, которые питают электронный дисплей и управляют им. Электрические компоненты могут быть любыми из следующих: трансформаторы, микропроцессоры, печатные платы, источники питания, резисторы, конденсаторы, двигатели, жгут проводки, а также разъемы. Электрические соединения для электрических компонент 200 могут проходить сквозь стенки пространства 45. Внутри пространства 45 электрические компоненты 200 могут быть расположены в любом месте. Электрические компоненты 200 могут быть установлены на задней или передней поверхности пространства и могут быть либо установлены непосредственно на поверхности пространства, либо могут удерживаться на установочных опорах таким образом, чтобы газ мог проходить вокруг компонента. Во время работы дисплея изолированная газовая система охлаждения может работать постоянно. Однако при необходимости в электронный дисплей могут быть встроены температурный датчик (не показан) и выключатель (не показан). Таким образом, для обнаружения момента, когда температура достигла предопределенного порогового значения можно использовать термостат, и когда температура в дисплее достигнет предопределенного значения, эта изолированная газовая система может быть выборочно включена. Могут быть выбраны предопределенные пороговые значения температуры, и система может быть сконфигурирована нагревать, охлаждать или нагревать и охлаждать дисплей, чтобы преимущественно удерживать дисплей в приемлемом температурном диапазоне.
Линейный поляризатор с опционным изолирующим зазором
Фиг.13 представляет поперечное сечение другого иллюстративного варианта осуществления другого признака терморегуляции. В показанной компоновке передняя пластина 90 и вторая передняя пластина 130 могут состоять из стекла и могут быть наслоены друг к другу. Первая и вторая передние панели 130 и 90 могут быть зафиксированы одна с другой с помощью слоя оптического клея 201 с согласующимся показателем преломления, образуя передний стеклянный блок 206. Дисплейный пакет 80 может состоять из жидкокристаллической сборки, проложенной между передним поляризатором 216 и задним поляризатором 214. В других вариантах исполнения дисплейный пакет 80 может представлять собой сборку любого иного типа для электронного дисплея любого иного типа. Пространство между дисплейным пакетом 80 и передним стеклянным блоком 206 определяет изолирующий зазор 300. Изолирующий зазор 300 служит для теплового разделения переднего стеклянного блока 206 от LCD пакета 80. Это тепловое разделение локализует тепло на переднем стеклянном блоке и не допускает солнечную нагрузку LCD пакета. Если изолирующий зазор 300 используется в комбинации с изолированной газовой системой, то он может содержать первую газовую камеру 30. В других вариантах исполнения изолирующий зазор 300 может быть использован без изолированной газовой системы, просто как слой изоляции и от внешнего воздуха, и от солнечной нагрузки.
Вторая передняя панель может иметь первую поверхность 202 и вторую поверхность 208. Первая поверхность 202 может быть подвержена элементам, в то время как вторая поверхность 208 может быть скреплена с первой передней пластиной 90 с помощью оптического клея 201 с соответствующим показателем преломления. Первая передняя панель 90 может иметь третью поверхность 209 и четвертую поверхность 204. Третья поверхность 209 может быть скреплена со второй передней пластиной 130 с помощью оптического клея 201 с соответствующим показателем преломления, в то время как четвертая поверхность может быть непосредственно смежна с изолирующим зазором 300. В некоторых вариантах исполнения для уменьшения солнечной нагрузки дисплейного пакета 80 и улучшения качества видимого изображения на первую поверхность 202 и на четвертую поверхность 204 может быть нанесено антиотражающее покрытие. В других вариантах исполнения антиотражающее покрытие может быть нанесено на, по меньшей мере, одну из первой, второй, третьей или четвертой поверхностей 202, 208, 209 и 204 соответственно.
Фиг.14 представляет поперечное сечение другого иллюстративного варианта исполнения переднего стеклянного блока 206. В показанной компановке передний стеклянный блок 206 содержит вторую переднюю пластину 130, слой оптического клея 201 с соответствующим показателем преломления, линейный поляризатор 400 и первую переднюю пластину 90. Линейный поляризатор 400 может быть связан с по меньшей мере одной из первой, второй, третьей или четвертой поверхностей 202, 208, 209 и 204 соответственно. И снова на, по меньшей мере, одну из первой, второй, третьей или четвертой поверхностей 202, 208, 209 и 204 соответственно, может быть нанесен антиотражающий слой. Линейный поляризатор 400 может быть выровнен относительно переднего поляризатора 209, находящегося в LCD пакете 80. Включение в передний стеклянный блок 206 линейного поляризатора 400 еще более уменьшает солнечную нагрузку на дисплейный пакет 80. уменьшение солнечной нагрузки может значительно уменьшить внутреннюю температуру электронного дисплея. Линейный поляризатор 400 может также вызвать уменьшение зеркального отражения переднего стеклянного блока 206 и дисплейного пакета 80. Как говорилось выше, если изолирующий зазор 300 используется в комбинации с изолированной газовой системой, то он может включать в себя первую газовую камеру 30. В других вариантах исполнения изолирующий зазор 300 может быть использован без изолированной газовой системы, просто как слой изоляции и от внешнего воздуха, и от солнечной нагрузки. И здесь следует заметить, что дисплейный пакет 80 может быть LCD пакетом, но он может быть также и электронным дисплеем иного типа.
Следует также заметить, что вторая передняя пластина 130 не требуется. Варианты исполнения могут использовать только первую переднюю пластину 90 с линейным поляризатором, прикрепленным либо к передней, либо к задней поверхности передней пластины 90. Либо на переднюю, либо на заднюю поверхность передней пластины 90 также может быть нанесен антиотражательный слой. Передняя пластина 90, если используется только передняя пластина 90 без второй передней пластины 130, может быть закалена для дополнительной прочности.
Ограниченная конвекция
Некоторые типы электронных дисплеев для формирования изображения на видимом экране требуют наличия сборки задней подсветки. LCD представляют собой один тип дисплеев, которым требуется сборка задней подсветки. Дисплеи других типов, такие как плазменные дисплеи и органические светодиодные дисплеи не требуют сборки задней подсветки, поскольку они генерируют свет сами. Однако эти типы дисплеев все еще выделяют значительное количество тепла. Поэтому в дальнейшем описании система ограниченной конвекции будет описана применительно к сборке задней подсветки, но следует заметить, что варианты исполнения могут быть реализованы с дисплеями других типов. Таким образом, при описании задней подсветки или сборки задней подсветки, эти сборки могли бы также являться задними поверхностями других тепловыделяющих дисплеев, а система ограниченной конвекции способствовала бы более эффективному охлаждению этих альтернативных дисплеев. Следует также заметить, что фиг.15А, 15В и фиг.17А-17С необязательно выполнены в масштабе. Соотношения между элементами в целях разъяснения могут быть подчеркнуто увеличены.
Фиг.15А показывает поперечное сечение задней подсветки 140 с пластиной 300 ограниченной конвекции, при этом пространство между двумя элементами определяет узкий зазор 305. Размеры этого зазора могут изменяться в зависимости от нескольких факторов, включая размер дисплея, его рабочие условия, тип сборки задней подсветки и материал его задней поверхности, а также количество и мощность, прикладываемую к различным вентиляторам ограниченной конвекции. Некоторые иллюстративные варианты исполнения могут использовать величину зазора примерно в 0,25-3,5 дюйма. Другие варианты исполнения могут использовать несколько больший зазор. Было обнаружено, что нагнетаемый воздух через этот зазор 305 увеличивает способность охлаждать заднюю подсветку 140. Чтобы толкать воздух через зазор 305, могут быть использованы один или более вентиляторов 310 ограниченной конвекции. Фиг.15В показывает поперечное сечение другого варианта исполнения системы ограниченной конвекции, в которой один или более вентиляторов 310 ограниченной конвекции толкают воздух через зазор 305.
Фиг.16 представляет вид сверху изолированной газовой системы, как она описана выше. Показана линия 17-17 поперечного сечения, проходящая через изолированную газовую систему.
Фиг.17А-17С показывают перечные сечения по линии 17-17, показанной на фиг.16. Сначала обратимся к фиг.17А, где спереди дисплея находится первая газовая камера 30, которая упирается в электронный дисплей 80. Перед первой газовой камерой 30 расположена передняя пластина 90. Сзади дисплея в непосредственной близости от второй газовой камеры 40 помещена задняя подсветка 140. В такой конфигурации внешняя стенка второй газовой камеры 40 может функционировать как пластина ограниченной конвекции. Этот вариант исполнения не использует вентилятор ограниченной конвекции, а вместо этого используется вентилятор 60, который засасывает воздух снаружи корпуса дисплея и нагнетает его по поверхностям второй газовой камеры 40. Как отмечалось ранее, этот воздух может быть либо просто окружающим воздухом, либо, альтернативно, этот воздух может поступать из кондиционирующего блока (не показан). Для способствования потоку воздуха между задней подсветкой 140 и охладительной камерой 40 может быть использовано направляющее устройство 320.
Теперь обратимся к фиг.17В, охладительная камера 40 содержит направляющий признак 41, который используется в комбинации с направляющим устройством 320 для продвижения потока воздуха между задней подсветкой и охладительной камерой. Фиг.17С показывает другой вариант исполнения, в котором используются и внешний вентилятор 60, и вентилятор 310 ограниченной конвекции. Этот вариант исполнения может использовать также вариант направляющих устройств, показанных на фиг.17А и 17В.
Задняя подсветка 140 может содержать печатную плату (РСВ) со множеством источников света, установленных на стороне, обращенной к электронному дисплею 80. Источниками света в задней подсветке 140 могут быть любые из следующих: LED, органические светодиоды (OLED), дисплей полевого излучения, светоизлучающие полимеры или органические электролюминесцентные (OEL) источники света. В иллюстративном варианте исполнения задняя подсветка 140 идеально имеет низкий уровень теплового сопротивления между стороной, обращен