Способ и система для службы контекста данных

Иллюстрации

Показать все

Изобретение относится к способу выполнения работ на месторождении. Техническим результатом является повышение эффективности регулирования работы на месторождении. Способ включает в себя этапы, на которых извлекают контекстную информацию из главного приложения, связанного с проектом месторождения, сортируют контекстную информацию по совокупности аспектов релевантности, генерируют, по меньшей мере, один профиль поиска для каждого из совокупности аспектов релевантности, запрашивают совокупность поисков с использованием, по меньшей мере, одного профиля поиска, принимают один или несколько элементов данных месторождения, полученных в результате совокупности поисков, и избирательно регулируют работы на месторождении на основании одного или нескольких элементов данных месторождения. 3 н. и 14 з.п. ф-лы, 20 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к методам производства работ на месторождении в отношении геологических пластов, содержащих коллекторы. В частности, изобретение относится к методам производства работ на месторождении с применением анализа эксплуатации коллектора и его влияния на такие работы на месторождении.

Уровень техники

Работы на месторождении, например разведка, бурение, тестирование с помощью кабельных инструментов, заканчивание, эмуляция, планирование и анализ месторождения, обычно осуществляются для определения положения и сбора ценных скважинных флюидов. Различные аспекты месторождения и связанные с ними операции показаны на фиг. 1A-1D. Согласно фиг.1A разведка часто осуществляется с использованием средств сбора данных, например, сейсмических сканеров для генерации карт геологических структур. Эти структуры часто анализируются для определения наличия полезных ископаемых, например, ценных флюидов или минералов. Эта информация используется для оценивания геологических структур и нахождения пластов, содержащих нужные полезные ископаемые. Данные, собранные с помощью средств сбора данных, можно оценивать и анализировать для определения, присутствуют ли такие ценные материалы, и достаточно ли они доступны.

Согласно фиг. 1B-1D одна или несколько буровых площадок могут располагаться вдоль геологических структур для отбора ценных флюидов из пластов-коллекторов. Буровые площадки снабжены инструментами, способными находить и извлекать углеводороды из пластов-коллекторов. Согласно фиг.1B бурильные инструменты обычно продвигаются от нефтяных буровых вышек вглубь земли по заданному пути для обнаружения ценных скважинных флюидов. В ходе бурильных работ бурильный инструмент может осуществлять измерения в скважине для исследования условий в скважине. В ряде случаев, как показано фиг.1C, бурильный инструмент удаляется, и кабельный инструмент заправляется в ствол скважины для осуществления дополнительного тестирования в скважине.

По завершении бурильных работ скважину можно готовить к эксплуатации. Согласно фиг.1D оборудование заканчивания ствола скважины заправляется в ствол скважины для заканчивания скважины в порядке подготовки к добыче флюида через нее. Затем флюид проникает из пластов-коллекторов в ствол скважины и вытекает на поверхность. Добывающие установки располагаются на поверхности для отбора углеводородов из буровой(ых) площадки(ок). Флюид, поступающий из пласта(ов)-коллектора(ов), достигает добывающих установок через механизмы транспортировки, например, насосно-компрессорную трубу. Вокруг месторождения может располагаться разнообразное оборудование для мониторинга параметров месторождения и/или управления работами на месторождении.

В ходе работ на месторождении, данные обычно собираются для анализа и/или мониторинга работ на месторождении. Такие данные может включать в себя, например, данные о геологическом пласте, оборудовании, исторические и/или иные данные. Данные, относящиеся к геологическому пласту, собираются с использованием различных источников. Такие данные пласта могут быть статическими или динамическими. Статические данные относятся, например, к структуре пласта и геологической стратиграфии, которая определяет геологическую структуру геологического пласта. Динамические данные относятся, например, к флюидам, текущим через геологические структуры геологического пласта на протяжении времени. Такие статические и/или динамические данные можно собирать для дополнительного изучения пластов и содержащихся в них полезных ископаемых.

Источники, используемые для сбора статических данных, могут представлять собой сейсмические инструменты, например, самоходная сейсмическая станция, которая посылает волны сжатия вглубь земли, как показано на фиг.1A. Эти волны измеряются для выявления изменений плотности геологической структуры на разных глубинах. Эту информацию можно использовать для генерации базовых структурных карт геологического пласта. Другие статические измерения можно собирать с использованием методов взятия кернов и каротажа скважины. Керны можно использовать для забора физических образцов пласта на различных глубинах, как показано на фиг.1B. Каротаж скважины обычно предусматривает заправку скважинного инструмента в ствол скважины для сбора различных измерений в скважине, например, плотности, удельного сопротивления и т.д., на различных глубинах. Такой каротаж скважины можно осуществлять с использованием, например, бурильного инструмента, показанного на фиг.1B, и/или кабельного инструмента, показанного на фиг.1C. После формирования и заканчивания скважины, флюид поступает на поверхность по эксплуатационной насосно-компрессорной колонне, как показано на фиг.1D. Когда флюид поступает на поверхность, можно отслеживать различные динамические измерения, например, темпы отбора, давление, и состав флюида. Эти параметры можно использовать для определения различных характеристик геологического пласта.

Датчики могут располагаться вокруг месторождения для сбора данных, связанных с различными работами на месторождении. Например, датчики в бурильном оборудовании могут отслеживать условия бурения, датчики в стволе скважины могут отслеживать состав флюида, датчики, расположенные вдоль пути потока, могут отслеживать темпы отбора, и датчики на установке обработки могут отслеживать собранные флюиды. Можно обеспечить другие датчики для мониторинга условий в скважине, на поверхности, на оборудовании или других условий. Данные слежения часто используются для принятия решений в различных местах месторождения различные моменты времени. Данные, собранные этими датчиками, можно дополнительно анализировать и обрабатывать. Данные можно собирать и использовать для текущих или будущих работ. При использовании для будущих работ в том же или в других местах, такие данные можно иногда называть историческими данными.

Обработанные данные можно использовать для прогнозирования условий в скважине и принятия решений, касающихся работ на месторождении. Такие решения могут предусматривать планирование скважины, нацеливание скважины, заканчивание скважины, операционные уровни, темпы добычи и другие операции и/или условия. Часто эта информация используется для определения, когда бурить новые скважины, перезаканчивать существующие скважины, или изменять отдачу ствола скважины.

Данные из одного или нескольких стволов скважины можно анализировать для планирования или прогнозирования различных исходов на данном стволе скважины. В ряде случаев, данные из соседних стволов скважины или стволов скважины со сходными условиями или оборудованием можно использовать для прогнозирования, как будет работать скважина. Обычно существует большое количество переменных и большие объемы данных, которые нужно учитывать при анализе работ на месторождении. Поэтому часто бывает полезно моделировать ход работ на месторождении для определения желательного технологического потока. В ходе текущей работы может потребоваться регулировать условия эксплуатации в случае изменения условий и получения новой информации.

Разработаны методики моделирования поведения различных аспектов работ на месторождении, например, геологических структур, пластов-коллекторов, стволов скважин, наземных установок, а также других участков работ на месторождении. Эти методики обычно реализуются в пользовательском приложении или технологическом потоке месторождения. Примеры методики эмуляции, которую можно использовать в этих пользовательском приложении или технологическом потоке, описаны в патентах/публикациях №№ US5992519 и W02004/049216. Другие примеры этих методов моделирования представлены в патентах/публикациях №№ US6313837, WO 1999/064896, W02005/122001, US2003/0216897, US2003/0132934, US2005/0149307 и US2006/0197759.

В последнее время были предприняты попытки учета более широкого диапазона данных в работах на месторождении. Например, в патенте US6980940, выданном Gurpinar, раскрыта интегрированная оптимизация коллектора, предусматривающая ассимиляцию разрозненных данных для оптимизации общей производительности коллектора. В порядке другого примера, в патенте W02004/049216, выданном Ghorayeb, раскрыто интегрированное решение моделирования для согласования множественных эмуляций коллектора и сетей наземных установок. Другие примеры таких недавних попыток раскрыты в патентах/публикациях/заявках №№ US6230101, US6018497, US6078869, GB2336008, US6106561, US2006/0184329, US7164990, US2004/0220846 и US 10/586,283. Некоторые методы эмуляции предусматривают использование согласованных эмуляций, как описано, например, в публикации № US2006/0129366.

Несмотря на разработку и развитие пользовательских приложений для моделирования ствола скважины и/или методов эмуляции для работ на месторождении, в настоящее время, работники, которым нужны знания в области энергетики, обычно обращаются к массиву структурированной информации (данным, содержащимся в базах данных или электронных таблицах) и очень мало обращаются к неструктурированным данным (отчетам, презентациям, картам, электронным письмам, веб-контенту и т.д., описанным выше). Различные исследования говорят о том, что примерно двадцать процентов данных, используемых на большинстве предприятий, представляют собой структурированные данные, тогда как остальные восемьдесят процентов являются неструктурированными данными, обычно принимающими вид записок, заметок, новостей, групп пользователей, чатов, отчетов, писем, разведок, технических описаний, маркетингового материала, исследований, презентаций и веб-страниц. В энергетике (например, нефтегазовой, возобновляемых ресурсов и т.д.), более шестидесяти процентов неструктурированных данных не используется и не обращаются. Если работник применяет обычные поисковые инструменты для неструктурированных данных, например, движки поиска веб-контента или системы электронного документооборота (EDMS) для поиска документов и отчетов, результаты поиска часто оказываются бесполезными, поскольку систематика поиска не релевантна объему и технологическому потоку в энергетике.

Такие методы поиска часто приводят к информационной перегрузке, поскольку возвращается слишком много результатов, что практически не позволяет найти наилучшую информацию. Когда важная информация найдена, она часто используется один раз и не поддерживается для других пользователей знания с аналогичными профилем, ролю, или заголовком для использования в будущих технологических потоках. Пользователи часто не делятся такой информацией с другими членами рабочей группы, которые могли бы воспользоваться этой информацией. Наконец, не существует легкого способа, который пользователь мог бы применить для ранжирования относительной ценности данных, в связи с его технологическим потоком, ролью и данными. Поэтому существует необходимость в обеспечении методов осуществления поисков данных месторождения, имеющих структурированный и неструктурированный форматы, из пользовательского/главного приложения, и возвращения результатов поиска, которые более релевантны контексту проекта месторождения, пользовательскому/главному приложению, используемому в проекте, и пользователю, использующему приложение.

Было бы желательно иметь систему, способную извлекать контекстную информацию с использованием настраиваемых поисковых модулей для разграничения разных категорий контекстной информации. В ряде случаев, может оказаться полезно избирательно связывать или согласовывать некоторые модули таким образом, чтобы можно было устанавливать комбинированный профиль поиска. В других случаях, может оказаться полезно ограничивать или регулировать объем поиска под управлением пользователя. Кроме того, желательно, чтобы такие методы позволяли осуществлять, помимо прочего, следующее: активацию поиска из приложения; избирательное применение результатов поиска для приложения; и обобществление результатов поиска между разными проектами или технологическими потоками.

Сущность изобретения

В общем случае, в одном аспекте, изобретение относится к способу производства работ на месторождении. Способ включает в себя этапы, на которых извлекают контекстную информацию из главного приложения, связанного с проектом месторождения, сортируют контекстную информацию по совокупности аспектов релевантности, генерируют, по меньшей мере, один профиль поиска для каждого из совокупности аспектов релевантности, запрашивают совокупность поисков с использованием, по меньшей мере, одного профиля поиска, принимают один или несколько элементов данных месторождения, полученные в результате совокупности поисков, и избирательно регулируют работы на месторождении на основании одного или нескольких элементов данных месторождения.

В общем случае, в одном аспекте, изобретение относится к системе для производства работ на месторождении. Система включает в себя главное приложение, связанное с проектом месторождения, движок контекстных данных, оперативно подключенный к главному приложению, причем движок контекстных данных предназначен для извлечения контекстной информации из главного приложения и сортировки контекстной информации по совокупности аспектов релевантности, совокупность модулей, предназначенных для осуществления совокупности поисков на основании, по меньшей мере, одного профиля поиска, генерируемого из совокупности аспектов релевантности, и устройство для регулировки работ на месторождении на основании одного или нескольких элементов данных месторождения, полученных в результате, по меньшей мере, одного из совокупности поисков.

В общем случае, в одном аспекте, изобретение относится к компьютерно-считываемому носителю, где хранятся инструкции для производства работ на месторождении. Инструкции включают в себя функциональные возможности для извлечения контекстной информации из главного приложения, связанного с проектом месторождения, сортировки контекстной информации по совокупности аспектов релевантности, генерации, по меньшей мере, одного профиля поиска для каждого из совокупности аспектов релевантности, запрашивания совокупности поисков с использованием, по меньшей мере, одного профиля поиска, и приема одного или нескольких элементов данных месторождения, полученных в результате совокупности поисков.

Другие аспекты и преимущества изобретения явствуют из нижеследующего описания и прилагаемой формулы изобретения.

Краткое описание чертежей

Таким образом, вышеупомянутые признаки и преимущества настоящего изобретения можно уяснить из подробного, более конкретного описания изобретения, краткая сводка которого приведена выше, которое опирается на варианты осуществления, проиллюстрированные в прилагаемых чертежах. Заметим, однако, что прилагаемые чертежи иллюстрируют лишь типичные варианты осуществления этого изобретения и поэтому не призваны ограничивать его объем, ибо изобретение допускает другие, столь же эффективные варианты осуществления.

На фиг. 1A-1D показаны иллюстративные схематические виды месторождения, имеющего геологические структуры, включающие в себя коллекторы, и различные работы на месторождении, осуществляемые на месторождении. На фиг.1A показаны иллюстративные разведочные работы, осуществляемые самоходной сейсмической станцией. На фиг.1B показаны иллюстративные бурильные работы, осуществляемые бурильным инструментом, подвешенным на буровой вышке и продвигаемым в геологический пласт. На фиг.1C показана иллюстративная кабельная операция, осуществляемая с помощью кабельного инструмента, подвешенного на буровой вышке и опускаемого в ствол скважины, как показано на фиг.1B. На фиг.1D показана иллюстративная операция эмулирования, осуществляемая инструментом эмуляции, запускаемого от буровой вышки в законченный ствол скважины для отбора флюида из пласта-коллектора на наземную установку.

На фиг.2A-2D показаны иллюстративные графические представления данных, собранных с помощью инструментов, показанных на фиг. 1A-1D, соответственно. На фиг.2A показана иллюстративная сейсмическая трасса геологического пласта, показанного на фиг.1A. На фиг.2B показан иллюстративный керн пласта, показанного на фиг.1B. На фиг.2C показана иллюстративная каротажная диаграмма геологического пласта, показанного на фиг.1C. На фиг.2D показана иллюстративная кривая падения производительности для флюида, текущего через геологический пласт, показанный на фиг.1D.

На фиг.3 показан иллюстративный схематический вид, частично в разрезе, месторождения, имеющего совокупность инструментов сбора данных, расположенных в различных местах вдоль месторождения, для сбора данных из геологического пласта.

На фиг.4 показан иллюстративный схематический вид месторождения, имеющего совокупность буровых площадок для добычи углеводородов из геологического пласта.

На фиг.5 показана иллюстративная схема участка месторождения, показанного на фиг.4, где подробно изображена операция эмулирования.

На фиг.6a показан иллюстративный скриншот пользовательского приложения, используемого в проекте работ на месторождении.

На фиг.6b показан иллюстративный скриншот пользовательского приложения с окном службы контекста данных.

На фиг.7a показана иллюстративная схема использования службы контекста данных в производстве работ на месторождении.

На фиг.7b показан иллюстративный скриншот окна службы контекста данных.

На фиг.8a, 8b и 9 (разделенной на фиг.9A и 9B) показаны иллюстративные скриншоты окон службы контекста данных в разных конфигурациях.

На фиг.10 показана логическая блок-схема, где представлен способ использования службы контекста данных при производстве работ на месторождении.

Подробное описание изобретения

Почтительные в настоящее время варианты осуществления изобретения представлены на вышеописанных фигурах и подробно описаны ниже. В описании предпочтительных вариантов осуществления, сходные или одинаковые условные обозначения используются для указания общих или сходных элементов. Фигуры не обязательно выполнены в масштабе, и некоторые признаки и некоторые виды фигур могут быть показаны в укрупненном виде или же схематически для наглядности и пояснения.

На фиг. 1A-D показано месторождение (100), имеющее геологические структуры и/или геологические пласты. Как следует из этих фигур, различные измерения геологического пласта производятся различными инструментами в одном и том же месте. Эти измерения можно использовать для генерации информации о пласте и/или геологических структурах и/или флюидах, содержащихся в них.

На фиг. 1A-1D показаны схематические виды месторождения (100), имеющего геологические пласты (102), содержащие коллектор (104), и показаны различные работы на месторождении, осуществляемые на месторождении (100). На фиг.1A оказаны разведочные работы, осуществляемые самоходной сейсмической станцией (106a) для измерения свойств геологического пласта. Разведочные работы представляют собой сейсмические разведочные работы для генерации звуковых колебаний (112). На фиг.1A, одно такое звуковое колебание (112) генерируется источником (110) и отражается от совокупность горизонтов (114) в геологическом пласте (116). Звуковые колебания (112) воспринимаются датчиками (S), например, геофонами (118), расположенными на поверхности земли, и геофоны (118) вырабатывают выходные электрические сигналы, именуемые принятыми данными (120) согласно фиг.1.

В ответ на принятые звуковые колебания (112), представляющие различные параметры (например, амплитуду и/или частоту) звуковых колебаний (112). Принятые данные (120) поступают как входные данные на компьютер (122a) самоходной сейсмической станции (106a), и в ответ на входные данные, компьютер (122a) самоходной сейсмической станции генерирует запись (124) выходных сейсмических данных. Сейсмические данные можно по желанию дополнительно обрабатывать, например, сокращая данные.

На фиг.1B показаны бурильные работы, осуществляемые с помощью бурильного инструмента (106b), подвешенного на буровой вышке (128) и продвигаемого в геологический пласт (102) для формирования ствола скважины (136). Амбар для бурового раствора (130) используется для подачи бурового раствора в бурильный инструмент (106b) по трубопроводу (132) для циркуляции бурового раствора через бурильный инструмент (106b) и обратно на поверхность. Бурильный инструмент (106b) продвигается в пласт, пока не достигнет коллектора (104). Бурильный инструмент (106b), предпочтительно, приспособлен для измерения скважинных параметров. Бурильный инструмент (106b) также может быть приспособлен для взятия керна (133), как показано, или после его удаления керн (133) можно брать с использованием другого инструмента.

Наземное устройство (134) используется для сообщения с бурильным инструментом (106b) и работами вне буровой площадки. Наземное устройство (134) способно сообщаться с бурильным инструментом (106b) для подачи команд на приведение в действие бурильного инструмента (106b) и для приема данных от него. Наземное устройство (134), предпочтительно, снабжено компьютерными устройствами для приема, сохранения, обработки и анализа данных из месторождения (100). Наземное устройство (134) собирает выходные данные (135), генерируемые в ходе бурильных работ. Компьютерные устройства, например, входящие в состав наземного устройства (134), могут располагаться в различных местах вокруг месторождения (100) и/или в удаленных местах.

Датчики (S), например, манометры, могут располагаться в коллекторе, на буровой вышке, в оборудовании месторождения (например, в скважинном инструменте), или на других участках месторождения для сбора информации о различных параметрах, например, наземных параметрах, скважинных параметрах и/или условиях эксплуатации. Эти датчики (S), предпочтительно, измеряют параметры месторождения, например, вес долота, крутящий момент на долоте, давления, температуры, темпы отбора, составы и другие параметры работ на месторождении.

Информация, собранная датчиками (S), может собираться наземным устройством (134) и/или другими источниками сбора данных для анализа или другой обработки. Данные, собранные датчиками (S), можно использовать по отдельности или в комбинации с другими данными. Данные можно собирать в базе данных, и все или избранные фрагменты данных можно избирательно использовать для анализа и/или прогнозирования работ на месторождении для текущего и/или других стволов скважины.

Выходные данные от различных датчиков (S), расположенных вокруг месторождения, можно обрабатывать для использования. Данные могут представлять собой исторические данные, данные реального времени или их комбинацию. Данные реального времени можно использовать в реальном времени или сохранять для дальнейшего использования. Данные также можно объединять с историческими данными или другими вводами для дополнительного анализа. Данные можно распределять по отдельным базам данных или объединять в одну базу данных.

Собранные данные можно использовать для осуществления анализа, например, для операций моделирования. Например, сейсмические выходные данные можно использовать для осуществления геологической эмуляции, геофизической эмуляции, эмуляции разработки коллектора и/или эмуляции добычи. Данные коллектора, ствола скважины, наземные данные и/или данные процесса можно использовать для осуществления эмуляции коллектора, эмуляции ствола скважины, или другой эмуляции добычи. Выходные данные работ на месторождении могут генерироваться непосредственно датчиками (S) или после некоторой/ого предварительной/ого обработки или моделирования. Эти выходные данные могут служить вводами для дополнительного анализа.

Данные собираются и сохраняются на наземном устройстве (134). Одно или несколько наземных устройств (134) могут находиться на месторождении (100) или иметь дистанционную связь с ним. Наземное устройство (134) может быть единичным устройством или сложной сетью устройств, используемых для осуществления необходимых функций манипуляции данными на месторождении (100). Наземное устройство (134) может быть системой с ручным или автоматическим управлением. Наземное устройство (134) может эксплуатироваться и/или регулироваться пользователем.

Наземное устройство (134) может быть снабжено приемопередатчиком (137) для осуществления связи между наземным устройством (134) и различными участками (или областями) месторождения (100) или другими местами. Наземное устройство (134) также может быть снабжено или функционально связано с контроллером для активации механизмов на месторождении (100). Наземное устройство (134) может предавать сигналы управления на месторождение (100) в ответ на принятые данные. Наземное устройство (134) может принимать команды через приемопередатчик или может само выполнять команды на контроллер. Может быть предусмотрен процессор для анализа данных (локально или удаленно) и принятия решений на активацию контроллера. Таким образом, месторождение (100) можно избирательно регулировать на основании собранных данных для оптимизации темпов добычи флюида или для максимизации долговечности коллектора и его окончательного уровня добычи. Эти регулировки могут производиться автоматически, на основании компьютерного протокола, и/или вручную, оператором. В ряде случаев, планы скважины можно регулировать для выбора оптимальных условий эксплуатации или во избежание проблем.

На фиг.1C показана кабельная операция, осуществляемая с помощью кабельного инструмента (106c), подвешенного на буровой вышке (128) и опускаемого в ствол скважины (136), показанный на фиг.1B. Кабельный инструмент (106c), предпочтительно, приспособлен для заправки в ствол скважины (136) для осуществления каротажа, осуществления скважинных испытаний и/или сбора образцов. Кабельный инструмент (106c) можно использовать для обеспечения другого способа и устройства для осуществления сейсмических разведочных работ. Кабельный инструмент (106c), показанный на фиг.1C, может иметь источник (143) взрывной или акустической энергии, который обеспечивает электрические сигналы в окружающие геологические пласты (102).

Кабельный инструмент (106c) может быть оперативно связан, например, с геофонами (118), находящимися в компьютере (122a) самоходной сейсмической станции (106a), показанной на фиг.1A. Кабельный инструмент (106c) также может выдавать данные на наземное устройство (134). Как показано, выходные данные (135) генерируется кабельным инструментом (106c) и собираются на поверхности. Кабельный инструмент (106c) может располагаться на различных глубинах в стволе скважины (136) для обеспечения разведки геологического пласта.

На фиг.1D показана операция добычи, осуществляемая инструментом добычи (106d), идущим от устройства добычи или устьевого оборудования (129) в законченный ствол скважины (136), показанный на фиг.1C для извлечения флюида из пластов-коллекторов в наземные установки (142). Флюид течет из коллектора (104) через перфорации в обсадной колонне (не показаны) и поступает в инструмент добычи (106d) в стволе скважины (136) и на наземные установки (142) через сеть отбора (146).

Датчики (S), например, манометры, могут располагаться вокруг месторождения для сбора данных, связанных с различными работами на месторождении, как описано выше. Как показано, датчик (S) может располагаться в инструменте добычи (106d) или связанном с ним оборудовании, например, в устьевом оборудовании, в сети отбора, на наземных установках и/или на добывающей установке, для измерения параметров флюида, например, состава флюида, темпов отбора, давлений, температур и/или других параметров операции добычи.

Хотя показаны лишь упрощенные конфигурации буровой площадки, очевидно, что месторождение может охватывать участок суши, моря и/или воды, где находится одна или несколько буровых площадок. Добыча может также включать в себя нагнетательные скважины (не показаны) для увеличения отбора. Одна или несколько установок отбора могут оперативно подключаться к одной или нескольким буровым площадкам для избирательного сбора скважинных флюидов от буровой(ых) площадки(ок).

Хотя на фиг. 1B-1D показаны инструменты, используемые для измерения свойств месторождения (100), очевидно, что инструменты можно использовать для работ не на нефтяных месторождениях, например, в шахтах, водоносных слоях, хранилищах или других подземных установках. Кроме того, хотя показаны определенные инструменты сбора данных, очевидно, что различные измерительные инструменты, способные воспринимать параметры, например, время прохождения сейсмической волны в обоих направлениях, плотность, удельное сопротивление, темп добычи, и т.д., геологического пласта и/или его геологических структур можно использовать. В различных положениях вдоль ствола скважины могут находиться различные датчики (S) и/или инструменты мониторинга для сбора и/или отслеживания нужных данных. Также могут быть обеспечены другие источники данных из положений вне буровой площадки.

Конфигурация месторождения, показанная на фиг. 1A-1D, служит для краткого описания примера месторождения, в котором можно применять настоящее изобретение. Месторождение (100), полностью или частично, может находиться на суше и/или в море. Кроме того, хотя показано единичное месторождение в единичном местоположении, настоящее изобретение можно использовать для любой комбинации одного или нескольких месторождений (100), одной или нескольких установок обработки и одной или нескольких буровых площадок.

На фиг.1D показана операция добычи, осуществляемая инструментом добычи (106d), идущим от буровой вышки (128) в законченный ствол скважины (136), показанный на фиг.1C, для извлечения флюида из пластов-коллекторов на наземные установки (142). Флюид течет из коллектора (104) через ствол скважины (136) в наземные установки (142) по наземной сети (144). Датчики (S), расположенные вокруг месторождения (100), оперативно подключены к наземному устройству (142) для сбора данных оттуда. В ходе процесса добычи, выходные данные (135) можно собирать от различных датчиков (S) и передавать на наземное устройство (134) и/или установки обработки. Эти данные могут представлять собой, например, данные коллектора, данные ствола скважины, наземные данные, и/или данные процесса.

Хотя на фиг. 1A-1D показаны инструменты мониторинга, используемые для измерения свойств месторождения (100), очевидно, что инструменты можно использовать для работ не на нефтяных месторождениях, например, в шахтах, водоносных слоях или других подземных установках. Кроме того, хотя показаны определенные инструменты сбора данных, очевидно, что можно использовать различные измерительные инструменты, способные воспринимать параметры, например, время прохождения сейсмической волны в обоих направлениях, плотность, удельное сопротивление, темп добычи, и т.д., геологического пласта и/или его геологических структур. В различных положениях вдоль геологического пласта могут находиться различные датчики (S) и/или инструменты мониторинга для сбора и/или отслеживания нужных данных. Также могут быть обеспечены другие источники данных из положений вне буровой площадки.

Конфигурация месторождения, показанная на фиг. 1A-1D, не призвана ограничивать объем изобретения. Месторождение (100), полностью или частично, может находиться на суше и/или в море. Кроме того, хотя показано единичное месторождение в единичном местоположении, настоящее изобретение можно использовать для любой комбинации одного или нескольких месторождений (100), одной или нескольких установок обработки и одной или нескольких буровых площадок. Дополнительно, хотя показана только одна буровая площадка, очевидно, что месторождение (100) может охватывать участок суши, где находится одна или несколько буровых площадок. Одна или несколько установок отбора могут оперативно подключаться к одной или нескольким буровым площадкам для избирательного сбора скважинных флюидов от буровой(ых) площадки(ок).

На фиг. 2A-2D показаны графические представления данных, собранных с помощью инструментов, показанных на фиг. 1A-1D, соответственно. На фиг.2A показана сейсмическая трасса (202) геологического пласта, показанного на фиг.1A, полученная инструментом разведки (106a). Сейсмическая трасса измеряет двусторонний отклик в течение периода времени. На фиг.2B показан керн (133), извлеченный бурильным инструментом (106b). Керновый тест обычно обеспечивает график плотности, удельного сопротивления или другого физического свойства керна (133) на протяжении длины керна. Тесты на плотность и вязкость часто осуществляется на флюидах в керне при изменяющихся давлениях и температурах. На фиг.2C показана каротажная диаграмма (204) геологического пласта, показанного на фиг.1C, полученная с помощью кабельного инструмента (106c). Кабельный каротаж обычно обеспечивает измерение удельного сопротивления пласта на различных глубинах. На фиг.2D показана кривая падения производительности (206) для флюида, текущего через геологический пласт, показанный на фиг.1D, полученная с помощью инструмента добычи (106d). Кривая падения производительности (206) обычно обеспечивает темп добычи Q как функцию времени t.

Соответствующие графики, показанные на фиг. 2A-2C, содержат статические измерения, которые описывают физические характеристики пласта. Эти измерения можно сравнивать для определения точности измерений и/или для выявления ошибок. Таким образом, графики каждого из соответствующих измерений можно выравнивать и масштабировать для сравнения или проверки свойств.

На фиг.2D представлено динамическое измерение свойств флюида на протяжении ствола скважины. Когда флюид течет по стволу скважины, производятся измерения свойств флюида, например, темпов отбора, давлений, состава, и т.д. Как описано ниже, статические и динамические измерения можно использовать для генерации моделей геологического пласта для определения его характеристик.

На фиг.3 показан схематический вид, частично в разрезе, месторождения (300), где находятся инструменты (302a), (302b), (302c) и (302d) сбора данных, расположенные в различных местах вдоль месторождения, для сбора данных из геологического пласта (304). Инструменты (302a-302d) сбора данных могут быть идентичны инструментам (106a-106d) сбора данных, показанным на фиг.1, соответственно. Как показано, инструменты (302a-302d) сбора данных генерируют графики данных или измерения (308a- 308d), соответственно.

Графики данных (308a-308c) иллюстрируют графики статических данных, которые могу генерировать инструменты (302a-302d) сбора данных, соответственно. График (308a) статических данных представляет время двустороннего сейсмического отклика и может быть идентичен сейсмической трассе (202), показанной на фиг.2A. Статический график (308b) представляет данные керна, измеренные на керне пласта (304), аналогичном керну (133), показанному на фиг.2B. График статических данных (308c) представляет каротажную кривую, аналогичную каротажной диаграмме (204), показанной на фиг.2C. График данных (308d) представляет график динамических данных темпа отбора флюид в течение времени, аналогичный графику (206), показанному на фиг.2D. Также можно собирать и другие данные, например исторические данные, пользовательские вводы, экономическую информацию, другие данные измерений и другие параметры, представляющие интерес.

Геологический пласт (304) имеет совокупность геологических структур (306a-306d). Как показано, пласт имеет слой песчаника (306a), слой известняка (306b), слой сланцеватой глины (306c), и слой песка (306d). Линия сброса (307) проходит через пласт. Инструменты сбора статических данных, предпочтительно, способны проводить измерения в пласте и регистрировать характеристики геологических структур пласта.

Хотя показан конкретный геологический пласт (304) с конкретными геологическими структурами, очевидно, что пласт может содержать различные геологические структуры. Флюид также может присутствовать в различных участках пласта (304). Каждое измерительное устройство можно использовать для измерения свойств пласта (304) и/или лежащих под ним структур. Хотя показано, что каждый инструмент сбора данных находится в определенном положении относительно пласта (304), очевидно, что один или несколько типов измерения можно проводить в одном или нескольких местах в одном или нескольких месторождениях или в других местах для с