Смесь смазочного масла и способ ее получения
Иллюстрации
Показать всеНастоящее изобретение относится к смеси смазочного базового масла, содержащей: (а) произведенное из минеральной нефти базовое масло, имеющее содержание насыщенных соединений больше чем 90 масс.%, содержание серы меньше чем 0,03 масс.% и индекс вязкости между 80 и 150, и (b) компонент парафинового базового масла, имеющий вязкость при 100°С от 7 до 30 сСт (от 7 до 30 мм2/с), где компонент (b) представляет собой изомеризованный остаточный продукт, полученный в синтезе Фишера-Тропша и имеющий отношение процентной доли вторичных метиленовых атомов углерода, которые удалены на четыре или более атомов углерода от концевой группы и ответвления, к процентной доле изопропильных атомов углерода, найденное с использованием метода 13С-ЯМР, меньше 8,2; причем смесь базового масла имеет температуру помутнения ниже 0°С и кинематическую вязкость при 100°С больше, чем 12,0 сСт. Изобретение также касается способа получения смеси смазочного базового масла. Технический результат - смесь смазочного масла обладает высоким индексом вязкости и высоким содержанием насыщенных соединений с низкой температурой потери текучести. 2 н. и 7 з.п. ф-лы, 5 табл., 1 ил., 3 пр.
Реферат
Область техники, к которой относится изобретение
Изобретение относится к смеси смазочного базового масла, содержащей (а) базовое масло, произведенное из минеральной нефти и имеющее содержание насыщенных соединений больше чем 90 масс.%, содержание серы меньше чем 0,03 масс.% и индекс вязкости (ИВ) между 80 и 150, и (b) компонент парафинового базового масла, произведенный в синтезе Фишера-Тропша и имеющий кинематическую вязкость при 100°С от 7 до 30 сСт (от 7 до 30 мм2/с). Кроме того, изобретение относится к способу получения таких смесей.
Уровень техники
В ряде областей применения существует возрастающий спрос на смазочные базовые масла с высокой вязкостью. Однако максимально достижимая вязкость для любых базовых масел из группы II и групп III определяется происхождением и составом используемого сырья - нефтяного дистиллята или парафинового гача. Это обусловлено тем фактом, что в процессе получения масел не происходит наращивание молекулярной массы, и поэтому максимальная молекулярная масса и, таким образом, связанная с ней вязкость не может быть выше, чем вязкость высокомолекулярных соединений, уже присутствующих в сырье. Более того, в ходе стадий гидроочистки или гидрогенизационной обработки молекулярная масса полученных продуктов постоянно снижается из-за реакций крекинга, а также упрощается структура соединений. В результате Заявители установили, что чрезвычайно трудно приготовить базовое масло API группы II из сырья, произведенного из минеральной нефти, с кинематической вязкостью при 100°С выше 12 сСт, поскольку жесткие условия гидрогенизационной обработки для достижения желательного содержания насыщенных соединений по меньшей мере 90 масс.% означают, что максимальная вязкость, которая может быть получена, ограничена из-за процесса крекинга и молекулярной массы сырья. Кроме того, было установлено, что эти ограничения еще более выражены в случае базовых масел API группы, где была достигнута максимальная кинематическая вязкость при 100°С не больше, чем 9 сСт, на основе сырья, произведенного из минеральной нефти. Однако при менее жестких условиях гидрогенизационной обработки полученное базовое масло не соответствует техническим требованиям, а также обладает пониженной стабильностью к окислению и ухудшаются другие виды стабильности.
Смесь, содержащая дистиллятное базовое масло и имеющая содержание насыщенных соединений больше чем 90 масс.% и компонент остаточного парафинового базового масла, произведенного в синтезе Фишера-Тропша, раскрыта в патенте США А-7053254. Заявители обнаружили, что хотя могут быть получены смеси минеральных базовых масел с повышенной кинематической вязкостью путем добавления изомеризованных остаточных продуктов синтеза Фишера-Тропша, как описано в патенте США А-7053254, количество остаточных продуктов синтеза Фишера-Тропша, которое может быть добавлено без ухудшения гомогенности смеси, является ограниченным, что проявляется по повышению точки помутнения. В результате, желательный диапазон кинематической вязкости при 100°С не может быть достигнут для смесей, которые были бы прозрачными и светлыми при температуре окружающей среды в течение длительного периода времени. В качестве альтернативы, до смесей согласно настоящему изобретению, необходимо было использовать достаточно дорогие и трудно получаемые высоковязкие поли-альфа-олефиновые (ПАО) флюиды с целью достижения подходящей высокой вязкости, и большое количество дорогостоящих и потенциально нестабильных при сдвиге модификаторов вязкости для того, чтобы получить смазывающие флюиды, обладающие желательным уровнем вязкости в сочетании с достаточно высокой точкой помутнения.
Таким образом, целью настоящего изобретения является разработка легко доступных композиций смазочного базового масла, в которых сочетается высокий индекс вязкости и высокое содержание насыщенных соединений с низкой температурой потери текучести, низкой температурой помутнения и высокой кинематической вязкостью без использования стадии жесткой гидроочистки/гидрокрекинга минерального компонента. Дополнительная цель настоящего изобретения заключается в разработке способа получения таких смесей.
Эти цели были достигнуты для следующей ниже композиции. Смесь смазочного базового масла, которая содержит (а) базовое масло, произведенное из минеральной нефти и имеющее содержание насыщенных соединений больше чем 90 масс.%, содержание серы меньше чем 0,03 масс.% и индекс вязкости между 80 и 150, и (b) компонент парафинового базового масла, имеющий вязкость при 100°С от 7 до 30 сСт, причем компонент (b) представляет собой изомеризованный остаточный продукт, полученный в синтезе Фишера-Тропша и имеющий отношение процентной доли вторичных метиленовых атомов углерода, которые удалены на четыре или более атомов углерода от концевой группы, и ответвление к процентной доле изопропильных атомов углерода, найденное с использованием метода 13С-ЯМР, меньше 8,2. На фигуре 1 показаны значения температуры помутнения ряда смесей базовых масел группы II минерального происхождения (а) с 1-10 масс.% компонентов остаточного парафинового базового масла, произведенного в синтезе Фишера-Тропша, (b). Кроме того, показаны температуры потери текучести. На оси абсцисс показаны масс.% полученного в процессе «Газ-в-жидкость» (ГВЖ) сверхтяжелого базового масла (СТБМ) в смеси с базовым маслом группы II с вязкостью 12 сСт. На оси ординат приведена температура (°С). Все смеси были прозрачными и светлыми по определению, так как все температуры помутнения были отрицательными.
Что касается компонента (а), смазочные базовые масла, которые используются, например, для составления рецептуры моторных смазок и индустриальных масел, обычно получают из подходящего минерального нефтяного сырья с использованием разнообразных процессов переработки, которые обычно направлены на получение смазочного базового масла с заданным набором характеристик, например, вязкостью, стойкостью к окислению и сохранением текучести в широком диапазоне температур (что характеризуется индексом вязкости). Традиционное получение смазочного базового масла проводят следующим образом. Минеральное нефтяное сырье разделяют путем дистилляции при атмосферном давлении на ряд дистиллятных фракций и остаток, который называется широкой остаточной фракцией. Затем широкую остаточную фракцию разделяют путем дистилляции при пониженном давлении на ряд вакуумных дистиллятов и вакуумный остаток, известный как мазут вакуумной перегонки. Смазочные базовые масла получают из вакуумных дистиллятных фракций с использованием процессов очистки. С помощью этих процессов ароматические углеводороды и воск удаляются или химически превращаются в приемлемые молекулярные компоненты дистиллятного базового масла из вакуумных дистиллятных фракций. Асфальт из мазута вакуумной перегонки может быть удален с помощью известных процессов деасфальтизации. Полученные таким образом при деасфальтизации масла ароматические углеводороды и воск могут быть в последующем удалены для того, чтобы получить остаточное смазочное базовое масло, известное как высоковязкое цилиндровое масло. Воск, полученный в ходе очистки различных фракций смазочного базового масла, называется "парафиновый гач". Смазочные базовые масла обычно получают из соответствующих вакуумных дистиллятных фракций и/или из деасфальтизированного масла с использованием подходящих процессов очистки, включая процессы повышения качества с помощью катализаторов и растворителей и процессы депарафинизации и каталитической гидроочистки.
Смазочные базовые масла, произведенные из минеральной сырой нефти, также называются базовыми маслами API групп I, II или III, которые определены в публикации API 1509: Система сертификации и лицензирования моторных масел, "Приложение E-API. Правила заменяемости базовых масел для моторных масел легковых и дизельных автомобилей». В статье Oil & Gas Journal, Sept.1, 1997, стр.63-70, описаны различные пути получения базовых масел API группы II. Все возможные пути могут включать, по меньшей мере, одну стадию экстракции растворителем или гидрирования ароматических и других ненасыщенных соединений для того, чтобы получить базовое масло, имеющее желательное содержание насыщенных соединений. Обычно такая стадия гидрирования может быть осуществлена путем контактирования сырья с водородом в присутствии гидрирующего катализатора, типично нанесенного металла VIII группы, пример которого описан в патенте США А-5935416.
Хотя таким образом можно получить базовые масла API группы II, базовые масла API группы III, то есть масла, имеющие индекс вязкости, по меньшей мере, 120 более трудно получить непосредственно с помощью таких процессов. Вместо этого такие масла целесообразно получать путем гидроочистки парафинового гача, полученного в процессе переработки, например, как описано в патенте ЕР-А-178710. В качестве альтернативы, смазочные базовые масла API группы III могут быть получены непосредственно из сырья с высоким содержанием воска, произведенного из сырых парафинистых нефтей, с использованием процесса, который включает контактирование углеводородного сырья, полученного из сырой парафинистой нефти, с катализатором гидроизомеризации в условиях гидроизомеризации с последующим выделением смазочного базового масла, имеющего высокий индекс вязкости. Такой процесс описан, например, в документе ЕР-А-0400742. В обоих случаях максимально достижимая кинематическая вязкость таких базовых масел определяется максимальным числом атомов углерода, которое выражается как среднечисловая молекулярная масса и распределение молекулярной массы сырья. В смесях базового масла согласно изобретению компонент (а) базового масла минерального происхождения предпочтительно присутствует в количестве от 40 масс.% до 98 масс.%, в расчете на суммарную массу масляной смеси, более предпочтительно от 50 до 97 масс.%, более предпочтительно от 60 до 96 масс.%, более предпочтительно от 70 до 95 масс.%, более предпочтительно от 80 до 94 масс.%, и более предпочтительно от 90 до 93 масс.%. Остаток представляет собой компонент (b) парафинистого базового масла. Предпочтительно компонент (а) смеси базового масла имеет кинематическую вязкость при 100°С больше чем 12,0 сСт, более предпочтительно больше чем 15,0 сСт, еще более предпочтительно свыше 20,0 сСт, и индекс вязкости больше чем 95, более предпочтительно больше чем 100. Предпочтительно индекс вязкости компонента (а) составляет между 100 и 110, однако может быть уменьшен благодаря высокому вкладу ИВ компонента (b). Смесь базового масла согласно изобретению предпочтительно имеет температуру помутнения ниже 0°С.
Предпочтительно в смеси базового масла согласно изобретению компонент (а) представляет собой базовые масла API группы II и/или API группы III, которые определены в публикации API 1509.
Парафиновый компонент (b) тяжелого базового масла, произведенный в синтезе Фишера-Тропша, согласно изобретению представляет собой композицию тяжелых углеводородов, содержащую, по меньшей мере, 95 масс.% молекул парафинов. Предпочтительно тяжелый компонент (b) базового масла согласно изобретению получают из воска синтеза Фишера-Тропша, причем он содержит больше чем 98 масс.% насыщенных, парафиновых углеводородов. Предпочтительно, по меньшей мере, 85 масс.%, более предпочтительно, по меньшей мере, 90 масс.%, еще более предпочтительно, по меньшей мере, 95 масс.%, и наиболее предпочтительно, по меньшей мере, 98 масс.% этих молекул парафиновых углеводородов представляют собой изопарафины. Предпочтительно, по меньшей мере, 85 масс.% насыщенных, парафиновых углеводородов являются нециклическими углеводородами. Нафтеновые соединения (парафиновые циклические углеводороды) предпочтительно присутствуют в количестве не больше, чем 15 масс.%, более предпочтительно меньше, чем 10 масс.%.
Произведенный в синтез Фишера-Тропша парафиновый компонент (b) базового масла содержит молекулы углеводородов, имеющие последовательные числа атомов углерода; таким образом, компонент содержит практически непрерывный последовательный ряд изопарафинов, то есть изопарафинов, имеющих n, n+1, n+2, n+3 и n+4 атомов углерода. Эти последовательные числа атомов углерода представляют собой последовательность углеводородных продуктов синтеза Фишера-Тропша, из которых получают сырьевой воск, который подвергают изомеризации с образованием компонента (b).
Кроме того, компонент (b) является жидкостью при 100°С и в условиях окружающей среды, то есть, при 25°С и одной атмосфере (101 кПа) абсолютного давления.
Обычно композиция тяжелых углеводородов представляет собой жидкость в условиях температуры и давления при эксплуатации и типично, но не всегда, при условиях окружающей среды 24°С и давлении одна атмосфера (101 кПа).
Кинематическая вязкость при 100°С (КВ 100) компонента (b), которую измеряют по стандарту ASTM D-445, составляет, по меньшей мере, 7 сСт (7 мм2/с). Предпочтительно кинематическая вязкость композиций тяжелых углеводородов согласно изобретению при 100°С (КВ 100) составляет, по меньшей мере 10 сСт, более предпочтительно, по меньшей мере 13 сСт, еще более предпочтительно, по меньшей мере 15 сСт, и еще более предпочтительно, по меньшей мере 17 сСт, еще более предпочтительно, по меньшей мере 20 сСт, и наиболее предпочтительно, по меньшей мере 25 сСт. Кинематическая вязкость, описанная в настоящем изобретении, определяется по стандарту ASTM D-445.
Распределение температур кипения образцов, выкипающих в диапазоне выше 535°С, измеряют по стандарту ASTM D-6352, в то время как для низкокипящих материалов распределение температур кипения измеряют по стандарту ASTM D-2887.
Приведенные здесь значения начальной и конечной температуры кипения являются номинальными и относятся к точкам отсечки 5% и 95% продукта (температуры кипения), которые получены с использованием метода газохроматографической имитационной дистилляции (ГХД), описанного выше.
Предпочтительно компонент (b) имеет температуру начала кипения, по меньшей мере 400°С. Более предпочтительно, температура начала кипения составляет, по меньшей мере 450°С, еще более предпочтительно по меньшей мере 480°С, более предпочтительно больше чем 500°С, еще более предпочтительно больше чем 540°С.
Поскольку углеводороды, традиционно произведенные из нефти, и углеводороды, полученные в синтезе Фишера-Тропша, содержат смесь углеводородов с различной молекулярной массой, имеющих широкий диапазон кипения, в настоящем изобретении будут использованы точки выкипания 10 масс.% и 90 масс.% в соответствующих диапазонах кипения. Точка выкипания 10 масс.% означает температуру, при которой 10 масс.% углеводородов, присутствующих в данной фракции, будут испаряться при атмосферном давлении и, таким образом, могут быть выделены. Аналогично, точка выкипания 90 масс.% означает температуру, при которой 90 масс.% присутствующих углеводородов, будут испаряться при атмосферном давлении. При ссылке на распределение диапазона кипения, в настоящем изобретении имеется в виду диапазон выкипания между точками отбора 10 масс.% и 90 масс.%.
Компонент (b) согласно изобретению предпочтительно содержит молекулы, имеющие последовательное число атомов углерода, и предпочтительно, по меньшей мере, 95 масс.% молекул углеводородов С30+. Более предпочтительно, компонент (b) содержит, по меньшей мере, 75 масс.% молекул углеводородов С35+.
Термин "температура помутнения" относится к температуре, при которой в образце начинает развиваться помутнение, которое определяется по ASTM D-5773. Компонент (b) обычно имеет температуру помутнения между -60°С и +49°С.
В смеси базового масла согласно изобретению предпочтительно компонент (b) имеет температуру потери текучести ниже -28°С. Более того, в смеси базового масла согласно изобретению предпочтительно компонент (b) не обладает измеряемым эффектом снижения температуры потери текучести, так что температура потери текучести смеси базового масла является промежуточной между такой температурой для компонентов (а) и (b), и не ниже, чем для любого из компонентов (а) и (b). Предпочтительно компонент (b) имеет температуру помутнения между 30°С и -55°С, более предпочтительно между 10°С и -50°С. Было установлено, что в зависимости от сырья и условий депарафинизации, некоторые тяжелые компоненты (b) базового масла, произведенные в синтезе Фишера-Тропша, могут иметь температуру помутнения выше температуры окружающей среды, хотя другие характеристики не оказывают отрицательного влияния.
Термин "температура потери текучести" относится к температуре, при которой будет начинаться течение образца базового масла в тщательно контролируемых условиях. Температура потери текучести, о которой идет речь в настоящем изобретении, определяется по стандарту ASTM D 97-93. Молекулярную массу определяют по ASTM D-2503. Индекс вязкости (ИВ) определяют с использованием стандарта ASTM D-2270. Согласно изобретению, компонент (b) предпочтительно имеет индекс вязкости между 120 и 170, более предпочтительно от 135 до 165, еще более предпочтительно от 150 до 160.
Предпочтительно компонент (b) не содержит или будет содержать очень мало соединений, содержащих серу и азот. Это типично для продукта, произведенного в синтезе Фишера-Тропша, в котором используется синтез-газ, почти не содержащий примесей. Предпочтительно компонент (b) содержит серу, азот и металлы в виде соединений с углеводородами и присутствует в количестве меньше, чем 50 вес. ч/млн, более предпочтительно меньше, чем 20 вес. ч/млн, еще более предпочтительно меньше, чем 10 вес. ч/млн. Наиболее предпочтительно этот компонент будет иметь содержание серы и азота обычно ниже пределов их обнаружения, которые в настоящее время составляют 5 ч/млн для серы и 1 ч/млн для азота, когда для определения используются рентгеновский или Antek Nitrogen методы анализа. Однако сера может попадать в продукт за счет использования сульфидированных катализаторов гидрокрекинга/гидродепарафинизации и/или сульфидированных катализаторов депарафинизации.
Кроме того, было установлено, что, по-видимому, существует корреляция между кинематической вязкостью, температурой потери текучести и эффектом понижения температуры потери текучести, который может иметь изомеризованный остаточный продукт, полученный в синтезе Фишера-Тропша. При заданном составе сырья и диапазоне кипения (который определяется по нижней точке отсечки из дистиллятного базового масла и фракций газойля после депарафинизации) для кубового продукта, температура потери текучести и получаемая вязкость связаны с жесткостью депарафинизационной обработки. Было найдено, что эффект снижения температуры потери текучести был значительным для изомеризованного остаточного продукта, полученного в синтезе Фишера-Тропша, имеющего температуру потери текучести выше -28°С, среднюю молекулярную массу приблизительно между 600 и 1100 и среднюю степень разветвления молекул приблизительно между 6,5 и 10 алкильных разветвлений на 100 атомов углерода, как указано в патенте США А-7053254. В настоящем изобретении парафиновый компонент (b) базового масла, произведенный в синтезе Фишера-Тропша, предпочтительно выделяют в виде остаточной фракции из углеводородов, полученных в ходе синтеза Фишера-Тропша и последующих стадий гидрокрекинга и депарафинизации.
Более предпочтительно эта фракция представляет собой остаток дистилляции, содержащий наиболее высокомолекулярные соединения, которые еще присутствуют в продукте стадии гидроизомеризации. Точка отбора 10 масс.% указанной кипящей фракции предпочтительно превышает 370°С, более предпочтительно она выше 400°С и наиболее предпочтительно выше 500°С для определенных вариантов осуществления настоящего изобретения.
Кроме того, эта фракция имеет среднюю степень разветвления молекул выше 10 алкильных разветвлений на 100 атомов углерода, как указано в соответствии со способом, раскрытым в патенте США А-7053254.
Парафиновый компонент (b) базового масла, произведенный в синтезе Фишера-Тропша, согласно изобретению может быть дополнительно охарактеризован по содержанию различных углеродных фрагментов. Более конкретно, парафиновый компонент (b) базового масла, произведенный в синтезе Фишера-Тропша может быть охарактеризован по процентной доле эпсилон-метиленовых атомов углерода, то есть, по процентной доле вторичных метиленовых атомов углерода, которые удалены на четыре или более атомов углерода от концевой группы, и ответвление (дополнительно называемой как СН2>4) по сравнению с процентной долей изопропильных атомов углерода.
Было установлено, что изомеризованный кубовый продукт синтеза Фишера-Тропша, который раскрыт в патенте США А-7053254, отличается от парафиновых компонентов базового масла, произведенных в синтезе Фишера-Тропша, согласно настоящему изобретению, которые обычно получают при повышенной жесткости депарафинизации, в том, что последние соединения имеют отношение процентной доли эпсилон-метиленовых атомов углерода к атомам углерода в изопропильных разветвлениях равное 8,2 или выше, которое измеряют для всего базового масла синтеза Фишера-Тропша. В частности было найдено, что продукт синтеза Фишера-Тропша, который раскрыт в патенте США А-7053254, с умеренной степенью изомеризации не подходит для добавления в количестве больше чем 1,5-2 масс.% из-за невозможности получения прозрачной и светлой смеси.
Было установлено, что измеряемый эффект снижения температуры потери текучести за счет смешивания с базовым компонентом, который раскрыт в патенте США А-7053254, достигается только в случае, если в компоненте (b) отношение процентной доли эпсилон-метиленовых атомов углерода к атомам углерода в изопропильных разветвлениях равен 8,2 или больше. Поэтому компонент (b) базового масла, произведенный в синтезе Фишера-Тропша, согласно настоящему изобретению имеет температуру потери текучести ниже -28°С. Такой компонент (b) будет давать только незначительный эффект снижения температуры потери текучести или не будет давать эффекта, таким образом, температура потери текучести смесей базового масла, содержащих компоненты (а) и (b), будет промежуточной между температурой потери текучести этих компонентов.
Характеристики разветвления, а также углеродный состав компонентов смешения базового масла, произведенного в синтезе Фишера-Тропша, могут быть удобно определены путем анализа образца масла с использованием методов 13С-ЯМР, осмометрии давления паров (ОДП) и масс-спектрометрического анализа с полевой ионизацией (МСПИ) следующим образом.
Среднюю молекулярную массу определяют с помощью осмометрии давления паров (ОДП). Затем образцы характеризуют на молекулярном уровне с использованием спектроскопии ядерного магнитного резонанса (ЯМР). Содержание "Z" и среднее число атомов углерода определяют методом МСПИ.
В традиционной спектроскопии ЯМР существует проблема перекрывания сигналов из-за наличия большого числа изомеров в составе базового масла. Для преодоления проблемы перекрывания сигналов используются анализы ядерного магнитного резонанса с выбранным изотопом углерода-13 с пониженной мультиплетностью (13С-ЯМР). В частности, для получения количественного CHn субспектра используется метод синхронизированного спинового эха (СИСПЭ). Количественные данные, полученные методом СИСПЭ, имеют более высокую точность, чем данные, полученные методом неискаженного усиления под действием поляризационного перехода (НИУПП, который был использован, например, в способе, раскрытом в патенте США А-7053254).
На основе данных СИСПЭ и средней молекулярной массы, полученной методом осмометрии давления паров (ОДП) можно рассчитать среднее число разветвлений и алифатических колец. Кроме того, на основе данных СИСПЭ можно получить распределение длины боковых цепей и положений метальных групп вдоль прямой цепи.
Количественный анализ множественности атомов углерода обычно проводится полностью при комнатной температуре. Однако это применимо только к материалам, которые являются жидкими в таких условиях. Этот метод применяется к любым материалам базовых масел синтетического (например, из синтеза Фишера-Тропша) или минерального происхождения, которые являются мутными или воскообразными твердыми веществами при комнатной температуре, и, следовательно, не может быть проведен обычным способом. Методология измерений ЯМР была следующей: в качестве растворителя для проведения количественного анализа множественности атомов углерода используют дейтерированный хлороформ (CDCl3), ограничивая максимальную температуру измерений на уровне 50°С по практическим соображениям. Образец базового масла нагревают в термостате до 50°С, пока он не станет прозрачным и жидким гомогенным продуктом. Затем часть образца переносят в ЯМР. Предпочтительно температуру ампулы ЯМР и любого приспособления, используемого при переносе образца, поддерживают на этом уровне. Затем добавляют указанный выше растворитель, и ампулу встряхивают для того, чтобы растворить образец, с необязательным использованием повторного нагрева образца. С целью предотвращения затвердевания любых материалов с высокой температурой плавления в образце, поддерживают температуру прибора ЯМР равной 50°С в ходе получения данных. Образец помещают в прибор ЯМР минимум на 5 минут, что требуется для достижения температурного равновесия. После этого прибор должен быть повторно отрегулирован и перенастроен, так как оба этих измерения могут значительно изменяться при повышенной температуре, и теперь можно регистрировать данные ЯМР.
Субспектр СН3 может быть получен с использованием импульсной последовательности СИСПЭ, полученной путем добавления спектра ССЭ (стандартного спинового эха) к 1/J СИСПЭ (синхронизированного спинового эха). Полученный спектр содержит только пики первичного (CH3) и третичного атома углерода (СН). Затем определяют резонанс различных углеродных разветвлений в конкретных положениях и их длину с использованием табличных данных и корректировкой на конце цепи. Затем интегрируют субспектр с целью получения количественных значений для различных сигналов CH3 следующим образом.
1) CH3 - углерод
а. Химический сдвиг равен 25 м.д. (с использованием стандарта - ТМС).
b. Сдвиги 19 и 21 м.д. можно идентифицировать как метальные разветвления следующего общего типа (смотрите формулу I):
с. Четкие интенсивные сигналы в области 22-24 м.д. могут быть однозначно идентифицированы как изопропильные концевые группы следующей общей структуры (смотрите формулу 2).
В этом случае один из метальных атомов углерода классифицируется как окончание главной цепи, а другой является разветвлением. Следовательно, при расчете содержания метальных разветвлений учитывается половина интенсивности этих сигналов.
d. Кроме того, считается, что несколько слабых сигналов в области от 15 до 19 м.д. принадлежат изопропильной группе с дополнительным разветвлением в положении-3.
е. Наиболее вероятно, что наблюдаемые в спектре некоторые слабые сигналы в области от 8 до 8,5 м.д. относятся к 3,3-диметилзамещенным структурам (формула 3):
В этом случае наблюдаемый сигнал относится к концевой группе CH3, однако имеются два соответствующих метильных разветвления. Поэтому величина интеграла этих сигналов удвоена (сигналы для двух метальных разветвлений не рассчитываются независимо).
Таким образом, суммарная оценка содержания метальных разветвлений основана на следующем расчете (сокращение "Int" означает "интеграл", формула 4):
Σ(метильных интегралов)=Int (от 19 до 20 м.д. + ½Int (от 22 до 25 м.д.) + Int (от 15 до 19 м.д.)+2·Int (от 7,0 до 9 м.д.)
2) Расчет содержания этильных разветвлений основан на двух четких относительно интенсивных сигналах, которые наблюдаются при 11,5 и при 10,9 ч/млн, в предположении незначительного содержания изопентильных концевых групп, основанного на данных оценки для других пиков. Следовательно, расчет содержания этильных разветвлений основан только на интеграле сигналов от 10 до 11,2 м.д.
3) Суммарное теоретическое содержание концевых групп CH3 рассчитывают на основе содержания "Z" и среднего числа атомов углерода, которое определяется методом МСПИ. Затем определяют содержание С3+ разветвлений путем вычитания из теоретического содержания концевых CH3 групп известного содержания концевых CH3 групп, то есть, половину значения для изопропильных групп, 3-метилзамещенных групп и для 3,3-диметилзамещенных структур, таким образом, получают величину для сигналов в области 14 м.д., которая относится к группам CH3 заканчивающим цепочку, причем разность дает значение для С3+ разветвлений:
Σ(интегралов С3 + разветвлений)=Int (от 14 до 15 м.д.)-((теоретическое содержание концевых CH3)-Int (от 11,2 до 11,8 м.д.)-½Int (от 22 до 25 м.д.)-Int (от 7 до 9 м.д.)).
Кроме того, настоящее изобретение относится к способу получения смеси смазывающего базового масла, который включает в себя смешивание:
(a) базового масла, произведенного из минеральной нефти, имеющего содержание насыщенных соединений больше чем 90 масс.%, содержание серы меньше чем 0,03 масс.% и индекс вязкости между 80 и 150, и
(b) компонента парафинового базового масла, имеющего вязкость при 100°С от 7 до 30 сСт (от 7 до 30 мм2/с), где компонент (b) представляет собой изомеризованный остаточный продукт, полученный в синтезе Фишера-Тропша и имеющий процентную долю вторичных метиленовых атомов углерода, которые удалены на четыре или более атомов углерода от концевой группы, и ответвление к процентной доле изопропильных атомов углерода, найденное с использованием метода 13С-ЯМР, меньше 8,2.
Предпочтительно настоящее изобретение также относится к способу получения смазочного базового масла, имеющего содержание насыщенных соединений больше чем 90 масс.%, содержание серы меньше чем 0,03 масс.%, индекс вязкости между 80 и 150, который включает: (а) контактирование сырья, произведенного из минеральной нефти, как описано выше, с водородом в присутствии катализатора гидрирования, и (b) смешивание полученного продукта с компонентом (b), произведенным в синтезе Фишера-Тропша, в соответствии с любым из пунктов 1-7.
Более предпочтительно, указанный выше способ включает стадии:
(i) контактирование произведенного из минеральной нефти предшественника продукта - смазочного базового масла, имеющего содержание насыщенных соединений ниже 90 масс.% и содержание серы между 300 вес. ч/млн и 2 масс.%, с подходящим сульфидированным катализатором гидроочистки в присутствии водорода на первой стадии гидроочистки при температуре между 250 и 350°С; и
(ii) разделение потока, выходящего после стадии (i), на газообразную фракцию и жидкую фракцию, где жидкая фракция имеет содержание серы между 50 и 1000 вес. ч/млн и содержание азота меньше чем 50 вес. ч/млн;
(iii) контактирование жидкой фракции со стадии (ii) с катализатором, содержащим компонент благородного металла, нанесенный на аморфный тугоплавкий оксидный носитель в присутствии водорода на второй стадии гидроочистки;
(iv) выделение смазочного базового масла, имеющего специфические свойства, и
(v) смешивание базового масла, полученного на стадии (iv), с парафиновым компонентом (b) базового масла.
Предпочтительно катализатор гидроочистки на стадии (i) содержит, по меньшей мере, один металлический компонент из групп VIB и металл, который выбирают из группы, состоящей из железа, никеля и кобальта и тугоплавкого оксидного носителя. Еще более предпочтительно, катализатор стадии (i) представляет собой катализатор - никель/молибден на оксиде алюминия, имеющий содержание никеля 1-5 масс.% в виде оксида и содержание молибдена между 10 и 30 масс.% в виде оксида. И в этом случае более предпочтительно, катализатор стадии (ш) содержит платину и палладий и аморфный алюмосиликатный носитель, в котором суммарное количество платины и палладия составляет между 0,2 и 5 масс.%.
Предпочтительно продукт смазочного базового масла получают с помощью экстракции растворителем нефтяной фракции, выкипающей в диапазоне смазочного масла, с последующей депарафинизацией под действием растворителя и/или каталитической депарафинизацией. Предпочтительно продукт смазочного базового масла представляет собой базовое масло API группы I, а продукт, полученный на стадии (d), представляет собой базовое масло API группы II или группы III. Предпочтительно парафиновый компонент (b) базового масла является тяжелой остаточной фракцией после дистилляции воска, произведенного в синтезе Фишера-Тропша, или парафинового рафинатного сырья, полученного путем:
(a) гидрокрекинга/гидроизомеризации сырья, произведенного в синтезе Фишера-Тропша, в котором, по меньшей мере, 20 масс.% соединений в сырье, произведенном в синтезе Фишера-Тропша, имеет, по меньшей мере, 30 атомов углерода;
(b) разделения продукта стадии (а) на одну или несколько дистиллятных фракций и остаточную тяжелую фракцию, содержащую, по меньшей мере, 10 масс.% соединений, кипящих выше 540°С;
(c) остаточную фракцию подвергают каталитической обработке на стадии снижения температуры потери текучести; и
(d) выделения из потока, выходящего после стадии (с), в виде остаточной тяжелой фракции парафинового компонента базового масла, произведенного в синтезе Фишера-Тропша.
Более предпочтительно парафиновый компонент (b) базового масла представляет собой тяжелую остаточную фракцию после дистилляции воска, произведенного в синтезе Фишера-Тропша, или парафинового рафинатного сырья, полученного путем:
а) гидрокрекинга/гидроизомеризации сырья, произведенного в синтезе Фишера-Тропша, в котором, весовое отношение соединений, имеющих, по меньшей мере, 60 или больше атомов углерода, и соединений, имеющих, по меньшей мере, 30 атомов углерода в сырье, произведенном в синтезе Фишера-Тропша, составляет, по меньшей мере, 0,2 и в котором, по меньшей мере, 30 масс.% соединений в сырье, произведенном в синтезе Фишера-Тропша, имеет, по меньшей мере, 30 атомов углерода;
(b) разделения продукта стадии (а) на одну или несколько дистиллятных фракций низкокипящих фракций, широкую фракцию предшественника базового масла, и тяжелую фракцию, так, что точка выкипания 90 масс.% фракции предшественника базового масла находится между 350 и 550°С;
(c) осуществляют обработку полученной на стадии (b) широкой фракции предшественника базового масла на стадии снижения температуры потери текучести; и
(d) выделяют тяжелую остаточную фракцию путем дистилляции продукта стадии (с).
Кроме изомеризации и фракционирования, фракции продукта, произведенного в синтезе Фишера-Тропша, могут подвергаться различным другим обработкам, таким как гидрокрекинг, гидроочистка и завершающая гидроочистка.
Сырьем на стадии (а) является продукт, произведенный в синтезе Фишера-Тропша. Температура начала кипения продукта синтеза Фишера-Тропша может быть находиться на уровне до 400°С, но предпочтительно она ниже 200°С. Предпочтительно любые соединения, имеющие 4 или меньше атомов углерода и любые соединения, имеющие температуру кипения в таком диапазоне, выделяют из продукта синтеза Фишера-Тропша до использования продукта синтеза на указанной стадии гидроизомеризации. Пример подходящего синтеза Фишера-Тропша описан в документах WO-A-9934917 и AU-A-698391. В указанных процессах получают продукт синтеза Фишера-Тропша, который описан выше.
Продукт синтез Фишера-Тропша будет содержать мало соединений, содержащих серу и азот, или вообще не содержит эти соединения. Это характерно для продукта, произведенного в синтезе Фишера-Тропша, в котором применяется синтез-газ, почти не содержащий примесей. Обычно содержание серы и азота составляет меньше, чем пределы обнаружения, которые в настоящее время составляют 5 ч/млн, для серы и 1 ч/млн, для азота. Продукт синтез Фишера-Тропша может быть получен с использованием хорошо известных процессов, например, так называемого процесса Sasol, процесса получения среднего дистиллята фирмы Shell или процесса "AGC-21" фирмы ExxonMobil. Эти и другие процессы, например, описаны более подробно в документах ЕР-А-776959, ЕР-А-668342, US-A-4943672, US-A-5059299, WO-A-9934917 и WO-A-9920720. Обычно процесс будет включать синтез Фишера-Тропша и стадию гидроизомеризации, которая