Энергосберегающая система автоматического регулирования

Иллюстрации

Показать все

Изобретение относится к области систем автоматического регулирования. Оно может быть использовано при автоматизации работы различных промышленных объектов, имеющих в своей структуре несколько каналов управления одной технологической величиной, путем использования одного или нескольких контуров регулирования, подключаемых в зависимости от динамических и энергетических характеристик объекта и особенностей возмущающего воздействия. Технический результат - улучшение качества регулирования и энергетической эффективности управления технологическим объектом за счет выбора динамически эффективных и энергетически эффективных каналов регулирования и включения их в работу в зависимости от частотных характеристик возмущающих воздействий и реакции на них отдельных контуров регулирования. Кроме того, ввиду разделения частотных спектров работы контуров управления упрощается расчет настроек соответствующих регуляторов. Структура многоконтурной CAP с частотным разделением каналов управления содержит входной канал задания, алгебраические сумматоры, на которых происходит сравнение сигнала задания с сигналом обратной связи, блок регуляторов с соответствующими каналами управления. Особенность предлагаемой структуры определяется наличием полосовых фильтров в каждом из каналов управления. В предлагаемой структуре для разделения частот в каналах управления используются идеальные полосовые фильтры, которые не привносят в систему дополнительного запаздывания и способствуют тому, что замкнутая система остается устойчивой при условии, что отдельные контуры регулирования изначально устойчивы. Таким образом, согласно предлагаемой структуре многоконтурной CAP с частотным разделением каналов управления благодаря применению идеальных полосовых фильтров происходит поочередная работа каждого из контуров регулирования в отдельности, позволяя в итоге достичь требуемой динамической и энергетической эффективности работы ЭСАР в целом. 6 ил.

Реферат

Изобретение относится к области систем автоматического регулирования. Оно может быть использовано при автоматизации работы различных промышленных объектов (химических реакторов, теплообменников и др.), имеющих в своей структуре несколько каналов управления одной технологической величиной (температуры, давления и т.п.), путем использования одного или нескольких контуров регулирования, подключаемых в зависимости от динамических и энергетических характеристик объекта и особенностей возмущающего воздействия.

Известны системы регулирования, использующие для поддержания значения технологической величины два управляющих воздействия (см. например, Е.Г. Дудников и др. «Автоматическое управление в химической промышленности». М.: Химия, 1987. - 368 с.), где один из каналов управления, наилучший в отношении качества переходных процессов, является неэкономичным, в то время как другой канал управления наоборот является экономичным, но уступает по качеству переходных процессов. В результате в лучшем с позиции качества управления для повышения быстродействия используют П-регулятор, а в экономичном канале управления ПИ- или ПИД-регулятор с целью исключения статической ошибки. При построении такой системы возникают трудности, связанные с расчетом системы регулирования и подключения других каналов управления, лучших с позиции максимального подавления действующего возмущения (помехи).

Цель предлагаемого изобретения - улучшение качества регулирования и энергетической эффективности управления технологическим объектом за счет выбора динамически эффективных (лучших в отношении качества переходного процесса) и энергетически эффективных (лучших в отношении энергосбережения) каналов регулирования и включения их в работу в зависимости от частотных характеристик возмущающих воздействий (сигналов помех) и реакции на них отдельных контуров регулирования. Кроме того, ввиду разделения частотных спектров работы контуров управления упрощается расчет настроек соответствующих регуляторов.

Химико-технологическая система (ХТС) предназначена для целенаправленной переработки определенного сырьевого потока вещества в необходимый продукт при энергетических воздействиях на исходное вещество и протекании химических превращений. ХТС можно охарактеризовать соответствующей структурой, определяющей взаимосвязи между ее элементами, и совокупностью переменных (координат), определяющих ее состояние в данный момент. Для управляемых ХТС наиболее характерными являются три типа координат: управляемые координаты, управляющие и координаты, соответствующие внешним возмущениям.

В общем виде в установившемся состоянии взаимосвязь между этими координатами можно представить совокупностью алгебраических уравнений в неявной форме.

f i ( y ¯ , u ¯ , ω ¯ , k , v , η ) = 0 , i ∈ I ,           ( 1 )

где y ¯ , u ¯ , ω ¯ - соответственно векторы управляемых, управляющих и возмущающих координат ХТС;

k - совокупность конструктивных параметров;

v - стехиометрические координаты и физико-химические константы;

η - КПД элементов ХТС.

В состав вектора П входят также и различные энергетические потоки, используемые для ведения технологического процесса в рассматриваемой ХТС.

Эффективность функционирования ХТС обычно оценивается с помощью какого-либо критерия эффективности, в выражение которого практически всегда входят управляемые и управляющие координаты:

J = Φ ( y ¯ , u ¯ , D )           ( 2 )

D - параметры, влияющие на эффективность работы ХТС.

Задача оптимизации режима функционирования ХТС заключается в подборе такого вектора управляющих координат u ¯ * , который минимизирует (или максимизирует) критерий эффективности при соблюдении необходимых технологических и организационных ограничений вида:

S ¯ Q = { S Q | S Q ∈ E h ; ϕ i ( S Q ) = 0 , i = 1 , p ¯ ; ϕ j ( S Q ) ≤ 0 , j = 1 , q ¯ }     ( 3 ) ;

где S ¯ Q - обобщенное обозначение варьируемых переменных;

Q - индекс, обозначающий вид варьируемых переменных ( y ¯ или u ¯ ).

В подавляющем большинстве случаев в ХТС с целью теплового или химического воздействия на протекающие процессы используются различные источники энергии: электроэнергия, горючие газы, пар и т.д. Аналогично, возможно использование "на стороне" различных видов вторичных энергетических ресурсов (ВЭР), получаемых в процессе функционирования рассматриваемой конкретной ХТС. Отдельные технологические узлы ХТС, использующие внешнюю энергию и (или) производящие ВЭР, построены обычно так, как приводится на рисунке (см. фигуру 1), где Qi - поток i-го вида энергии, подводимой к узлу ХТС; Hj - поток j-го вида энергии, отводимой от узла; y - управляемая переменная, характеризующая работу технологического узла.

В общем виде зависимость между переменной y и потоками Qi и Нj нелинейная:

f(y,Q1,…,Qn, H1,…,Hm)=0

Однако для технологических процессов, основу которых составляют энергетические превращения, в установившихся режимах можно с достаточной степенью точности представить эту зависимость в линеаризованной форме

y = ∑ i = 1 n k i Q i + ∑ j = 1 m c j H j           ( 4 )

где ki, cj - коэффициенты, отражающие балансовые и кинетические зависимости. Критерий эффективности типа (2) для такого узла ХТС, отражающий условия энергетических преобразований, Iэ=Φ(Qi,Hj), i∈I, j∈J будем называть критерием энергосбережения. Часто его можно представить в виде аддитивной функции:

I э = ∑ i = 1 n a i Q i + ∑ j = 1 m b j H j           ( 5 )

где ai, bj - коэффициенты веса; I и J - множества целых чисел соответственно из ряда 1 , n ¯ и 1 , m ¯ .

Причем, необходимо иметь в виду, что отдельные входные и выходные потоки из (4) являются внешними возмущениями и не входят в критерий (5).

Задача оптимизации процесса энергетических преобразований в рассматриваемом узле может выглядеть, например, как m i n Q , H Φ ( Q i , H j ) , i∈I, j∈J при ограничениях на эти же потоки с точки зрения производственных и технических возможностей.

Спецификой таких узлов является то, что в химической технологии часто можно найти не одну, а несколько управляющих координат, воздействующих на одну и ту же управляемую переменную. Отсюда возникает возможность выбора той или иной управляющей координаты для организации CAP. Но в любом случае в типовой структуре CAP для управления какой-либо переменной у используется только одна регулирующая координата (обычно лучшая по динамическим показателям), и структура объекта с CAP выглядит так, как, например, показано на фигуре 2, где Р - регулятор. Управляющие координаты Ql и Hq можно условно назвать динамически эффективными, т.е. позволяющими на их основе построить динамически эффективные CAP. Однако использованные в CAP управляющие координаты Ql и Hq могут быть далеко не лучшими с точки зрения критерия эффективности (5), т.е. с точки зрения энергосбережения.

Задачу энергосбережения и одновременного достижения эффективного управления в условиях реально действующих возмущений предлагается решить с помощью применения многоконтурных CAP, использующих для целей стабилизации одной переменной y(t) одновременно несколько управляющих координат. Типовая структурная схема такой CAP показана на фигуре 3, где Q, Qк, Hf - управляющие координаты; PQℓ, PQk, PHf - регуляторы в контурах с соответствующими управляющими координатами. Аналогично понятию динамически эффективной управляющей координаты (в данном случае Ql) введем понятие энергоэффективных координат, позволяющих существенно воздействовать на критерий энергосбережения (Qk, Hf и т.д.).

CAP, построенные в соответствии со структурной схемой, показанной на фигуре 3, и минимизирующие критерий эффективности (5), будем называть энергосберегающими CAP (ЭСАР).

Действительно, для стабилизации переменной у при стохастическом изменении ω ¯ ( t ) необходимо выполнить следующее условие в статике:

M { y } = K о б l ⋅ M { u 1 } + … + K о б n ⋅ M { u n } + ∑ j = 1 m K о б ω o ⋅ M { ω j }     ( 6 )

или, учитывая, что в статике должно иметь место M{y}=yзад:

∑ i = 1 n K о б i ⋅ M { u i } = y з а д − ∑ j = 1 m K о б ω o ⋅ M { ω j }           ( 7 )

где Кобi - коэффициенты усиления по соответствующим каналам управления ЭСАУ;

Kобωj - коэффициенты усиления по каналам возмущения ωj;

yзад - заданное значение стабилизируемой переменной.

Если энергетический критерий (5) представить в форме:

I э = ∑ i = 1 n α i u i           ( 8 )

где αi - соответствующие коэффициенты веса,

то оптимум в задаче min Iэ при типовых ограничениях на управление ui

u i m i n ≤ u i ≤ u i m a x         ( 9 )

находится в одной из вершин гипермногогранника, определяемого соотношениями (7), (9).

Таким образом, анализ особенностей организации типовых ХТС приводит к выводу, что оптимизировать установившиеся режимы их работы по критерию энергосбережения возможно с помощью ЭСАР, обладающих структурной избыточностью в управлении. Как следствие этого такие ЭСАР должны обладать специфической многоконтурностью с числом управлений, превышающим число управляемых переменных.

Теперь рассмотрим эту задачу с учетом условий динамических режимов. Расположение гиперплоскости (7), соответствующей конкретному технологическому режиму управляемой ХТС, в первую очередь определяется совокупностью внешних возмущающих факторов K о б ω j ⋅ M { ω j } . Отметим, что реальный технологический процесс на достаточно длительном интервале времени практически не является стационарным, и, следовательно, на ограниченном интервале времени AT можно определить текущее среднее

M { ω j } t , Δ T = 1 Δ T ∫ t − Δ T Δ T ω j ( t ) d t , (t-ΔT)>0.

В соответствии с этим в стохастическом возмущении ωj(t) можно условно выделить две составляющие: высокочастотную ω j в ( t ) = ω j ( t ) − M { ω j } t , Δ T и инфранизкочастотную ω j н ( t ) = M { ω j } t , Δ T − M { ω j } , где M{ωj} - среднее значение возмущения ωj(t) за весь период работы ХТС. На основе теоремы суперпозиции объединим все возмущающие воздействия, что допустимо для линейных систем, и введем обозначения ω(t), ωв(t), ωн(t), что соответствует объединенному стохастическому возмущению и его высокочастотной и инфранизкочастотной составляющим со спектральными плотностями S ω в ( ω ) и S ω н ( ω ) . Причем: ωв(t)+ωн(t)=ω(t)-М{ω}.

Предположим, что существует управляющая координата u1(t), достаточно эффективно стабилизирующая переменную y(t) во всем частотном диапазоне изменения ω(t). Принятое разбиение возмущающего воздействия на ωв(t) и ωн(t) позволяет аналогично представить и управление u1(t) - в области высоких и инфранизких частот. Причем можно ввести в рассмотрение величины Δ u 1 m a x в и Δ u 1 m a x н предельные амплитуды изменений управляющего воздействия u1(t) для компенсации соответственно составляющих ωв(t) и ωн(t). Переходные процессы по u1(t) в такой системе схематично будут выглядеть так, как показано на фигуре 4.

Анализ графика (фигура 4) позволяет сделать вывод, что минимизировать (или максимизировать) величину в соответствии с требованием критерия энергосбережения (8) можно путем уменьшения значений Δ u 1 m a x н . Видно, что в случае идеальной фильтрации инфранизкочастотной составляющей ωн(t) величина Δ u 1 m a x н → 0 и M { u 1 ( t ) } → u 1 min + | Δ u 1 m a x в | . Фильтрацию ωн(t) предполагается осуществлять дополнительным управляющим воздействием ui(t), i≠1, являющимся с точки зрения динамики более инерционным, чем u1(t), а с точки зрения критерия (8) - более эффективным в смысле энергосбережения.

Иными словами, спектральная плотность возмущающего воздействия ω(t) как бы разбивается на высокочастотную и инфранизкочастотную части (фигура 5) и организуется двухконтурная CAP с управляющими координатами u1(t), ui(t), i≠1. Причем первая из них обладает более высокими динамическими свойствами, а вторая - более эффективна в смысле критерия энергосбережения.

Таким образом, CAP имеет избыточное количество управляющих координат (как минимум две управляющие переменные), каждая из которых, в зависимости от частотных свойств и влияния на критерий энергосбережения, настраивается на подавление соответствующей части спектра внешнего возмущения. Естественно предположить, что если существует m управляющих координат, отличающихся по частотным свойствам и влиянию на критерий энергосбережения, то график Sω(ω) может быть аналогичным образом представлен в виде совокупности m составляющих, каждая из которых подавляется соответствующим образом настроенным контуром с управляющей координатой ui(t). Т.е. вновь возникает структура CAP, приведенная на фигуре 3.

Структура многоконтурной CAP с частотным разделением каналов управления (см. фигуру 6) содержит входной канал задания 1, алгебраические сумматоры 2, на которых происходит сравнение сигнала задания 1 с сигналом обратной связи 3, блок регуляторов 4 с соответствующими каналами управления 5. Особенность предлагаемой структуры определяется наличием полосовых фильтров 6 в каждом из каналов управления. В предлагаемой структуре для разделения частот в каналах управления используются идеальные полосовые фильтры, которые имеют частотные характеристики следующего вида:

m o d   W Φ j ( i ω ) = { 0 п р и ω < ω j 1 п р и ω j ≤ ω ≤ ω j + 1 0 п р и ω > ω j + 1

a r g   W Φ j ( i ω ) = 0      п р и     ω j ≤ ω ≤ ω j + 1

где ωj - частота среза по j-тому каналу; j = 1 , l ¯ .

Использование идеальных фильтров не привносит в систему дополнительного запаздывания и способствует тому, что замкнутая система остается устойчивой при условии, что отдельные контуры регулирования изначально устойчивы.

Таким образом, согласно предлагаемой структуре многоконтурной системы регулирования с частотным разделением каналов управления благодаря использованию идеальных полосовых фильтров происходит поочередная работа каждого из контуров регулирования в отдельности, что в конечном итоге позволяет достичь требуемой динамической и энергетической эффективности работы ЭСАР в целом. Кроме того, упрощается процедура поиска оптимальных настроечных параметров регуляторов, так как настройки одного регулятора не зависят от настроечных параметров другого.

Энергосберегающая система автоматического регулирования, содержащая входной канал задания, алгебраические сумматоры, на которых происходит сравнение сигнала задания с сигналом обратной связи, блок регуляторов с соответствующими каналами управления (в простейшем случае - двумя), обладающими различными энергетическими и динамическими характеристиками, отличающаяся тем, что в каждом из каналов управления, с целью повышения динамической и энергетической эффективности работы системы управления в целом, присутствуют полосовые фильтры, способствующие разделению и независимому включению в работу каждого из контуров регулирования, настроенных, в зависимости от их частотных свойств и влияния на критерий энергосбережения, на эффективное подавление соответствующей части спектра внешнего возмущения.