Связной радиоприемник с адаптивным компенсатором

Иллюстрации

Показать все

Изобретение относится к технике связи и может быть использовано в качестве адаптивного компенсатора в беспроводной системе связи. Способ оценки передаваемого сигнала в беспроводной системе связи заключается в том, что принимают беспроводный сигнал, который содержит пилот-канал и по меньшей мере один другой канал, оценивают переданный сигнал с использованием компенсатора и принятого беспроводного сигнала, причем компенсатор включает в себя фильтр с множеством отводов, которые могут быть настроены посредством использования адаптивного алгоритма, который использует оцененный пилот-сигнал из принятого беспроводного сигнала, извлекают оцененный пилот-сигнал, предоставляют оцененный пилот-сигнал адаптивному алгоритму и настраивают множество отводов посредством использования адаптивного алгоритма, при этом множество отводов настраиваются посредством использования адаптивного алгоритма в каждом N-м интервале символа пилот-сигнала, где N - положительное целое число, причем значение N изменяется на основании скорости движения устройства в системе беспроводной связи. 7 н. и 54 з.п. ф-лы, 10 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение в целом имеет отношение к компенсации в системах связи, а более точно, к адаптивному компенсатору для использования совместно с беспроводной системой связи.

Уровень техники

Системы связи используются для передачи информации от одного устройства другому. Перед передачей, информация закодирована в формат, подходящий для передачи по каналу связи. Переданный сигнал искажается, поскольку он распространяется по каналу связи; сигнал также испытывает искажение от шумов и помех, собранных во время передачи.

Одним из эффектов, который порождает искажение сигнала, является многолучевое распространение. Сигналами многолучевого распространения являются разные варианты одного и того же беспроводного сигнала, которые сформированы из-за отражений от конструкций и природных образований. Сигналы многолучевого распространения могут иметь фазовые сдвиги, которые заставляют сигналы подавлять друг друга в определенных местах. Потеря сигнала, обусловленная фазовым гашением сигналов многолучевого распространения, известна как замирание сигнала. Замирание сигнала является проблемой в беспроводных системах, поскольку оно нарушает пользовательскую связь. Например, некоторые копии многолучевого распространения одиночного беспроводного сигнала, передаваемого устройством беспроводной связи, могут быть сформированы из-за отражения от деревьев и строений. Эти копии многолучевого распространения могут объединяться и подавлять друг друга из-за фазового сдвига.

Другой проблемой, которая может воздействовать на сигнал, является не отвечающее требованиям отношение сигнал-шум. Отношение сигнал-шум («SNR») символизирует мощность сигнала относительно окружающего шума. Отвечающий требованиям SNR необходимо обеспечить, с тем чтобы сигнал мог быть отделен от шума.

Примером помехи, обычно встречающейся в узкополосных каналах, является так называемая межсимвольная помеха (ISI). ISI происходит как результат расширения передаваемого символьного импульса, обусловленного дисперсионной сущностью канала, которая имеет результатом перекрытие смежных символьных импульсов. Дисперсионная сущность канала является следствием многолучевого распространения. Принятый сигнал декодируется и преобразуется в первичный предшествующий кодированию вид. И передатчик и приемник сконструированы таким образом, чтобы минимизировать влияния недостатков канала и помех.

Различные конструктивные решения приемника могут быть реализованы, чтобы компенсировать шумы и помехи, вызванные передатчиком и каналом. В качестве примера, компенсатор является общепринятым выбором для борьбы с многолучевым распространением, ISI и для улучшения SNR. Компенсатор вводит поправку на искажения и вырабатывает оценку переданного символа. В беспроводной среде, компенсаторы требуются, чтобы справляться с изменяющимися во времени канальными условиями. В идеале, характеристика компенсатора подстраивается, чтобы изменять характеристики канала. Возможность компенсатора реагировать на изменяющиеся условия имеет отношение к потенциальным возможностям адаптации компенсатора. Оптимизация компенсатора посредством разработки действенного и эффективного алгоритма адаптации является трудной, поскольку это требует уравновешивания противоречивых показателей.

Следовательно, существует потребность в конструктивном решении компенсатора, которое оптимизирует эксплуатационные качества для многообразия систем и условий.

Краткое описание чертежей

Фиг.1 - диаграмма системы связи с расширенным спектром, которая обслуживает некоторое количество пользователей;

Фиг.2 - структурная схема базовой станции и мобильной станции в системе связи;

Фиг.3 - структурная схема, иллюстрирующая нисходящую линию связи и восходящую линию связи между базовой станцией и мобильной станцией;

Фиг.4 - структурная схема каналов в варианте осуществления нисходящей линии связи;

Фиг.5 - структурная схема каналов в варианте осуществления восходящей линии связи;

Фиг.6 - структурная схема варианта осуществления абонентского узла;

Фиг.7 - функциональная структурная схема, иллюстрирующая передачу беспроводного сигнала;

Фиг.8 - функциональная структурная схема, иллюстрирующая прием беспроводного сигнала;

Фиг.9 - структурная схема, иллюстрирующая реализацию КИХ-фильтра; и

Фиг.10 - блок-схема алгоритма способа для использования адаптивного компенсатора при приеме беспроводного сигнала мобильной станцией.

ПОДРОБНОЕ ОПИСАНИЕ

Раскрыт способ оценки переданного сигнала в системе беспроводной связи. Принимают беспроводный сигнал, который включает в себя пилот-канал и по меньшей мере один другой канал. Передаваемый сигнал оценивают с использованием компенсатора и принимаемого беспроводного сигнала. Компенсатор включает в себя фильтр с большим количеством отводов, которые настраивают посредством использования адаптивного алгоритма, который использует оцененный пилот-сигнал, оцениваемый по принятому беспроводному сигналу. Пилот-канал передают в беспроводном сигнале, который включает в себя по меньшей мере один другой канал. Оцененный пилот-сигнал извлекают и предоставляют адаптивному алгоритму.

Различные алгоритмы могут быть использованы для адаптивного алгоритма. Например, может быть использован итеративный алгоритм.

Способ может быть реализован в многообразии связных радиоприемников. Например, способ может быть реализован в мобильной станции. Беспроводный сигнал может включать в себя ортогональные и неортогональные каналы. Способ также может быть реализован посредством базовой станции.

Цифровой фильтр может быть использован, чтобы реализовать компенсатор. Одним из возможных цифровых фильтров, который может быть использован, является КИХ-фильтр (FIR, с конечной импульсной характеристикой). БИХ-фильтр (IIR, с бесконечной импульсной характеристикой) также может быть использован. В дополнение, фильтрация может быть выполнена в частотной области.

Разные критерии адаптации могут быть использованы совместно с адаптивным алгоритмом. В одном из вариантов осуществления адаптивный алгоритм может быть использован один раз за каждый символьный интервал пилот-сигнала для обновления отводов. Адаптивный алгоритм может использоваться N раз за каждый символьный интервал пилот-сигнала для обновления отводов, где N - положительное целое число. В еще одном варианте осуществления адаптивный алгоритм может быть использован один раз каждый N-ый символьный интервал пилот-сигнала для обновления отводов, где N - положительное целое число. Адаптивный алгоритм может продолжать настраивать новые значения отводов до тех пор, пока новые значения отводов не сойдутся вместе, или он может продолжать настраивать в течение промежутка времени. Адаптивный алгоритм может выполнять адаптацию, когда канальные условия изменились так, что компенсатор не соответствует текущим канальным условиям.

Также раскрыта мобильная станция для использования в системе беспроводной связи. Мобильная станция включает в себя по меньшей мере одну антенну для приема беспроводного сигнала и приемник в электрической связи с по меньшей мере одной антенной. Компенсатор оценивает передаваемый сигнал. Компенсатор включает в себя фильтр с большим количеством отводов, которые настраиваются посредством использования адаптивного алгоритма, который использует оцененный пилот-сигнал, оцениваемый по принятому беспроводному сигналу. Пилот-канал передается совместно с по меньшей мере одним другим каналом. Мобильная станция также включает в себя компонент для извлечения оцененного пилот-сигнала и предоставления оцененного пилот-сигнала адаптивному алгоритму.

Компоненты мобильной станции также применимы и могут быть использованы совместно с другими принимающими системами. Также в целом раскрыто устройство для использования в системе беспроводной связи, которое включает в себя адаптивный компенсатор для оценки передаваемого сигнала. Устройство может быть осуществлено в мобильной станции, в базовой станции или в любой другой системе, которой требуется принимать и обрабатывать беспроводный сигнал.

Системы и способы, раскрытые в материалах настоящей заявки, могут быть использованы, чтобы компенсировать многолучевое распространение. Сигналами многолучевого распространения являются разные варианты одного и того же беспроводного сигнала, которые формируются из-за отражений от конструкций и природных образований. Сигналы многолучевого распространения могут иметь фазовые сдвиги, которые заставляют сигналы подавлять друг друга в определенных местах. Потеря сигнала, обусловленная фазовым подавлением сигналов многолучевого распространения, известна как замирание сигнала. Замирание сигнала является проблемой в беспроводных системах, поскольку оно нарушает пользовательскую связь. Например, несколько копий многолучевого распространения одиночного беспроводного сигнала, переданного устройством беспроводной связи, могут быть выработаны из-за отражений от деревьев и строений. Эти копии многолучевого распространения могут смешиваться и подавлять друг друга из-за фазового сдвига.

Системы и способы, раскрытые в материалах настоящей заявки, также могут быть полезными при оптимизации мощности, используемой в системах связи. CDMA-системы (с множественным доступом и кодовым разделением каналов) извлекают пользу из использования управления мощностью. Отношение сигнал-шум («SNR») представляет мощность сигнала относительно окружающей помехи. Отвечающее требованиям SNR должно быть обеспечено, с тем чтобы сигнал мог быть отделен от помехи. Поскольку CDMA-сигналы не разделены по частоте или времени для заданного направления связи, шумовой компонент отношения включает в себя все другие принимаемые CDMA-сигналы. Если мощность отдельного CDMA-сигнала слишком высока, она значительно заглушает другие CDMA-сигналы. Управление мощностью используется по восходящей линии связи (передача от терминального устройства на базовую станцию) и по нисходящей линии связи (передача от базовой станции на терминальное устройство). По восходящей линии связи, управление мощностью используется, чтобы поддерживать подходящий уровень мощности для всех пользовательских сигналов, принимаемых на базовой станции. Уровень мощности этих принимаемых CDMA-сигналов мог бы быть минимизирован, но все же, должен быть достаточно сильным, чтобы поддерживать надлежащее SNR. По нисходящей линии связи, управление мощностью используется, чтобы поддерживать подходящий уровень мощности для всех сигналов, принимаемых на различных терминальных устройствах. Это минимизирует взаимное влияние между пользователями в одной и той же сотовой ячейке, обусловленное сигналами многолучевого распространения. Это также минимизирует взаимное влияние среди пользователей в соседних сотовых ячейках. CDMA-системы динамически регулируют мощность передачи базовой станции и терминальных устройств, чтобы поддерживать подходящий уровень мощности по восходящей линии связи и нисходящей линии связи. Динамическое регулирование применяется посредством технологий разомкнутой петли (без обратной связи) и замкнутой петли (с обратной связью), которые известны в данной отрасли промышленности.

Дальность действия CDMA-системы непосредственно имеет отношение к общему уровню мощности принимаемых сигналов, поскольку каждый дополнительный сигнал добавляет шумы ко всем другим сигналам. Пользовательский шумовой компонент отношения SNR уменьшается, когда уменьшается средний уровень мощности приема. Технологии, которые уменьшают мощность CDMA-сигнала из устройства связи, напрямую уменьшают дальность действия CDMA-системы. Разнесение приема является одной из технологий, используемой, чтобы минимизировать требуемую мощность сигнала. Меньшая мощность сигнала также уменьшает стоимость пользовательских устройств связи, поскольку увеличивает рабочий срок службы аккумулятора, а также дальность действия. Оптимизация используемой мощности может обладать дополнительными преимуществами в системах с высокой скоростью передачи данных, где скорости передачи данных могут быть поддержаны, только если может быть достигнуто надлежащее SNR.

Системы связи используются для передачи информации от одного устройства другому. Перед передачей информация кодируется в формат, подходящий для передачи по каналу связи. Канал связи может быть линией передачи или свободным пространством между передатчиком и приемником. Так как сигнал распространяется через канал, передаваемый сигнал искажается из-за недостатков в канале. Более того, сигнал испытывает ухудшение из-за шума и помех, набранных во время передачи. Примером помехи, обычно встречающейся в узкополосных каналах, является так называемая межсимвольная помеха (ISI). ISI происходит как результат расширения передаваемого символьного импульса, обусловленного дисперсионной сущностью канала, которая имеет результатом перекрытие смежных символьных импульсов. Дисперсионная сущность канала является следствием многолучевого распространения. В приемнике сигнал обрабатывается и преобразуется в первичный предшествующий кодированию вид. И передатчик и приемник спроектированы с возможностью минимизации влияния недостатков канала и помех.

Различные конструктивные решения приемника могут быть реализованы, чтобы компенсировать шумы и помехи, вызванные передатчиком и каналом. В качестве примера, общепринятым выбором для борьбы с этими проблемами является компенсатор. Компенсатор может быть реализован трансверсальным фильтром, то есть линией задержки с T-секундными отводами (где T - временное разрешение фильтра компенсатора). Содержимое отводов взвешено и просуммировано, чтобы выработать оценку переданного сигнала. Коэффициенты отводов настраиваются, чтобы компенсировать изменения в радиоканале. Обычно, применяется технология адаптивной компенсации, тем самым коэффициенты отводов непрерывно и автоматически подстраиваются. Адаптивный компенсатор использует предписанный алгоритм, к примеру, минимальной среднеквадратической ошибки (LMS) или рекурсивного уменьшения среднеквадратической ошибки (RLS), чтобы определять коэффициенты отводов. Оценка сигнала связана с устройством разделения каналов, таким как дескремблер (устройство для дешифрования физического уровня)/деспредер (устройство для сужения спектра сигнала), и с принимающим решение устройством, таким как декодер или символьный ограничитель по максимуму и минимуму.

Способность приемника выявлять сигнал при наличии шумов основана на соотношении принимаемой мощности сигнала и мощности шума, обычно известном как SNR или отношение мощности сигнала на несущей к уровню помехи (C/I). Промышленное использование этих терминов, или подобных терминов, часто является взаимозаменяемым, однако, смысл тот же. Поэтому, любая ссылка на C/I в материалах настоящей заявки будет понята специалистами в данной области техники заключающей в себе широкое понятие измерения влияний шумов в различных точках системы связи.

Компенсаторы в системах беспроводной связи спроектированы с возможностью подстраивания к изменяющимся во времени канальным условиям. В то время как характеристики канала изменяются, компенсатор подстраивает свою частотную характеристику. Такие изменения могут включать в себя изменения в среде распространения или относительное движение передатчика и приемника, а также другие условия. Как обсуждено выше, адаптивные алгоритмы фильтрации часто используются, чтобы модифицировать коэффициенты отводов компенсатора. Компенсаторы, которые применяют адаптивные алгоритмы, обычно называются адаптивными компенсаторами.

Слово «примерный» используется в материалах настоящей заявки исключительно для обозначения «служащий в качестве примера, экземпляра или иллюстрации». Любой вариант осуществления, описанный в материалах настоящей заявки как «примерный» не обязательно должен быть истолкован как предпочтительный или преимущественный над другими вариантами осуществления. Не смотря на то, что различные аспекты вариантов осуществления представлены на чертежах, чертежи изображены не обязательно сопоставимыми по масштабу, за исключением специально указанных.

Последующее обсуждение раскрывает варианты осуществления связного радиоприемника с адаптивным компенсатором в течение первого обсуждения систем беспроводной связи с расширенным спектром. Затем, обсуждены базовая станция и мобильная станция, а также обмен информацией, отправляемой между ними. Затем, показаны компоненты варианта осуществления абонентского узла. Функциональные структурные схемы показаны и описаны относительно передачи и приема беспроводного сигнала. Детали, касающиеся компенсатора и адаптивного алгоритма в принимающей системе, также изложены. Иллюстрации и математические выводы, включенные в описание, касаются обработки сигнала. Затем, обсуждена последовательность операций для использования компенсатора и адаптации внутренних компонентов компенсатора.

Альтернативные варианты осуществления могут заключать в себе различные аспекты, не выходя из объема настоящего изобретения. А именно, настоящее изобретение применимо к системе обработки данных, системе беспроводной связи, мобильной IP-сети (под управлением Интернет-протоколов) и любой другой системы, желающей принимать или обрабатывать беспроводный сигнал.

Проиллюстрированные варианты осуществления используют системы беспроводной связи с расширенным спектром. Системы беспроводной связи широко распространены, чтобы предоставлять различные виды связи, такой как голосовая, обмен данными, и т.д. Эти системы могут быть основаны на множественном доступе с кодовым разделением каналов (CDMA), множественном доступе с временным разделением каналов (TDMA), или некоторых других технологиях модуляции. CDMA-система обеспечивает определенные преимущества над другими типами систем, в том числе, увеличенную пропускную способность системы.

Система может быть спроектирована, чтобы поддерживать один или более стандартов, таких как "TIA/EIA/IS-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System" («Стандарт совместимости мобильной станции и базовой станции для двухрежимной широкополосной сотовой системы с широким спектром. Международный стандарт ассоциации промышленных средств связи/ассоциации электронной промышленности»), называемый в материалах настоящей заявки стандартом IS-95, стандарт, предложенный консорциумом «3rd Generation Partnership Project» («Проект партнерства 3-его поколения»), называемый в материалах настоящей заявки 3GPP, и воплощенный в множестве документов, включая документы с номерами 25.211, 3GPP TS 25.212, 3GPP TS 25.213, и 3GPP TS 25.214, 3GPP TS 25.302, называемый в материалах настоящей заявки стандартом W-CDMA (широкополосный CDMA), стандарт, предложенный консорциумом «3rd Generation Partnership Project 2» («Проект 2 партнерства 3-его поколения»), называемый в материалах настоящей заявки 3GPP2, и TR-45.5, называемый в материалах настоящей заявки стандартом cdma2000, некогда называемый IS-2000 MC.

Каждый стандарт конкретно определяет обработку данных для передачи от базовой станции на мобильный телефон и обратно. Последующее обсуждение рассматривает систему связи с расширенным спектром, совместимую со стандартом протоколов cdma2000. Альтернативные варианты осуществления могут включать в себя другой стандарт.

Системы и способы, описанные в материалах настоящей заявки, могут быть использованы системами связи с высокой скоростью передачи данных. На всем протяжении последующего обсуждения, для ясности описана система с высокой скоростью передачи данных. Могут быть реализованы альтернативные системы, которые обеспечивают передачу информации на высоких скоростях передачи данных. Для CDMA-систем связи, предназначенных для передачи на более высоких скоростях передачи данных (HDR), схема запроса переменной скорости передачи данных может быть использована, чтобы обмениваться данными на максимальной скорости передачи данных, которую может поддерживать C/I. HDR-система связи обычно спроектирована соответствующей одному или более стандартам, таким как «cdma2000 High Rate Packet Data Air Interface Specification» 3GPP2 C.S0024, Version 2, October 27, 2000 («Спецификация cdma2000-радиоинтерфейса с высокой скоростью передачи пакетных данных», 3GPP2 C.S0024, версия 2, от 27 октября 2000 г.), опубликованная консорциумом «Проекта 2 партнерства 3-его поколения».

Приемник в HDR-системе связи может применять схему запроса переменной скорости передачи данных. Приемник может быть осуществлен в абонентской станции при обмене данными с наземной сетью передачи данных, посредством передачи данных по восходящей линии связи на базовую станцию (показана далее). Базовая станция принимает данные и направляет данные через контроллер базовой станции (BSC) (не показан) в наземную сеть. Наоборот, передача данных на абонентскую станцию может быть направлена из наземной сети на базовую станцию через BSC и передана с базовой станции на абонентский узел по нисходящей линии связи.

Фиг.1 служит в качестве примера системы 100 связи, которая поддерживает некоторое количество пользователей и допускает реализацию по меньшей мере некоторых аспектов вариантов осуществления, обсужденных в материалах настоящей заявки. Любые из многообразия алгоритмов и способов могут быть использованы, чтобы планировать обмен информацией в системе 100. Система 100 предусматривает связь некоторого количества сот 102А-102G, каждая из которых обслуживается соответствующей базовой станцией 104A-104G соответственно. В представленном варианте осуществления, некоторые из базовых станций 104 имеют многочисленные приемные антенны, а другие имеют только одну приемную антенну. Подобным образом, некоторые из базовых станций 104 имеют многочисленные передающие антенны, а другие имеют единственную передающую антенну. Ограничения на сочетания передающих антенн и приемных антенн отсутствуют. Следовательно, для базовой станции является возможным иметь многочисленные передающие антенны и единственную приемную антенну, или иметь многочисленные приемные антенны и единственную передающую антенну, или иметь обе одиночные или многочисленные передающие и приемные антенны.

Терминальные устройства 106 в зоне уверенного приема могут быть неподвижными (например, стационарными) или мобильными. Как показано на Фиг.1, разнообразные терминальные устройства 106 рассредоточены по всей системе. Каждое терминальное устройство 106 связывается с по меньшей мере одной, а возможно и более, базовыми станциями 104 по нисходящей линии связи и восходящей линии связи в любой заданный момент в зависимости, например, от того, используется мягкая передача обслуживания или терминальное устройство спроектировано и управляется, чтобы (одновременно или одну за другой) принимать передачи от многочисленных базовых станций. Мягкая передача обслуживания в CDMA-системах связи хорошо известна в данной области техники и подробно описана в патенте США №5,101,501, озаглавленном «Method and System for Providing a Soft Handoff in a CDMA Cellular Telephone System» («Способ и система для обеспечения мягкой передачи обслуживания в сотовой телефонной CDMA-системе»), который переуступлен правопреемнику настоящего изобретения.

Нисходящая линия связи относится к передаче от базовой станции 104 на терминальное устройство 106, а восходящая линия связи относится к передаче от терминального устройства 106 на базовую станцию 104. В представленном варианте осуществления, некоторые терминальные устройства 106 имеют многочисленные приемные антенны, а другие имеют только одну приемную антенну. На Фиг.1, базовая станция 104A передает данные на терминальные устройства 106A и 106J по нисходящей линии связи, базовая станция 104B передает данные на терминальные устройства 106B и 106J, базовая станция 104С передает данные на терминальное устройство 106С, и так далее.

Фиг.2 - структурная схема базовой станции 202 и мобильной станции 204 в системе 100 связи. Базовая станция 202 находится в беспроводной связи с мобильной станцией 204. Как упомянуто выше, базовая станция 202 передает сигналы на мобильную станцию 204, которая принимает сигналы. В дополнение, мобильная станция 204 может также передавать сигналы на базовую станцию 202.

Фиг.3 - структурная схема базовой станции 202 и мобильной станции 204, иллюстрирующая нисходящую линию 302 связи и восходящую линию 304 связи. Нисходящая линия 302 связи относится к передаче данных от базовой станции 202 на мобильную станцию 204, а восходящая линия 304 относится к передаче данных от мобильной станции 204 на базовую станцию 202.

Фиг.4 - структурная схема каналов в варианте осуществления нисходящей линии 302 связи. Нисходящая линия 302 связи включает в себя пилот-канал 402, канал 404 синхронизации, канал 406 поискового вызова и канал 408 трафика. Проиллюстрированная нисходящая линия 302 связи является только одним из возможных вариантов осуществления нисходящей линии 302 связи, и будет принято во внимание, что другие каналы могут быть добавлены или удалены из нисходящей линии 302 связи.

По одному из CDMA-стандартов, описанному в стандарте TIA/EIA/IS-95-A совместимости мобильной станции и базовой станции для двухрежимной широкополосной сотовой системы с расширенным спектром Ассоциации промышленности средств связи, каждая базовая станция 202 передает ее пользователям каналы: пилот-канал 402, канал 404 синхронизации, канал 406 поискового вызова и канал 408 трафика. Пилот-каналом 402 является немодулированный сигнал с прямой последовательностью и расширенным спектром, передаваемый непрерывно каждой базовой станцией 202. Пилот-канал 402 предоставляет каждому пользователю возможность входить в синхронизм с тактированием каналов, передаваемых базовой станцией 202, и обеспечивает фазовую опору для когерентной демодуляции. Пилот-канал 402 также предоставляет средство для сравнений уровня сигнала среди базовых станций 202, чтобы определять, когда осуществлять передачу обслуживания между базовыми станциями 202 (например, при перемещении между сотами 102).

Канал 404 синхронизации передает информацию тактирования и конфигурации системы на мобильную станцию 204. Канал 406 поискового вызова используется, чтобы связываться с мобильной станцией 204, когда ей не назначен канал 408 трафика. Канал 406 поискового вызова используется, чтобы передавать поисковые вызовы, то есть, извещения о входящих вызовах, на мобильные станции 204. Канал 408 трафика используется, чтобы передавать пользовательские данные и речь. Сигнализирующие сообщения также отправляются по каналу 408 трафика.

Фиг.5 - структурная схема каналов в варианте осуществления восходящей линии 304 связи. Восходящая линия 304 связи может включать в себя пилот-канал 502, канал 504 доступа и канал 506 трафика. Проиллюстрированная восходящая линия 304 связи является только одним из возможных вариантов осуществления восходящей линии связи, и будет принято во внимание, что другие каналы могут быть добавлены или удалены из восходящей линии 304 связи.

Восходящая линия 304 связи по Фиг.5 включает в себя пилот-канал 502. Вспомним, что были предложены беспроводные системы радиотелефонной связи третьего поколения (3G), в которых используется пилот-канал 502 восходящей линии 304 связи. Например, в настоящее время предложенном стандарте cdma2000, мобильная станция 204 передает пилот-канал обратной линии связи (R-PICH), который базовая станция 202 использует для начального вхождения в синхронизм, отслеживание времени, восстановления когерентного опорного сигнала многоотводного (рейк) приемника и измерений регулирования мощности. Таким образом, системы и способы в настоящем патентном описании применимы к пилот-сигналам по нисходящей линии 302 связи и по восходящей линии 304 связи.

Канал 504 доступа используется мобильной станцией 204, чтобы связываться с базовой станцией 202, когда мобильный телефон 204 не имеет назначенного канала 506 трафика. Канал 506 трафика восходящей линии связи используется, чтобы передавать пользовательские данные и речь. Сигнализирующие сообщения также отправляются по каналу 506 трафика восходящей линии связи.

Вариант осуществления мобильной станции 204 показан в системе 600 абонентского узла, проиллюстрированной на функциональной структурной схеме по Фиг.6. Система 600 включает в себя процессор 602 (обрабатывающее устройство), который управляет работой системы 600. Процессор 602 может быть также назван центральным процессором (ЦП, CPU). Запоминающее устройство 604, которое может включать в себя и постоянное запоминающее устройство (ПЗУ, ROM) и оперативное запоминающее устройство (ОЗУ, RAM), предоставляет инструкции и данные процессору 602. Часть запоминающего устройства 604 может также включать в себя энергонезависимое оперативное запоминающее устройство (ЭНОЗУ, NVRAM).

Система 600, которая в типичном случае осуществлена в устройстве беспроводной связи, таком как сотовый телефон, также включает в себя корпус 606, который содержит передатчик 608 и приемник 610, чтобы предоставить возможность передачи и приема данных, таких как звуковая связь, между системой 600 и удаленным местом, таким как контроллер узла сотовой связи или базовая станция 202. Передатчик 608 и приемник 610 могут быть объединены в приемопередатчик 612. Антенна 614 прикреплена к корпусу 606 и электрически соединена с приемопередатчиком 612. Дополнительные антенны (не показаны) также могут быть использованы. Работа передатчика 608, приемника 610 и антенны 614 хорошо известны в данной области техники и не требуют описания в материалах настоящей заявки.

Система 600 также включает в себя детектор 616 сигнала, чтобы выявлять и квантовать значение уровня сигналов, принимаемых приемопередатчиком 612. Детектор 616 сигнала выявляет такие сигналы как суммарная мощность, мощность пилот-сигнала на элементарные сигналы псевдослучайного шума (PN), спектральную плотность мощности и другие сигналы, которые известны в данной области техники.

Преобразователь 626 состояния системы 600 управляет состоянием устройства беспроводной связи на основании текущего состояния и дополнительных сигналов, принимаемых приемопередатчиком 612 и выявленных детектором 616 сигнала. Устройство беспроводной связи допускает работу в любом из некоторого количества состояний.

Система 600 также включает в себя системный определитель 628, используемый для управления устройством беспроводной связи и определения, на какую систему поставщика услуги устройство беспроводной связи могло бы осуществлять передачу, когда оно определяет, что текущая система поставщика услуги является не отвечающей требованиям.

Разнообразные компоненты системы 600 соединены вместе системой 630 шин, которая может включать в себя шину питания, шину сигналов управления и шину сигналов состояния в дополнение к шине данных. Однако, в целях ясности, разнообразные шины проиллюстрированы на Фиг.6 в виде системы 630 шин. Система 600 может также включать в себя цифровой сигнальный процессор (ЦСП, DSP) 607 для использования при обработке сигналов. Специалист в данной области техники будет принимать во внимание, что система 600, проиллюстрированная на Фиг.6 скорее является функциональной структурной схемой, чем перечнем отдельных компонентов.

Способы, раскрытые в материалах настоящей заявки для использования адаптивного компенсатора в связном радиоприемнике, могут быть реализованы в варианте осуществления абонентского узла 600. Раскрытые системы и способы также могут быть реализованы в других системах связи с приемником, таких как базовая станция 202. Если базовая станция 202 является используемой, чтобы реализовать раскрытые системы и способы, функциональная структурная схема по Фиг.6 также может быть использована, чтобы описать компоненты на функциональной структурной схеме базовой станции 202.

Фиг.7 - функциональная структурная схема, иллюстрирующая передачу беспроводного сигнала. Как показано, беспроводный сигнал включает в себя пилот-канал 702 и другие ортогональные каналы 704. Дополнительные неортогональные каналы 706 также могут быть включены в беспроводный сигнал. Неортогональные каналы 706 не используются в CDMA2000. Одним из примеров неортогонального канала является канал (SCH) синхронизации в WCDMA.

Ортогональные каналы предоставляются компоненту 708 ортогонального расширения. И ортогональные и неортогональные каналы затем предоставляются компоненту 710 коэффициента передачи канала, который добавляет коэффициент передачи для канала. Выходные сигналы из компонентов 710 коэффициента передачи канала суммируются друг с другом, что показано посредством сумматора 712. Как показано на Фиг.7, неортогональный канал может быть мультиплексированным с разделением во времени (TDM) 711. В других вариантах осуществления, могут быть мультиплексированными с разделением во времени один или более из ортогональных каналов.

Неортогональные каналы 706 не имеют компонентов ортогонального расширения, а подаются непосредственно в компонент 710 коэффициента передачи канала. Выходной сигнал коэффициента 710 передачи канала суммируется сумматором 712.

Просуммированный сигнал подается в компонент 714 PN-скремблирования. Фильтр 716 основной полосы частот принимает выходной сигнал из компонента 714 PN-скремблирования и предоставляет отфильтрованный выходной сигнал 723 передатчику 718. Передатчик 718 включает в себя антенну 720. Беспроводный сигнал затем поступает в радиоканал 722.

Функциональная структурная схема по Фиг.7, иллюстрирующая передачу беспроводного сигнала, может быть реализована в различных компонентах. Например, базовая станция 202 воплощает один из видов структурной схемы, проиллюстрированной на Фиг.7. В дополнение, мобильная станция 204 также реализует вид структурной схемы передачи.

Фиг.8 - функциональная структурная схема, иллюстрирующая прием беспроводного сигнала 801. Приемник 802 принимает беспроводный сигнал 801 посредством использования антенны 804. Принятый сигнал содержит в себе вариант передаваемого пилот-канала. Принимаемый сигнал выдается в согласованный фильтр 806, который согласован с импульсной частотной характеристикой фильтра основной полосы частот в передатчике. Выходной сигнал 808 из согласованного фильтра 806 до сих пор включает в себя все разные каналы в выходном сигнале 808, который был передан.

Компенсатор 810 вводит поправку на искажения и вырабатывает оценку переданного сигнала. Компенсатор 810 также справляется с изменяющимися во времени канальными условиями. Компенсатор 810 включает в себя фильтр, реализованный посредством использования некоторого количества отводов 811 компенсатора. Отводы могут быть равноинтервальными (с постоянным шагом) или неравноинтервальными (с непостоянным шагом).

Выходной сигнал 812 компенсатора предоставляется компонентам дескремблирования 814 и сужения спектра 816. Специалистами в данной области техники будет принято во внимание, что пилот-канал 702 и другие каналы 704 также выводятся из компонента 816 дескремблирования. Компонент 816 сужения спектра извлекает пилот-канал 702 и другие каналы и предоставляет отдельные оценки для пилот-канала и других каналов. Различные каналы затем декодируются компонентом 820 декодирования.

Компонент 822 адаптивного алгоритма настраивает компенсатор 810. Оцененный пилот-сигнал 824 предоставляется компонентом 816 сужения спектра компоненту 822 адаптивного алгоритма. Компонент 822 адаптивного алгоритма обладает предварительными знаниями о передаваемом пилот-канале. В системах беспроводной связи, общепринято передавать последовательность заранее известных символов по пилот-каналу. Оцененный пилот-сигнал 824, вводимый в компонент 822 адаптивного алгоритма, может быть мультиплексированным с кодовым разделением (CDM) пилот-сигналом. Адаптивный алгоритм 822 обновляет отводы 811, в то время как приемник 802 принимает беспроводный сигнал, который включает в себя канал трафика (во время трафика). Таким образом, не смотря на то, что в других системах, находящихся в использовании в настоящий момент, адаптивные компенсаторы настраиваются до трафика, системы и способы, раскрытые в материалах настоящей заявки, обучаются и настраиваются во время трафика.

Дополнительные параметры 823 алгоритма могут быть предос