Способ привода колес шасси самолета и шасси самолета с приводом колес
Иллюстрации
Показать всеИзобретение относится к авиационной технике и касается способа привода колес шасси самолета для выравнивания окружной скорости колес со скоростью самолета перед приземлением и для перемещения самолета по земле. Каждое колесо шасси вращают с помощью одной из двух соосных с колесом воздушных турбин противоположных направлений вращения. Воздух от основных двигателей или вспомогательной энергетической установки по телескопическому трубопроводу, закрепленному на стойке шасси, подают в коллектор шасси, из которого он поступает в два не сообщающихся колесных коллектора. Из каждого коллектора воздух через управляющие клапаны подают в свою радиальную или осевую турбину. Одной из турбин раскручивают колеса перед посадкой и при движении на земле вперед, а другой турбиной осуществляют движение колес в обратном направлении для торможения после приземления, а также для движения задним ходом и разворотах при маневрировании. Эжектором, сопло которого подключено патрубком с управляющим клапаном к воздушному коллектору шасси, воздух через коллектор системы охлаждения, соединенный секторными воздуховодами с корпусом тормоза, прокачивают через пакет тормозных дисков. Достигается осуществление привода колес шасси с изменением направления вращения, выравнивание окружной скорости колес шасси со скоростью самолета при его посадке, возможность автономного перемещения самолета по аэродрому, снижение нагрузки на тормоза самолета, устранение перегрева тормозов. 2 н. и 14 з.п. ф-лы, 16 ил.
Реферат
Изобретение относится к авиационной технике, а именно, к способам привода колес шасси самолета для выравнивания окружной скорости каждого колеса со скоростью самолета перед приземлением и для его перемещения на земле.
Известен способ предварительной раскрутки колес шасси самолета (Козьминых С.В., Патент РФ №2152334), состоящий в использовании лопастей-карманов изменяемой геометрии из эластичного упругого материала на боковой поверхности шины колеса. При этом при взлете лопасти прижимают и поддерживают в сложенном состоянии, а при посадке освобождают, например, при помощи электромагнитов и пружин, для раскручивания колеса после выпуска шасси.
Недостатком способа является сложность изменения и контроля мощности раскрутки колеса до необходимой угловой скорости. В многоколесных шасси турбины передних колес тележки экранируют следующие за ними колеса от воздушного потока. В результате такого экранирования возможность одинаково эффективной раскрутки всех колес тележки уменьшается. Кроме того, такой способ требует изготовления и крепления лопастей-карманов в процессе изготовления шины, либо в процессе формовки последней, либо скреплением методом вулканизации, а также склеивания, т.е. изменения самого процесса изготовления шин.
Известен способ предварительной раскрутки колес шасси самолета (Беляев В.И., Патент РФ №2384467), состоящий в подаче в установленные на корпусах колес шасси турбины воздуха из воздухозаборников (диффузоров) или из аккумулятора высокого давления, в частности, газового баллона, соединенного трубопроводами с подведенными к турбинам сопловыми элементами.
Недостатком способа являются громоздкость конструкции воздухозаборных устройств, требующая специальных мер для их уборки вместе с шасси после взлета. При взлете такие воздухозаборники создают значительное аэродинамическое сопротивление движению, которое тормозит самолет, а не ускоряет за счет привода колес. Балонная система громоздка и имеет большой вес и требует заправки баллонов воздухом (газом) высокого давления перед полетом, что усложняет техническое обслуживание самолета.
Известен способ торможения и маневрирования (Стивен Салливан, Патент РФ №2403180), согласно которому используют двигатель/генератор барабана колеса в качестве двигателя до приземления, чтобы согласовать окружную скорость пневматиков с относительной путевой скоростью так, что когда происходит посадка, имеется минимальная разность в этих двух скоростях. Привод колес самолета используют также для его перемещения на земле и во время взлета. Двигатель/генератор барабана колеса представляет собой дисковый электромотор, диски которого в тоже время являются дисками фрикционного тормоза.
Недостатком способа являются утяжеление шасси за счет электродвигателей и самого самолета за счет специальных бортовых аккумуляторов большой мощности в случае накопления рекуперируемой энергии торможения. Создание в малом объеме ступицы колеса эффективных моментов электромагнитных сил, достаточных для перемещения самолета при маневрировании, технически затруднительно и существенно усложняет изготовление, эксплуатацию и ремонт устройства привода колеса.
Задачей, на решение которой направлено предлагаемое изобретение, является раскрутка колес шасси до необходимой скорости вращения, исключающей проскальзывание всех колес относительно полосы при посадке, обеспечивающей отсутствие удара в момент контакта и минимальный износ пневматиков, а также автономное перемещение самолета на земле за счет привода колес. Дополнительной задачей является предотвращение образования на взлетно-посадочных полосах аэродромов так называемого «резинового наката» - следа от сгоревшей резины пневматиков шасси приземляющихся самолетов. От удара на полосе остается черный след, который тянется на расстояние до 500 метров от первого удара. «Резиновый накат» опасен, так как слой сгоревшей резины снижает коэффициент сцепления пневматика с бетоном в 2 и более раз, в результате чего длина послепосадочного пробега самолета увеличивается.
Техническим результатом, достигаемым в заявленном изобретении, является значительное снижение нагрузки на фрикционные тормоза самолета, устранение опасности их перегрева и продление срока службы фрикционных тормозов и пневматиков. Другим техническим результатом является возможность автономного перемещения самолета по аэродрому, в том числе, при неработающих основных двигателях, включая развороты на 180 градусов малого радиуса за счет вращения колес разных шасси в противоположные стороны и движение задним ходом. Также техническим результатом является возможность выравнивания окружной скорости каждого пневматика со скоростью самолета при его посадке и точного управления угловой скоростью вращения каждого колеса тележки шасси. Дополнительным результатом изобретения является предотвращение образования на взлетно-посадочной полосе «резинового наката», снижающего сцепление пневматиков самолетов с полосой.
Получение технического результата изобретения осуществляют за счет того, что каждое колесо шасси вращают с помощью одной из двух соосных с колесом воздушных турбин противоположных направлений вращения. В одну из воздушных турбин, в зависимости от необходимого направления вращения, подают по системе трубопроводов воздух от основных двигателей, либо от бортовой вспомогательной энергетической установки (ВЭУ) самолета. При этом давление воздуха превышает атмосферное давление, а температуру поддерживают на таком уровне, чтобы температура воздуха за турбиной не превышала допустимую прочностью материалов барабана колеса и пневматика.
Другим вариантом является подача воздуха в воздушные турбины колес из эжектора, забирающего атмосферный воздух, в сопло которого подают по системе трубопроводов воздух, давление которого превышает атмосферное давление, от основных двигателей самолета или бортовой ВЭУ. Подачу воздуха в турбины колес непосредственно, или в сопло эжектора при подаче воздуха в турбины из эжектора, осуществляют из отбора компрессоров основных газотурбинных двигателей самолета, от бортовой ВЭУ, или от компрессора турбокомпрессора, в компрессор и турбину которого подают воздух из отборов основных двигателей, или из системы наддува поршневых двигателей самолета. При этом управление раскруткой колеса до нужной скорости углового вращения колеса при посадке осуществляют с помощью управляющего клапана воздуха, подаваемого в турбину колеса, по сигналу, вырабатываемому блоком сравнения сигналов датчика скорости самолета и датчика угловой скорости вращения колеса.
Преимуществом предлагаемого изобретения является значительное увеличение мощности торможения колес шасси при стандартном и экстренном торможении, снижение опасности перегрева тормозов, надежное автономное перемещение самолета по аэродрому, включая движение задним ходом и осуществление разворотов с малым радиусом, в том числе при неработающих основных двигателях самолета. Преимуществом является также надежная раскрутка всех колес шасси до окружной скорости обода пневматиков, минимально отклоняющейся от посадочной скорости самолета.
Предлагаемый способ поясняется чертежами, где на фиг.1 и фиг.2 представлены варианты общей схемы способа применимые к газотурбинным двигателям, в частности, к двухконтурным двигателям. На фиг.3 представлена схема способа, применимая к поршневым двигателям с приводным нагнетателем, на фиг.4 - к поршневым двигателям с турбокомпрессором, а на фиг.5 - к поршневым двигателям с приводным нагнетателем и турбокомпрессором. На фиг.6 представлена принципиальная схема регулирования скорости вращения колес шасси.
При осуществлении способа на самолетах с газотурбинными двигателями возможны следующие режимы:
1. Основные двигатели не работают. Самолет самостоятельно маневрирует на летном поле. При этом используется для привода колес шасси воздух бортовой ВЭУ.
2. Основные двигатели работают. В этом случае возможен привод колес для их раскрутки перед посадкой, торможение самолета сразу после посадки, маневрирование на летном поле до взлета или после посадки, включая движение задним ходом, взлет самолета. Во всех этих случаях возможна подача воздуха в коллектор шасси за счет:
- отбора воздуха за вентилятором двухконтурного двигателя
- отбора воздуха низкого давления из компрессора двигателя
- отбора воздуха высокого давления из компрессора двигателя
- подачи воздуха от бортовой ВЭУ.
При осуществлении варианта предлагаемого способа на самолете с газотурбинными двигателями, как это показано на фиг.1 для турбовентиляторного двигателя, воздух для привода колес шасси отбирают из трубопровода 1 штатного отбора воздуха из двигателя 2, который обеспечивает собственные нужды в сжатом воздухе двигателя 2. Этот воздух через открытую заслонку 3 подают в эжектор 4, в котором снижают давление и температуру потока за счет присоса атмосферного воздуха. Из эжектора 4 по трубопроводу 5 подготовленный воздух подают в воздушный коллектор 7 шасси. Из воздушного коллектора 7 шасси по системе отводных патрубков 8 через управляющие клапаны 9 воздух подают к одной из турбин 10 или 11, приводящих во вращение в противоположных направлениях колеса 12 шасси.
В другом варианте воздух из двигателя отбирают за вентиляторной ступенью турбовентиляторного двигателя и по трубопроводу 13, на котором установлена заслонка 14, подают в теплообменный аппарат 15, где нагревают воздухом отбора более высокого давления, поступающего из двигателя 2, и подают в трубопровод 5. Пунктиром показаны трубопроводы, по которым может быть подан воздух из трубопровода 1 через теплообменный аппарат 15 для его подогрева перед подачей в эжектор 4.
Часть воздуха высокого давления, отбираемого из двигателя 2 по трубопроводу 16, подают в теплообменный аппарат 15 по трубопроводу 17, где им нагревают воздух, отобранный за ступенью вентилятора. После этого его вместе с основным потоком воздуха трубопровода 16 подают в теплообменный аппарат 18 системы кондиционирования воздуха (на фиг.1 не показана) и другие системы летательного аппарата. В варианте использования воздуха из отборов высокого давления его подают в трубопровод 5 через открытую заслонку 19 при закрытых заслонках 3 и 14 по трубопроводу 20 в эжектор 21, в котором снижают давление и температуру потока за счет присоса атмосферного воздуха. Из эжектора 21 по трубопроводу 20 подготовленный воздух подают в трубопровод 5 и далее в воздушный коллектор 7 шасси.
В воздушный коллектор 7 при неработающих основных двигателях воздух подают также при закрытых заслонках 3, 14 и 19 из бортовой вспомогательной силовой установки 22 самолета. Воздух из силовой установки 22 по трубопроводу 23 подают в теплообменный аппарат 24 подготовки воздуха для системы кондиционирования воздуха (на фиг.1 не показана). Через открытую заслонку 25 воздух из трубопровода 23 подают в воздушный эжектор 26, в котором снижают давление и температуру потока за счет присоса атмосферного воздуха. Из эжектора 26 подготовленный воздух подают в трубопровод 5 и далее в воздушный коллектор 7 шасси.
При работе самолета, не требующей подачи воздуха в воздушный коллектор 7, заслонки 3, 14, 19 и 25 закрыты.
В случае раскрутки колес перед посадкой при открытой заслонке 14 воздух отбирают за вентиляторной ступенью турбовентиляторного двигателя, после чего по трубопроводу 13 подают в теплообменный аппарат 15 и далее в трубопровод 5 и коллектор 7. Из коллектора 7 по отводным патрубкам 8 воздух подают в управляющие клапаны 9, откуда его подают на воздушные турбины 11, которые раскручивают колеса шасси, выравнивая окружную скорость на ободе колеса и посадочную скорость самолета. После касания колес посадочной полосы управляющие клапаны 9 переключают подачу воздуха на воздушные турбины 10, имеющие противоположное турбинам 11 направление вращения, и осуществляют торможение колес с помощью турбин 11, частично снижая нагрузку на фрикционные тормоза колес. Переключая управляющие клапаны 9, воздух подают в воздушные турбины 11 для осуществления движения по полосе и маневрирования.
На фиг.2 представлен вариант исполнения способа с использованием турбокомпрессора. Для привода колес шасси отбирают часть воздуха из трубопровода 13, куда его подают из внешнего контура вентиляторного двигателя 2, и через открытую заслонку 27 подают в трубопровод 28. Из трубопровода 28 воздух подают в компрессор 29 турбокомпрессора, откуда по трубопроводу 30 направляют в смеситель 31. Воздух высокого (наибольшего) давления двигателя 2 из трубопровода 32 через открытую заслонку 33 подают в турбину 34 турбокомпрессора, после чего по трубопроводу 35 направляют теплообменный аппарат 36. Охлажденный в теплообменном аппарате 36 воздух подают в смеситель 31. Воздух в теплообменном аппарате 36 охлаждают воздухом второго контура двигателя 2, который подают в теплообменный аппарат 36 по трубопроводу 13. После смаешения двух потоков в смесителе 31 воздух с заданной температурой и давлением по трубопроводу 5 подают в воздушный коллектор шасси 7. Из воздушного коллектора 7 шасси по системе отводных патрубков 8 через управляющие клапаны 9 воздух подают к одной из турбин 10 или 11, приводящих во вращение в противоположных направлениях колеса 12 шасси. Пунктиром на фиг.2 показан трубопровод 16 фиг.1, соответствующий промежуточному отбору высокого давления, который может быть использован в качестве варианта подвода воздуха к турбине турбокомпрессора.
При осуществлении способа на самолетах с поршневыми двигателями возможны следующие режимы:
1. Основные двигатели (двигатель) не работают. Самолет самостоятельно маневрирует на летном поле. При этом используется для привода колес шасси воздух от автономно работающего турбокомпрессора.
2. Основные двигатели работают. В этом случае возможен привод колес для их раскрутки перед посадкой, торможение самолета сразу после посадки, маневрирование на летном поле до взлета или после посадки. Во всех этих случаях возможна подача воздуха в коллектор шасси за счет:
- отбора воздуха из трубопровода наддува двигателя приводным нагнетателем
- отбора воздуха из трубопровода наддува двигателя компрессором турбокомпрессора
- отбора воздуха из трубопровода промежуточного охлаждения воздуха между приводным нагнетателем и компрессором турбокомпрессора.
При осуществлении предлагаемого способа на самолете с поршневым двигателем с приводным компрессором, представленным на фиг.3, из трубопровода 37 наддува поршневого двигателя 2, куда нагнетается воздух приводным нагнетателем 38, отбирают часть воздуха и по трубопроводу 39 через теплообменный аппарат 15 подают в воздушный коллектор 7 шасси. Из воздушного коллектора 7 шасси по системе отводных патрубков 8 через управляющие клапаны 9 воздух подают к одной из турбин 10 или 11, приводящих во вращение колеса 12 шасси в противоположных направлениях. В теплообменном аппарате 15 воздух нагревают частью уходящих газов двигателя 2, которые отбирают из выхлопного трубопровода 40 и по трубопроводу 41 подают в теплообменный аппарат 15.
При осуществлении предлагаемого способа на самолете с поршневым двигателем с турбокомпрессором, представленным на фиг.4, из трубопровода 37 наддува двигателя 2 при открытой заслонке 42, куда нагнетается воздух компрессором 29 турбокомпрессора, отбирают часть воздуха и по трубопроводу 30 через теплообменный аппарат 15 подают в сопло воздушного эжектора 43. Из эжектора 43 воздух подают в воздушный коллектор 7 шасси. Из воздушного коллектора 7 шасси по системе отводных патрубков 8 через управляющие клапаны 9 воздух подают к одной из турбин 10 или 11, приводящих во вращение колеса 12 шасси в противоположных направлениях. Уходящие газы двигателя 2 по выхлопному трубопроводу 40 через открытую заслонку 44 подают в турбину 34 турбокомпрессора, вращающую компрессор 29. Воздух нагревают в теплообменном аппарате 15 уходящими газами турбины 34 турбокомпрессора для чего их по трубопроводу 41 подают в теплообменный аппарат 15.
При неработающем основном двигателе 2 заслонки 42 и 44 закрыты и турбогенератор работает независимо от основного двигателя 2 за счет использования камеры сгорания 45. При этом воздух за компрессором 29 из трубопровода 37 отбирают в трубопровод 46 через открытую заслонку 47 и подают в камеру сгорания 45 турбокомпрессора. Горячие газы из камеры сгорания 45 подают в трубопровод 40, а из него в турбину 34. Часть отработавших газов из турбины 34 подают в теплообменный аппарат 15 по трубопроводу 41.
На фиг.5 представлена схема реализации способа на самолете с поршневым двигателем с приводным нагнетателем и турбокомпрессором. Для привода колеса шасси из трубопровода 48 приводного нагнетателя 38 через открытую заслонку 49, отбирают часть воздуха и по трубопроводу 39 через теплообменный аппарат 15 подают в сопло воздушного эжектора 43. Из воздушного эжектора 43 воздух подают в воздушный коллектор 7 шасси. Из воздушного коллектора 7 шасси по системе отводных патрубков 8 через управляющие клапаны 9 воздух подают к одной из турбин 10 или 11, приводящих во вращение колеса 12 шасси в противоположных направлениях.
Уходящие газы двигателя 2 подают в турбину 34 агрегата турбонаддува по выхлопному трубопроводу 40 через открытую заслонку 50. Часть уходящих газов из турбины 34 по трубопроводу 41 подают в теплообменный аппарат 15, где нагревают воздух перед его подачей в сопло эжектора 43. Основную часть воздуха из трубопровода 48 приводного нагнетателя 38 охлаждают в промежуточном охладителе 51, подают по трубопроводу 52 через открытую заслонку 53 в компрессор 29 турбокомпрессора, после чего сжимают в компрессоре 29 турбокомпрессора и по трубопроводу 37 подают в двигатель 2 через открытую заслонку 42.
При неработающем основном двигателе 2 заслонка 42 на трубопроводе 37 и заслонка 49 закрыты. Воздух в компрессор 29 турбокомпрессора подают через открытую заслонку 54 турбокомпрессора из атмосферы, при этом трубопровод 52 перекрывают заслонкой 53. Сжатый воздух за компрессором 29 из трубопровода 37 по трубопроводу 55 через открытые заслонки 47 и 56 подают в трубопровод 39. Из трубопровода 39 через теплообменный аппарат 15 воздух подают в сопло воздушного эжектора 43 и далее в воздушный коллектор 7 шасси. Из воздушного коллектора 7 шасси по системе отводных патрубков 8 через управляющие клапаны 9 воздух подают к одной из турбин 10 или 11, приводящих во вращение колеса 12 шасси в противоположных направлениях. Часть воздуха из трубопровода 55 подают в камеру сгорания 45 турбокомпрессора, после чего горячие газы направляют в турбину 34, откуда часть отработавших газов подают в теплообменный аппарат 15 по трубопроводу 41.
На фиг.6 показана схема регулирования скорости вращения колес шасси. Сигналы от датчиков 57 скорости вращения колес по линиям 58 подают в бортовой компьютер 59. В бортовой компьютер 59 подают также сигнал от датчика 60 скорости самолета по линии 61. В компьютере 59 при сравнении сигналов от датчиков 57 и 60 вырабатывают управляющие сигналы, которые по линиям 62 подают на соответствующие управляющие клапаны 9, осуществляющие подачу воздуха в турбины колес.
Расчетное обоснование предложенного способа проведено на примере самолета Ил-96-300, имеющего четыре двигателя ПС-90А и два основных шасси, на каждом из которых установлено по три пары колес.
Пример 1. Раскрутка колес перед посадкой.
Расчетные оценки возможности осуществления предлагаемого устройства проведены применительно к параметрам самолета ИЛ-96-300, имеющего шины 1300×480×560. Пусть колесо шасси раскручивается до окружной скорости, равной посадочной скорости самолета V=250 км/час = 69.4 м/с. Тогда окружная скорость вращения колеса будет равна ωW=V/R=106.84 1/с, где R - радиус пневматика, равный 650 мм. При этом число оборотов колеса n=1020 об/мин.
Кинетическая энергия вращения колеса будет равна E W = J ω W 2 / 2 , где J - момент инерции колеса. Будем считать, что момент инерции колеса в сборе равен сумме момента инерции J1 колеса без пневматика и момента инерции J2 пневматика. Масса колеса ИЛ-96-3 00 в сборе с пневматиком (С.С. Коконин, Е.И. Крамаренко, A.M. Матвеенко. Основы проектирования авиационных колес и тормозных систем. М. МАИ, 2007. - 263 с.) равна 322 кг, а масса самого пневматика равна 106 кг, т.е. масса колеса без пневматика равна 216 кг. Рассматривая условно колесо без пневматика, как однородный диск, а сам пневматик как толстостенную однородную трубу, имеем:
J 1 = m 1 R 1 2 / 2 = 8.47 к г ⋅ м 2 , J 2 = m 2 ( R 2 + R 1 2 ) / 2 = 26.55 к г ⋅ м 2 , J1+J2=35.015 кг·м2.
Тогда кинетическая энергия раскрученного колеса равна примерно 200 кДж. Примем, что время раскрутки колеса из состояния покоя до требуемой скорости равно 30 с. Тогда достаточная мощность воздушной турбины привода колеса равна 6.7 кВт, а суммарная мощность привода всех 12 основных колес - 80 кВт. Для дальнейших расчетов принято, что воздушная турбина колеса шасси дозвуковая, одноступенчатая, радиальная с парциальным подводом воздуха. Диаметр радиального зазора между сопловыми и рабочими лопатками равен 0.6 м, высота лопатки - 0.01 м, степень парциальности 0.2, кпд турбины 0.45. Все расчеты проведены исходя из условия, что температура воздуха за турбиной не должны превышать 125°С (С.С. Коконин и др.) во время движения колес.
Пример 2. Отбор воздуха за ступенью вентилятора.
Наименьшее давление воздуха в отборах двигателя ПС-90А (А.А. Иноземцев, Е.А. Коняев; В.В. Медведев, А.В. Нерадько, А.Е. Рясов. Авиационный двигатель Пс-90А, М. 2007. - 319 с.) - это давление воздуха за вентилятором. На взлетном режиме степень повышения давления равна 1.67, а на крейсерском режиме - 1.75. Примем среднюю величину 1.7. Этот перепад давлений можно сработать в одноступенчатой дозвуковой турбине.
Примем, что суммарная мощность привода всех колес самолета равна 360 кВт. Тогда отбор воздуха из одного двигателя (на три колеса шасси) за ступенью вентилятора равен 3.35 кг/с. При суммарном расходе воздуха через внутренний контур двигателя, равном 504 кг/с и степени двухконтурности двигателя 4.5, этот расход составляет менее 0.15% от расхода воздуха во внешнем контуре. Температура воздуха за колесными турбинами 120.4°C. Температуру воздуха отбора можно оценить в 358 К, а приведенные цифры получены в предположении, что воздух отбора нагревается в теплообменнике на 62°С до 420 К. При использовании отбора из второго контура двигателя можно иметь большой расход воздуха. Например, если принять мощность турбины торможения колеса 500 кВт, высоту лопатки 50 мм, полный подвод воздуха к рабочему колесу турбины и кпд турбины 0.88, то расход воздуха одним колесом составит 9.53 кг/с. При этом, расход отбора из одного двигателя равен 28.58 кг/с, что составляет 1.26% расхода воздуха во втором контуре двигателя. Средняя мощность тормоза самолета Ил-96-300 (С.С. Коконин и др.) равна 1471 кВт, таким образом, мощность тормозной турбины составит 34% от мощности тормоза. Это позволит исключить перегрев фрикционных тормозов.
Для использования дозвуковой турбинной ступени воздух высокого давления из отборов двигателя или от ВЭУ направляют в эжектор, снижающий давление воздуха перед турбиной, но увеличивающий его расход. Расчеты проведены для звукового эжектора на критическом режиме (Г.Н. Абрамович. Прикладная газовая динамика. М.: Наука, 1969. - 824 с.).
Пример 3. Использование воздуха от бортовой ВЭУ.
При использовании в качестве источника воздуха ВЭУ ТА-12 (расход воздуха равен 1.6 кг/с, давление 4.9 кгс/см2, температура 250°С, см. Авиадвигателестроение. Энциклопедия. М. 1999. - 300 с.) суммарный расход воздуха после эжектора равен 2.97 кг/с, мощность турбины колеса - 7.2 кВт, а суммарная мощность колес шасси - 86.3 кВт. Температура воздуха за воздушной турбиной равна 118.3°С. При этом принято, что воздух за ТА-12 сразу направляют в эжектор без изменения его температуры. Эквивалентная мощность ТА-12 равна 287 кВт и соответствует расширению воздуха установки в турбине с кпд 0.92. Такое заметное различие расчитанной мощности турбин привода и эквивалентной мощности объясняется низким кпд воздушных турбин колес, принятым 0.45, что связано с парциальным подводом воздуха к колесу турбины.
Пример 4. Отбор воздуха из-за подпорных ступеней компрессора.
Давление воздуха отбора равно примерно 2.5 кгс/см2, а температура - примерно 403 К. В этом случае при мощности турбины колеса 30 кВт и нагреве воздуха отбора до 460 К, расход отбираемого из двигателя воздуха равен 2.32 кг/с, что увеличивает стандартный отбор примерно на 21%. Температура воздуха за турбиной колеса равна 118°С. Если же воздух отбора перед эжектором не нагревать, то расход отбора увеличится до 2.62 кг/с, а температура за турбиной будет равна 80°С.
Пример 5. Отбор воздуха из компрессора высокого давления (КВД).
Степень повышения давления в двигателе ПС-90А составляет 35, а степень повышения давления в отборе за VII ступенью КВД можно оценить в 27.77. При охлаждении воздуха отбора до 600 К расход воздуха, отбираемого из двигателя, при мощности турбины колеса 30 кВт равен 1.26 кг/с. Это составляет около 10% от расхода воздуха для охлаждения сопловых и рабочих лопаток (примерно 12.39 кг/с), отобранного за VII ступенью. Температура воздуха за турбиной привода при этом равна 120.7°С.
Известно устройство для торможения и маневрирования воздушного судна (Стивен Салливан, Патент РФ №2403180), согласно которому в барабане колеса размещен дисковый электродвигатель/генератор, диски которого в тоже время являются дисками фрикционного тормоза.
Недостатком устройства являются утяжеление шасси за счет электродвигателей и самого самолета за счет специальных бортовых аккумуляторов большой мощности в случае накопления рекуперируемой энергии торможения. Создание в малом объеме тормозных дисков эффективных моментов электромагнитных сил, достаточных для перемещения самолета при маневрировании, технически затруднительно и существенно усложняет изготовление, эксплуатацию и ремонт устройства привода колеса.
Известно устройство колес шасси самолета (Rod F. Soderberg, UK Patenet №2436042 В), в котором внутри барабана колеса специальные обмотки или катушки, или электрически намагничиваемые материалы закреплены или заформованы в детали статора и ротора колеса, исключая тормозные диски, вызывающие появление вращающих сил, действующих на колесо.
Недостатком устройства являются утяжеление шасси за счет обмоток электродвигателей, расположенных внутри барабана колеса и тяжелые температурные условия, в которых приходится работать этим обмоткам при интенсивном торможении, особенно в режиме отказа от взлета перед самым отрывом самолета от посадочной полосы. В соответствии с данными (С.С. Коконин и др.) при выполнении последовательных посадок, особенно при коротких перелетах, температура тормоза без охлаждения может доходить до 600°С, что потребует высокотемпературных электроизоляционных материалов для обмоток и организации их дополнительного охлаждения. Кроме того, эти изоляционные материалы должны надежно работать в условиях значительных ударных и вибрационных нагрузок. Все это в случае тормозных устройств большой мощности приводит к большим конструкторским, материаловедческим и эксплуатационным проблемам.
Известно устройство колеса транспортного средства (Парфенов В.Н., Максимов В.А., Ямковенко Д.П., Клинков В.П., Николаев В.А. Патент РФ №2222473), в котором с целью улучшения охлаждения многодисковый тормоз размещен в сообщенной с атмосферой камере охлаждения, в дополнении к которой сформирован кольцевой ресивер, вход в который сообщен с нагнетателем воздуха, а выход через расходные отверстия сообщен с камерой охлаждения и полостью между блоком тормозных цилиндров и кольцевой перегородкой.
Недостатком предложенного устройства является охлаждение пакета дисков тормоза за счет продувки охлаждающим воздухом только цилиндрических и хвостовых частей дисков пакета и не использование щелей между подвижными и неподвижными дисками в расторможенном состоянии тормоза в виду их малости. Это снижает интенсивность охлаждения фрикционного тормоза.
Известно тормозное устройство колеса транспортного средства (Клод Анкур, Ивон Анкур, Патент РФ №2126503), в котором для охлаждения дисков-роторов они выполнены с внутренними каналами для прохождения воздуха, поступающего через внутреннее отверстие в дисках вдоль оси колеса. Для улучшения поступления воздуха осевой щелевой канал выходит в закрепленный на неподвижной части колеса кожух, открытая часть которого направлена на встречу набегающему потоку возуха при движении траспортного средства. Это устройство предложено использовать также для раскрутки колес самолета перед посадкой в предположении, что диски-роторы будут действовать как центробежные воздушные турбины.
Недостатком такого устройства является отсутствие достаточного пространства между переферией дисков-роторов и ободной частью колес, которое бы обеспечивало свободный выход воздуха из рабочих колес, а значит, и его расход и мощность турбины. Кроме того, при расторможенном состоянии колеса между дисками-статорами и дисками-роторами имеются зазоры, через которые будет проходить воздух помимо каналов в дисках-роторах. Это существенно снизит возможность раскрутки тяжелого колеса самолета за счет работы дисков-роторов в качестве центробежных воздушных турбин. Недостатком такого тормозного устройства для охлаждения дисков является неэффективность охлаждения при отсутствии достаточной скорости движения транспортного средства.
Задачей, на решение которой направлено предлагаемое изобретение, является создание мощного привода колес шасси самолета, позволяющего осуществлять раскрутку колес перед посадкой, частичное торможение колес после посадки, осуществление аэродромного маневрирования и торможения, включая движение задним ходом и развороты с малыми радиусами. Дополнительной задачей является обеспечения возможности автономного наземного маневрирования самолета до запуска его основных двигателей. Предлагаемое изобретение направлено также на решение задачи снижения износа пневматиков, устранения «резинового наката» на взлетно-посадочных плосах аэродромов и обспечение интенсивного охлаждения энергоемких тормозов для снижения времени их остывания.
Техническим результатом, достигаемым в заявленном изобретении, является возможность осуществления привода колес шасси с изменением направления вращения с мощностью, достаточной не только для предпосадочной раскрутки колес, но и штатного, и экстренного торможения и аэродромного маневрирования, включая развороты малого радиуса, в том числе при не работающих основных двигателях. Техническим результатом является также увеличение срока службы фрикционных тормозов и пневматиков, повышение надежности эксплуатации резиновых пневматиков, уменьшение их износа и устранение «резинового наката» на взлетно-посадочных полосах аэродромов. В результате принудительного охлаждения тормозов снимаются ограничения на интенсивное выполнение самолетом рейсов небольшой протяженности, связанные с необходимостью остывания тормозов до допустимой температуры.
Получение технического результата изобретения осуществляется за счет того, что параллельно амортизационной стойке шасси на ней закреплен раздвижной телескопический трубопровод подачи воздуха к колесам шасси, неподвижная часть которого прикреплена скобой к амортизатору, а его выдвижной патрубок, уплотненный по воздуху относительно неподвижной части, прикреплен скобой к штоку амортизатора, Телескопический трубопровод с одной стороны подключен к источнику сжатого воздуха на борту самолета, а с другой стороны - к раздающему воздушному коллектору колес шасси. К раздающему воздушному коллектору двумя на каждое колесо отводными патрубками, на которых установлены управляющие клапаны, подсоединены не сообщающиеся по воздуху колесные кольцевые раздающие коллекторы, каждый из которых секторными воздуховодами подключен к своей радиальной или осевой воздушной турбине привода колеса, при этом турбины имеют противоположные направления вращения.
Между статором колеса и первым тормозным диском-статором установлен кольцевой теплозащитный экран, патрубками, равномерно расположенными по ширине сектора подвода воздуха и установленными в статоре и теплозащитном экране, полость между теплозащитным экраном и первым диском-статором соединена секторными воздуховодами с воздушным коллектором системы охлаждения тормоза. При этом колесные кольцевые раздающие коллекторы, воздушный коллектор системы охлаждения, секторные воздуховоды и тормозные цилиндры выполнены в виде монолитного блока, установленного на статоре каждого колеса.
В дисковой части обода колеса напротив последнего диска-статора расположены равномерно по окружности отверстия.
Секторные воздуховоды колесного кольцевого раздающего коллектора осевой турбины подключены к своему набору равномерно расположенных по окружности подпружиненных секторов подачи воздуха, постоянно прижатых к первому тормозному диску-статору. Подпружиненные секторы плотно входят в соответствующие секторные воздуховоды с возможностью их перемещения параллельно оси колеса совместно с диском-статором. Напротив секторов подачи воздуха в примыкающем к ним и последующих дисках-статорах тормоза, за исключением последнего, выполнены секторы сквозных каналов так, что диски-статоры представляют собой сопловые аппараты осевой турбины с парциальным подводом воздуха к рабочим колесам.
В последнем диске-статоре тормоза выполнены сквозные каналы так, что последний диск-статор представляет собой выходной спрямляющий аппарат с лопатками парциального отвода воздуха от последнего рабочего колеса осевой турбины. При этом угловая ширина лопаточных секторов дисков-статоров выполнена увеличивающейся от диска к диску по направлению движения воздуха. В дисках-роторах тормоза колеса выполнены равномерно расположенные по окружности сквозные каналы так, что диски-роторы представляют собой рабочие колеса осевой турбины с лопатками, расположенными напротив соответствующих сопловых лопаток дисков-статоров.
Равномерно расположеные по окружности отверстия в дисковой части обода колеса размещены напротив лопаточных каналов последнего диска-статора.
В другом варианте устройства секторные воздуховоды колесного кольцевого раздающего коллектора радиальной турбины подключены к своему набору равномерно расположенных по окружности своего диаметра секторов радиальных сопловых аппаратов, напротив которых с радиальным зазором на внутреннем ободе колеса установлено рабочее колесо одноступенчатой, или многоступенчатой со ступенями скорости радиальной воздушной турбины. Сопловые аппараты радиальной воздушной турбины, а в случае использования многоступенчатой со ступенями скорости радиальной воздушной турбины, и неподвижные колеса направляющих лопаток, закреплены на монолитном блоке, установленном на статоре каждого колеса.
В упорном торце корпуса тормоза, прилегающем к последнему диску-статора, имеются радиальные торцевые канавки, образующие с поверхностью диска-статора систему радиальных каналов охлаждения, сообщающихся со шлицевыми пазами корпуса тормоза. Между дисками-роторами установлены цилиндрические кольца так, что внешняя цилиндрическая часть дисков-роторов входит внутрь колец с небольшим зазором. На внешней цилиндрической поверхности колец установлены пружинные секторы, размещающиеся в шлицевых пазах барабанной части обода колеса и упирающиеся в хвостовики дисков-ротор