Устройство отделения и собирания текучей среды, захваченной в газе из резервуара

Иллюстрации

Показать все

Устройство для отделения и собирания жидкости, захваченной в газе из резервуара, которое присоединено к технологическому оборудованию (14, 15) для газа. Причем указанный газ подается в технологическое оборудование из устройства по впускной трубе (24) к технологическому оборудованию. Собираемая жидкость удаляется периодически из устройства по трубе (7) выпуска жидкости. Устройство образуется из сепаратора (1) жидкости и сборника (2) жидкости, которые являются двумя отдельными камерами. Камеры соединены друг с другом клапаном (3), и для дренирования собираемой жидкости сборник (2) жидкости соединен с выпускной трубой (19) от технологического оборудования промежуточным клапаном (6). Причем дренирование происходит с помощью сжатого газа, который через промежуточный клапан (6) подается из технологического оборудования. Альтернативно, подается от участка побережья или платформы, из газовой трубы или трубы газового потока скважины на морском дне или подобного. 28 з.п. ф-лы, 5 табл., 12 ил.

Реферат

Настоящее изобретение использует энергию сжатого газа для дренирования и продувки песка (с завихрением песка и других частиц) подводного сепаратора жидкости с объединенным сборником жидкости.

Для защиты технологического оборудования и, в частности, газового технологического оборудования, от неприемлемого притока жидкости, которая также может содержать песок и другие частицы, что далее называется общим термином «песок», сепаратор жидкости, как правило, помещают выше по потоку от оборудования. Жидкость и песок собирают таким образом, что газ и жидкость с песком могут затем обрабатываться раздельно.

Такая защита подводного компрессора от слишком большого притока жидкости и песка является уже известной, и она обычно осуществляется при размещении сепаратора жидкости выше по потоку от компрессора, так что жидкость и песок могут разделяться из потока скважины, собираться и подаваться насосом в газовый трубопровод в точке ниже по потоку от компрессора, или опционально жидкость транспортируется в отдельную трубу.

В данном контексте сепараторы жидкости могут означать, среди прочего, сепараторы, скрубберы, циклоны и ловушки для жидкого конденсата, все из которых в дополнение к действующему сепаратору имеют объем для собираемой жидкости. Указанный собирающий объем определяется несколькими факторами, такими как:

Среднее содержание жидкости в газовом потоке скважины. Это может очень значительно зависеть от газового потока скважины, идущего либо от промысла сухого газа, либо от промысла газового конденсата. Варьирование в зависимости от промысла может составлять от 0,01% мас. или ниже до 5% мас. или более без какого-либо значения для изобретения, иного, чем практическое определение размеров и работа. В многофазной подаче насосом от нефтяного промысла жидкая фракция может составлять обычно от 3% об. до 30% об.

Объем порции жидкости, т.е. объем накапливания жидкости, который по разным причинам имеет место в трубопроводе выше по потоку от компрессора, и который течет в сепаратор жидкости в течение нескольких секунд.

Для иллюстрации ряда недостатков ранее известных решений следует описание общего пути дренирования жидкости из подводного сепаратора жидкости с присоединенным объемом для сбора жидкости. Поэтому ссылка делается на фиг.1, которая показывает главное оборудование на таких традиционных подводных компрессорных и насосных станциях. В таблице 1 приводятся наименования компонентов, к которым относятся буквы на фигуре.

Таблица 1
А Сепаратор жидкости с собирающим объемом в общем сосуде
В Компрессор
b' Двигатель компрессора
С Насос
с' Двигатель насоса
D Нижний допускаемый контрольный уровень жидкости
Е Верхний допускаемый контрольный уровень жидкости, когда поток является стабильным
F Наивысший уровень жидкости, определяемый объемом порции жидкости
G Оборудование вторичной очистки, например, циклоны
g' Нижняя граница оборудования вторичной очистки
H Спускная труба от оборудования вторичной очистки
I Выпуск спускной трубы
J Клапан против гидравлического удара с исполнительным Механизмом
K Холодильник против гидравлического удара
L Кабель для подачи электрической энергии к двигателю компрессора
M Кабель для подачи электрической энергии к двигателю насоса
N Труба рециркуляции жидкости
O Труба рециркуляции газа
p, Стопорные клапаны
p',
p”,
p”'
Q Электрический соединитель для двигателя компрессора
q' Электрический соединитель для двигателя насоса
R Клапан циркуляции жидкости

В процессе обычной работы все показанные стопорные клапаны р, р', р”, р”' являются открытыми, а клапан против гидравлического удара J является закрытым. В заданное время компрессор В работает при некоторой скорости, чтобы выдать требуемую газовую продукцию. Компрессор работает от электродвигателя b', который питается электрической энергией через кабель L, который соединен с двигателем компрессора электрическим соединителем Q. Аналогично насос получает электрическую энергию через кабель М и соединитель q'.

Газ, который идет из скважины резервуара, т.е. влажный газ, в сепаратор жидкости с его собирающим объемом А, имеет некоторое среднее содержание жидкости, которое в некоторых условиях может быть нарушено неустановившейся порцией жидкости с высоким содержанием жидкости и короткой длительностью. Важно знать, что в процессе работы редко несколько таких порций жидкости идут в быстрой последовательности, поэтому газ в течение отдельного периода имеет данное среднее содержание жидкости.

На фиг.1 в сборнике жидкости указан конкретный допустимый уровень жидкости от d до f. Когда насосом является центробежный насос, который способен образовывать пузырьки, нижний уровень d определяется насосом, требующим минимальную высоту для нижнего уровня жидкости d относительно всасывания насоса С. Требуемая высота - «требуемая чистая высота положительного всасывания» (ТЧВПВ) варьируется в зависимости от конструкции и рабочих параметров центробежного насоса, особенно скорости, но может быть, например, 3-4 м. Нижний уровень жидкости d также должен быть таким высоким, чтобы защитить центробежный насос от уноса свободного газа в его потоке жидкости. Центробежные насосы являются чувствительными к свободному газу из-за способности к разряжению, т.е. способности создавать увеличение давления, и мощность уменьшается вместе со степенью эффективности, и увеличивается потребность в рабочей мощности. Общим правилом является то, что свободный газ в центробежных насосах должен поддерживаться ниже 3% об. Когда выполняется требование к ТЧВПВ, указанное правило также соблюдается автоматически.

Кроме того, самый высокий допустимый нормальный уровень жидкости Е, когда поток является стабильным, определяется защитой от чрезмерно высоких количеств жидкости, унесенных газом и прошедших в компрессор, когда самая большая порция жидкости, т.е. определяющая размер порция, доходит до верха верхнего допустимого нормального уровня Е, когда поток является стабильным. Самый высокий уровень жидкости F задается при условии, что «самая большая порция жидкости», определенная расчетами, измерениями или эмпирически, должна иметь место на верху верхнего обычного уровня жидкости Е без абсолютно верхнего допустимого самого высокого уровня жидкости F. Должно быть отмечено, что абсолютно верхний допустимый самый высокий уровень жидкости F, что касается расположения оборудования вторичной очистки G, когда для дренирования используются циклоны и другое оборудование вторичной очистки, требующее спускную трубу Н, определяется падением давления после оборудования вторичной очистки, которое устанавливается в верхней части сепаратора жидкости А. Длина спускной трубы Н от нижнего конца g' оборудования вторичной очистки вниз до самого высокого допустимого уровня жидкости F должна дать достаточную статическую высоту для дренирования оборудования вторичной очистки, которое часто состоит из циклонов, которые имеют падение давления в интервале 0,1-0,5 бар (10-50 кПа). Кроме того, выпуск I спускной трубы Н должен быть всегда погружен в жидкость для предотвращения всасывания газа через спускную трубу Н. Это значит, что выпуск I должен быть расположен ниже нижнего допустимого уровня жидкости D.

Если более простое оборудование, например, мат из проволочной сетки, обеспечивает удовлетворительную вторичную очистку и, таким образом, удаление капель, высота между оборудованием вторичной очистки G и самым высоким уровнем жидкости F может быть снижена, потому что спускная труба тогда становится ненужной. Механизм обеспечения того, что капли жидкости захватываются матами из проволочной сетки и т.п. состоит в том, что капли сливаются вместе с получением размера, который заставляет их падать вниз через газ, поднимающийся к матам из проволочной сетки, т.е. что скорость падения капель является большей скорости подъема газа вверх.

Что составляет «чрезмерно высокую» нагрузку жидкости и песка для компрессора, зависит от устойчивости его конструкции по отношению к данной нагрузке и выбора материалов и любого защитного покрытия от эрозии на крыльчатках компрессора. Центробежные компрессоры могут выдерживать редкую и непостоянную нагрузку жидкости, например, 2% об., при условии, что диаметр капель является не слишком большим, т.е. обычно менее 50 мкм. Поставщики компрессоров также утверждают, что компрессоры могут работать непрерывно с жидкостью при условии, что содержание жидкости составляет менее 2% об. Другие поставщики компрессоров утверждают, что компрессоры могут работать непрерывно с жидкостью до 2% об. на впуске с каплями мельче 50 мкм с приемлемой эрозией и сроком службы.

В процессе работы насос для традиционного решения регулируется так, что уровень в сепараторе жидкости выдерживается между верхним уровнем жидкости Е и нижним уровнем D. Он затем обычно регулируется до «идеального уровня», где-то между D и Е. Это представляет собой уровень, который определяется для защиты насоса как от пузыреобразования, так и от уноса свободного газа, и который в то же самое время является достаточно низким для предотвращения уноса жидкости в компрессор.

Жидкость, которая отделяется в сепараторе жидкости А, собирается в его собирающем объеме. В известных решениях насос С указан как центробежный насос. Указанные насосы хорошо подходят для всасывания, когда производительность жидкости в кубических метрах в час (м3/ч) является не слишком низкой, так что насосы могут тогда предназначаться для повышения давления, которое может потребоваться. Обычно потребность в росте давления может варьироваться от 5 бар до 100 бар (от 500 кПа до 10000 кПа) и даже более.

В качестве примера для иллюстрации проблем, связанных с известными решениями, может быть выбран типичный случай небольшого газового промысла, который требует только одного компрессора, и где производительность жидкости составляет 10 м3/сутки, т.е. 0,4 м3/ч. В рассматриваемом примере это соответствует содержанию жидкости в газе примерно 0,01% об. и требует роста давления 30 бар (3000 кПа) от давления всасывания, которое составляет 10 бар (1000 кПа). Не существует центробежных насосов, которые при непрерывной работе могут удовлетворять такому небольшому требованию объемного потока с необходимостью увеличения давления. Одно решение для непрерывной работы насоса может включать рециклы почти полного объема жидкости с тем, чтобы получить достаточный минимальный поток жидкости в насосе, например, 70 м3/ч.

При сравнении нагрузки жидкости, которую могут выдержать центробежные устройства, по отношению к содержанию жидкости в промыслах газа или смеси газа и конденсата, как указано выше, центробежные компрессоры могут теоретически работать без отделения жидкости от газа. Однако это является теоретическим рассмотрением, которое требует, чтобы поток жидкости был равномерно диспергирован в газе. Данное положение может рассматриваться как нормальное для большей части рабочего времени для подводного компрессора, но может быть иногда нарушено большими концентрациями жидкости в наихудшем случае в форме порций жидкости, которые заполняют все поперечное сечение трубы. Механизмами, которые дают в результате такие порции жидкости, являются обычные изменения, т.е. нестационарные процессы, которые ведут к накапливанию, например, при запуске или остановке одной или более скважин на опорной плите. Наихудшим случаем, вероятно, является запуск скважин на опорной плите, где все скважины были остановлены. Значительное количество жидкости может быть тогда собрано и течь к компрессору. Чтобы избежать того, чтобы сепаратор жидкости А, имеющий определенные размеры, выдерживал неустановившуюся порцию жидкости при запуске, могут быть разработаны специальные методики запуска. Например, порция жидкости может либо пропускаться после компрессора в отдельную байпасную трубу, либо прогоняться порциями через сепаратор жидкости А.

Независимо от того, выдерживает ли компрессор жидкость, он является хорошей защитой от излишнего износа или разрушения при прохождении воды, которая также имеет некоторое содержание песка, около компрессора, особенно когда, как сделано возможным настоящим изобретением, не требуется отдельного насоса с подачей энергии.

Для компрессора этим является его стойкость к жидкости и песку, которая определяет разработку газообрабатывающей части сепаратора жидкости, и, аналогично, этим является стойкость насоса, что касается пузыреобразования и унесенного газа, что определяет конструкцию жидкость обрабатывающей части. Что касается задания точности и комплексности контроля уровня, одинаковая устойчивость двух частей является также очень важной.

На фиг.2 показано, как использование центробежного насоса увеличивает общую конструкционную высоту насоса и сепаратора жидкости и его собирающий объем для того, чтобы отвечать ТЧВПВ.

Можно видеть из примера, что разность высоты между самым низким уровнем жидкости и впуском к насосу составляет 4 м.

Для определения общей конструкционной высоты размещения компрессора, сепаратора/сборника жидкости и насоса, необходимо учитывать, что компрессор и/или двигатель компрессора могут требовать дренирования. В известных решениях для дренирования используется сила тяжести. Для обеспечения дренирования под действием силы тяжести нижняя часть компрессора должна быть расположена приблизительно на 0,5 м выше нижнего уровня в сборнике жидкости.

Следствием использования центробежного насоса и дренирования под действием силы тяжести является большая конструкционная высота всего размещения, как указано в абзаце выше. На фиг.2 в качестве примера она указана как 10,5 м. Также указан типичный диаметр некоторых компонентов.

В примере показаны вертикально ориентированный компрессор и двигатель компрессора. Если два компонента являются горизонтальными, конструкционная высота снижается, но, с другой стороны, увеличивается ширина.

Фиг.2 включает в себя только компоненты, которые необходимы для иллюстрации требования к высоте. Символы здесь являются такими же, как для фиг.1, но в дополнение имеется

Таблица 2
z Дренажная труба для компрессора с двигателем компрессора

Поэтому главной целью настоящего изобретения является показать улучшенное решение для отделения и собирания жидкости, обычно воды, конденсата и нефти с введенными химическими веществами (причем смесь является очень зависимой от резервуара), унесенной в газе, который идет из резервуара. Под улучшением понимается, главным образом, что необходимость в насосе исключается, и с этим - потребность насоса в напоре, т.к. дренирование сборника жидкости осуществляется с использованием сжатого газа. Кроме того, термин «улучшение» означает, что дренирование компрессора с двигателем осуществляется с использованием сжатого газа, и поэтому необходимость в напоре в отношении уровня жидкости в установке собирания жидкости исчезает, т.е. - что компрессор и связанный с настоящим изобретением двигатель компрессора, если такой включен в технологическое оборудование, могут быть расположены свободно с точки зрения высоты по отношению к сборнику жидкости. Как показано ниже, это дает значительное снижение высоты для всего размещения.

Указанная главная цель достигается с помощью устройства отделения и собирания жидкости, унесенной в газе из резервуара, которое присоединено к технологическому оборудованию для газа, причем указанный газ подается к технологическому оборудованию из устройства по впускной трубе к технологическому оборудованию, и собираемая жидкость удаляется периодически из устройства по выпускной трубе жидкости, причем устройство отделения и собирания отличается тем, что оно образовано из сепаратора жидкости и сборника жидкости, которые представляют собой две отдельные камеры, и которые соединены друг с другом с помощью клапана, и тем, что для дренирования собранной жидкости сборник жидкости соединяется с выпускной трубой из технологического оборудования с помощью промежуточного клапана, причем дренирование имеет место с помощью сжатого газа, который через промежуточный клапан подается от технологического оборудования или, альтернативно, от участка побережья или платформы, из газовой трубы или трубы газового потока скважины на морском дне или подобном.

Предпочтительные варианты согласно настоящему изобретению представлены в зависимых пунктах формулы изобретения.

В противоположность предшествующему уровню техники, включающему в себя дренирование с помощью питаемых электроэнергией насосов или под действием силы тяжести и продувку песка с использованием жидкости, подаваемой насосами, требованием для успешного результата использования сжатого газа является, однако, то, что подаваемый сжатый газ имеет достаточно высокое давление, более конкретно, выше, чем давление на впуске сборника жидкости в процессе обычной работы, т.е. когда дренирование сборника жидкости в данное время не проводится.

Сжатый газ в некоторых случаях, как указано, может подаваться от платформы или участка побережья из газового трубопровода и трубопровода для газового потока скважины на морском дне, или от расположения ниже по потоку от по меньшей мере одного подводного компрессора, или от промежуточной ступени компрессора, или от двигателя, охлаждающего газ.

В том случае, когда энергия подводится от сжатого газа на выпускной стороне по меньшей мере одного компрессора, сжатый газ может отводиться как, когда компрессор находится в работе, так и в форме ограниченного сжатого газа ниже по потоку, когда компрессор не находится в работе.

Так как целью является защита компрессора, в соответствии с изобретением, неважно какой выбор делается в отношении привода или двигателя: низкоскоростного, либо высокоскоростного, и подшипников: смазываемых маслом, либо магнитных подшипников, или: имеют двигатель компрессора и компрессор редукторы, либо не имеют. Это благодаря тому, что используется только сжатый газ, например, ниже по потоку от компрессора для дренирования жидкости из сборника, жидкости выше по потоку от компрессора. Кроме того, сжатый газ может быть использован для продувки песка из сепаратора жидкости и/или сборника жидкости, а также для любых других задач, где использование сжатого газа является предпочтительным. Сепаратор жидкости с присоединенным сборником жидкости помещается выше по потоку от компрессора, чтобы противодействовать эрозии и любой коррозии благодаря более высокому содержанию жидкости и песка в газе на впуске в компрессор, чем это рассчитано.

В тех случаях, когда несколько подводных компрессоров работают параллельно с общим сборником, сжатый газ может опционально отбираться из сборника или ниже по потоку от сборника.

Хотя это не должно пониматься как ограничение, описание изобретения ниже дается в связи с дренированием и/или продувкой песка подводного сборника жидкости, который собирает жидкость из присоединенного сепаратора жидкости. Хотя размещение, как правило, осуществляется в форме подводного местоположения, это не должно рассматриваться как какое-либо ограничение для среды, где может быть помещено настоящее устройство. Ясно, что дренирование может даже легко относиться к жидкости, которая, например, собирается в компрессоре и/или двигателе компрессора. Кроме того, продувка песка относится как к сепаратору жидкости, так и к сборнику жидкости для того, чтобы предотвратить нарастание песка в них, но также может быть использована для продувки других компонентов, где может иметь место нарастание песка.

Практически изобретение разработано так, что газ из источника давления, например, по меньшей мере одного подводного компрессора, действует как плунжер, который сжимает сверху вниз, подобно плунжеру в плунжерном насосе, тогда как сосуд, который составляет сборник жидкости, действует как цилиндр плунжера. Конструкция и ориентация сосуда, в принципе, не имеют значение, но на практике наиболее подходящими являются цилиндрический вертикальный, сферический или цилиндрический горизонтальный сосуды.

В отношении продувки, с тем, чтобы удалить накопленный песок, использование сжатого газа вызывает мощное завихрение благодаря его сжатию и расширению. Размещение непоказанных сопел и их конструкция могут быть оптимизированы для задачи. Поэтому смысл состоит в том, что имеется избыток продувающего газа под высоким давлением, доступный для использования.

Расширение газа дает охлаждение. Поэтому должно быть определено, может ли температура быть такой низкой, что имеется опасность образования гидрата. Если так, то гидратингибирующий агент, например, МЭГ, ДЭГ, ТЭГ, метанол или подобное, должен быть введен известным образом. В большинстве случаев избыточное введение гидратингибирующего агента не является необходимым, поскольку он был уже введен в поток скважины при пуске.

Эффективное завихрение песка в сборнике жидкости при продувке сжатым газом позволяет использовать горизонтальный сепаратор без какой-либо опасности значительного накопления песка во времени. Для облегчения удаления песка множество выпусков жидкости может быть расположено вдоль сепаратора. Это противоречит предшествующему уровню техники, где используются вертикальный сепаратор жидкости и сборник жидкости, и песок смывается с использованием жидкости под давлением из насоса, поскольку вертикальные сосуды с одним выпуском являются выгодными, когда имеется ограничение количества жидкости, которое может использоваться для продувки.

Разность в давлении между сжатым газом и давлением выше по потоку от подводного сепаратора жидкости может, быть - также использована для работы газовой турбины, которая приводит в действие, например, насос, эжектор, эдуктор и/или компрессор, если такое вспомогательное оборудование рассматривается в качестве предпочтительного для дренирования, продувки песка или других целей. Кроме того, давление газа может использоваться для пневматических цилиндров в качестве рабочих органов для клапанов, а также для пневматического измерения уровня или восприятия уровня. Ради полноты низкой точкой давления может быть также давление в сепараторе жидкости или ниже по потоку от него, но в последнем случае - перед оборудованием усиления давления.

Что делает настоящее изобретение отличающимся от предшествующего уровня техники, - это упрощение, состоящее в том, что насосы являются излишними, и необходимость постоянного регулирования уровня в сборнике жидкости отпадает. Неиспользование насосов автоматически приводит к преимуществу, заключающемуся в том, что больше не требуется оборудования для подачи электрической энергии к двигателю насоса. Кроме того, исключение постоянного регулирования уровня в сборнике жидкости ведет к упрощению системы регулирования. Неиспользование насосов, особенно центробежных насосов, дает в результате исключение необходимости специальной минимальной высоты уровня жидкости по отношению к впуску насоса, т.е. ТЧВПВ. Как указано выше, она может составлять, например, 4 м. Помимо безопасной высоты, это также ведет к снижению массы и объема. Удаление оборудования и, в частности, вращающегося оборудования, также дает повышенную надежность.

Что позволяет исключить насосы согласно настоящему изобретению - это использование энергии подаваемого сжатого газа, например, перепада давления между давлением ниже по потоку и выше по потоку от компрессора, для того, чтобы дренировать сборник жидкости.

Изобретение требует подачи газа с давлением, которое является достаточно высоким с точки зрения впускного давления в сепараторе, т.е. давление газа в потоке скважины, который вводится из резервуара, так что имеется достаточно энергии для осуществления дренирования и/или продувки. Кроме того, предполагается, что компонентами для отделения и сбора жидкости являются отдельные камеры - каждая, имеющая свой соответствующий объем, и с одним или более клапанов между указанными камерами. Наиболее практично, что указанные камеры находятся в форме двух отдельных сосудов, например, цилиндрических или сферических, но две камеры могут быть также объединены в общей емкости под давлением с формованием разделительной плиты между ними с введенным в нее клапаном. На фиг.3-8 две камеры показаны как два отдельных сосуда, тогда как на фиг.9А-9В представлен вид с двумя камерами в общем сосуде с полусферической разделительной плитой и клапаном. Другими возможными вариантами разделительной плиты являются, например, «изогнутый конец», плоский и конический. Различие между вариантами согласно фиг.9А и 9В состоит в том, что клапан с рабочим органом расположен снаружи существующего сосуда, что улучшает условия работы и упрощает возможности ремонта, например, при замене рабочего органа. Таким образом, имеется возможность получения клапана отдельно, приводимого в действие при включении соединителей, и вручную работающих клапанов к сепаратору жидкости и сборнику жидкости, соответственно. Также можно поместить клапан внутри сосуда, а рабочий орган - снаружи.

Необходимо отметить, что разделительная плита между двумя камерами должна быть определена с размерами как часть сосуда под давлением, поскольку она должна выдерживать перепад давления между камерами в процессе дренирования, например, от 5 до 150 бар (от 500 до 15000 кПа) для соответствующих случаев.

Две отдельные камеры с клапаном между ними для соответствующего отделения жидкости и сбора жидкости отличаются от известных решений, где объем для отделения жидкости и сбора жидкости образуется общей камерой в сосуде. Ссылка делается на фиг.1 и 2.

Использование энергии перепада давления между давлением ниже по потоку и давлением выше по потоку от подводного компрессора является реальной возможностью, поскольку расчеты показывают, что требования к давлению для подачи насосами для промыслов газа и смеси газа и конденсата являются очень небольшими по сравнению с требованием к давлению для сжатия. В таблице 3 ниже это показано в цифрах для типичных примеров. Требование к энергии для сжатия для примера с газом и газом-конденсатом составляет приблизительно 4000 кВт и 10000 кВт, соответственно, и расчеты показывают, что требование к энергии для подачи насосами составляет, соответственно, 1 кВт и 300 кВт.

Таблица 3
Газ Газ-конденсат
Энергия для подачи насосами по отношению к энергии сжатия 0,03% 3%
Энергия для подачи насосами 1 кВт 300 кВт

Задание параметров компрессора и его двигателя, чтобы обслуживать работу по очень умеренному дренированию, не представляет заметного увеличения либо физических размеров, либо массы, либо стоимости указанных компонентов. И оно не представляет заметного нарушения в работе компрессора. Выбор точных свойств компрессора делается так, чтобы обеспечить, чтобы компрессор не попадал под текущий гидравлический удар при использовании для дренирования или продувки.

В подводных компрессорных станциях с большой производительностью жидкости возможно, что один или более компрессоров специально предназначаются для дренирования и продувки.

Часть подводных компрессоров используют газ из выпуска компрессора или с промежуточной ступени для охлаждения электрического двигателя и любых других компонентов, которые требуют охлаждения, таких как любые магнитные подшипники. Газ, используемый для охлаждения, составляет обычно 1-5% общей скорости газа, который сжимается, и после того, как этот газ используется для охлаждения двигателя или других компонентов, он подводится обратно к месту выше по потоку от компрессора с тем, чтобы затем быть способным к повторному сжатию. Энергия сжатия используется для повторного сжатия указанного охлаждающего газа. Следовательно, использование охлаждающего газа для осуществления повторного сжатия оптимальным образом является преимуществом. Поэтому очень благоприятно использовать охлаждающий газ в качестве сжатого газа для сборника жидкости, как предназначено для настоящего изобретения.

Может быть указано, что для многостадийной подачи насосом смеси газа, нефти и воды, и когда количество жидкости обычно составляет 5-20% об., часть общей энергии, подаваемой к многофазному насосу, который используется для подачи жидкости, часто является значительно меньшей, чем количество, используемое для сжатия газа, например, 20%. Необходимо отметить, что настоящее изобретение используется не только для потока газа или смеси газа и конденсата, но также, например, для многофазной подачи насосом.

По сравнению с традиционным дренированием подводного сепаратора жидкости со связанным объемом собирания жидкости и регулированием уровня, когда для дренирования используются насосы, настоящее изобретение предусматривает существенное упрощение, а также сниженную конструкционную высоту.

Изобретение теперь будет описано более подробно с помощью предпочтительных вариантов, которые показаны на чертежах, на которых:

на фиг.1 представлена схема традиционной подводной системы для сжатия газа;

на фиг.2 схематически показаны типичные высота и диаметр для традиционного решения подводного сжатия газа с помощью компрессора, сепаратора и центробежного насоса в соответствии с примером для газа выше (см. также таблицу 3);

на фиг.3а-7 схематически показаны варианты согласно настоящему изобретению из сборника жидкости и связанного сепаратора жидкости для того, чтобы пояснить, соответственно, дренирование сборника жидкости, продувку песка сепаратора жидкости и сборника жидкости, которые могут быть выполнены независимо друг от друга, одновременно продувку песка сепаратора жидкости и сборника жидкости, дренирование двигателя вертикального компрессора и компрессора, причем различием между фиг.6А и 6В является положение точки выпуска сжатого газа по отношению к стопорному клапану, и дренирование двигателя горизонтального компрессора и компрессора, для ясности показанных только с трубами и клапанами, которые являются важными для дренирования сборника жидкости;

на фиг.8 схематически показано настоящее изобретение, где все трубы и клапаны согласно фиг.3-7 включены в чертеж;

на фиг.9А-9В схематически показано решение, где камера сепаратора жидкости и камера сборника жидкости объединены в общем сосуде с разделительной плитой и соединены клапаном между двумя камерами; и

на фиг.10-12 схематически показаны, соответственно, вертикальная и горизонтальная компоновки согласно настоящему изобретению с иллюстрацией требования к пространству в соответствующем направлении.

Для более ясного понимания настоящего изобретения ссылка делается на фиг.3, и значение ссылочных позиций можно видеть в перечне в таблице 4 ниже:

Таблица 4
1 Сепаратор жидкости
2 Сборник жидкости
3 Клапан
4 Клапан
5 Датчик верхнего уровня
6 Клапан для сжатого газа для дренирования сборника жидкости
7 Выпускная труба для жидкости
8 Точка смешения жидкости и газа
9 Запирающий клапан для выпуска компрессора, может опционально иметь фиксированное запирание
10 Датчик нижнего уровня
11 Клапан для дренирования недействующего компрессора и подходяще отрегулированный запирающий клапан
12 Клапан для впуска компрессора
13 Дренажный клапан для жидкости из компрессора
14 Двигатель компрессора
15 Компрессор
16 Клапан для газа продувки к сепаратору жидкости
17 Клапан для газа продувки к сборнику жидкости
18 Впускная труба для влажного газа
19 Выпускная труба для влажного газа
20 Стопорный клапан для впуска
21 Стопорный клапан для выпуска
22 Вентиляционная труба
23 Выпускной клапан
24 Труба
25-25"' Дренажные клапаны для горизонтального компрессора
26 Дренажный клапан для двигателя горизонтального компрессора
30 Разделительная плита
31 Спускная труба для оборудования вторичной очистки, например, циклонов
32 Клапан
33 Выпуск от спускной трубы
34 Оборудование вторичной очистки

Необходимо отметить, что оборудование, включенное в таблицу 4, представляет собой только оборудование, которое необходимо, чтобы пояснить изобретение и его функцию. Для практической работы может иметься дополнительно ряд другого вспомогательного оборудования, такого как обратные клапана, датчики давления и температуры и т.д.

Должно быть отмечено, что, хотя иллюстрация изобретения дается в связи со сборником жидкости и сепаратором жидкости, которые соответствующим образом присоединены к компрессору и двигателю компрессора, когда они размещаются в общей оболочке под давлением, это никаким образом не предполагает ограничение настоящего изобретения. Таким образом, должно быть, легко понять, что изобретение применимо для любого технологического оборудования для газа, где включены сепаратор жидкости и связанный сборник жидкости. Если включенное технологическое оборудование, например, не способно подавать сжатый газ с достаточно высоким давлением, или по ряду причин нежелательно использовать такую подачу, сжатый газ может вместо этого идти от участка побережья или платформы, или из газовой трубы на дне моря, или газовой трубы потока скважины на дне моря и т.п.

В данном случае сепаратор 1 жидкости оборудуется непоказанным оборудованием вторичной очистки для захвата капель, например, мультициклонами, в отдельном сосуде, независимом от сборника 2 жидкости. Высота сепаратора жидкости в основном определяется практическими факторами, такими как, что должна иметься камера для впускного и опционального впускного оборудования для демпфирования скачков и предварительного отделения жидкости на впуске, и высота оборудования вторичной очистки плюс некоторое минимальное расстояние между впуском оборудования впуска и вторичной очистки. На практике общая высота выдерживается, например, в интервале 2,5-4 м.

Если оборудование вторичной очистки состоит из циклонов или подобного с относительно высоким перепадом давления, что требует спускной трубы 31, указанная спускная труба должна проходить от сепаратора 1 жидкости к сборнику 2 жидкости. Кроме того, выпуск 33 от спускной трубы 31 расположен так, что он находится всегда ниже нижнего уровня жидкости в сборнике жидкости, т.е. имеет погруженный выпуск. Указанный нижний уровень определяется датчиком 10 нижнего уровня.

Кроме того, сепаратор жидкости 1 должен иметь достаточный объем для собирания жидкости, т.е. среднее получаемое количество жидкости и любых порций жидкости, когда сборник 2 жидкости дренируется, а клапан 3 является закрытым. В процессе обычной работы сепаратор 1 жидкости является почти все время незаполненным, поскольку жидкость и любой песок стекают в сборник 2 жидкости как результат того, что клапан 3 между ними является открытым, а клапан 4 на дренажном конце сборника 2 жидкости является закрытым. Параметры объема сборника 2 жидкости определяются на основе практического равновесия между тем, чтобы иметь такой большой объем, который не должен дренироваться «все время», например, каждую минуту, и в то же время тем, чтобы не иметь такой большой объем с соответствующими размерами и высотой, который является непрактичным и нерегулируемым. В приведенном выше примере