Криогенная обработка газа

Иллюстрации

Показать все

Изобретение относится к области обработки углеводородов. Способ обработки пластового флюида, полученного в ходе реализации в подземном пласте процесса тепловой обработки in situ с получением потока жидкости и первого потока газа, включает криогенную обработку первого потока газа с целью получения второго потока газа и третьего потока. Третий поток криогенно контактирует с потоком углекислого газа с целью получения четвертого и пятого потоков. Большая часть второго потока газа содержит метан и/или молекулярный водород. Большая часть третьего потока содержит один или несколько оксидов углерода, углеводороды, углеродное число которых составляет по меньшей мере 2, одно или несколько соединений серы или их смеси. Большая часть четвертого потока содержит один или несколько оксидов углерода и углеводороды, углеродное число которых составляет по меньшей мере 2. Большая часть пятого потока содержит углеводороды, углеродное число которых составляет по меньшей мере 3 и одно или несколько соединений серы. Использование изобретения позволит повысить эффективность обработки пластовых флюидов. 3 н. и 12 з.п. ф-лы, 8 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение, в общем, касается способов и систем обработки газа. Более конкретно изобретение касается криогенной обработки газа, добываемого из различных подземных пластов, таких как пласты, содержащие углеводороды.

Уровень техники

Углеводороды, добываемые из подземных пластов, часто используются в качестве энергетических ресурсов, сырья и потребительских товаров. Озабоченность по поводу истощения углеводородных ресурсов и ухудшения общего качества добываемых углеводородов привела к разработке способов более эффективной добычи, обработки и/или использования доступных углеводородных ресурсов. Для извлечения углеводородных материалов из подземных пластов могут быть использованы процессы in situ. Для того чтобы легче извлекать углеводородный материал из подземного пласта может потребоваться изменить химические и/или физические свойства углеводородного материала. Изменения химических и физических свойств могут включать в себя реакции in situ, в результате которых получаются извлекаемые флюиды, происходят изменения состава, изменения растворяющей способности, изменения плотности, фазовые превращения и/или изменения вязкости углеводородного материала пласта. Флюид может представлять собой, но не ограничивается только этим, газ, жидкость, эмульсию, суспензию и/или поток твердых частиц, характеристики которого аналогичны характеристикам потока жидкости.

Пластовые флюиды, полученные из подземных пластов с использованием процесса тепловой обработки in situ, могут быть проданы и/или обработаны с целью получения товарных продуктов. Например, метан может быть получен из пласта, содержащего углеводороды, с использованием процесса тепловой обработки in situ. Метан может быть продан или использован в качестве топлива, или метан может быть продан или использован в качестве сырья для получения других химических веществ. Пластовые флюиды, добытые с использованием процесса тепловой обработки in situ, могут иметь различные свойства и/или составы по сравнению с пластовыми флюидами, полученными в ходе обычных процессов добычи. Пластовые флюиды, полученные из подземных пластов с использованием процесса тепловой обработки in situ, могут не соответствовать промышленным стандартам по транспортировке и/или коммерческому использованию. Пластовые флюиды могут быть разделены с использованием криогенных технологий, в ходе которых метан отделяют от пластовых флюидов с целью получения потока, содержащего углеводороды, углеродное число которых составляет по меньшей мере 2, и компоненты, содержащие серу.

В заявке на патент США №2008/0034789 (Fieler et al.) описан способ обработки углеводородов. В этой заявке первый поток углеводородов, содержащий метан и кислый газ, обрабатывают с целью извлечения части кислого газа, тем самым получают третий поток, содержащий извлеченный из первого потока кислый газ, и поток, включающий соединения, содержащие серу, в количестве менее 100 частиц на миллион. Третий поток может быть изолирован.

Поток, содержащий углеводороды и соединения серы, имеет энергетическую ценность, тем не менее, уровень серы и/или других нежелательных газов в этих потоках таков, что делает трудным и/или экономически нецелесообразным сепарацию таких потоков. Таким образом, существует потребность в улучшенных способах и системах обработки пластовых флюидов, полученных из различных пластов, содержащих углеводороды.

Краткое раскрытие изобретения

Описанные варианты осуществления изобретения, в общем, относятся к системам и способам обработки пластовых флюидов, полученных из подземного пласта.

В этом изобретении предложен способ обработки потока газа, включающий следующее: в первой криогенной зоне осуществляют криогенную сепарацию первого потока газа с целью получения второго потока газа и третьего потока, при этом большая часть второго потока газа содержит метан и/или молекулярный водород, а большая часть третьего потока содержит один или несколько оксидов углерода, углеводороды, углеродное число которых составляет, по меньшей мере, 2, одно или несколько соединений серы или их смеси; и во второй криогенной зоне, третий поток криогенно контактирует с потоком углекислого газа с целью получения четвертого и пятого потоков, при этом большая часть четвертого потока содержит один или несколько оксидов углерода и углеводороды, углеродное число которых составляет по меньшей мере 2, а большая часть пятого потока содержит углеводороды, углеродное число которых составляет по меньшей мере 3 и одно или несколько соединений серы.

В изобретении предложена система обработки потока газа, содержащая: первую зону криогенной сепарации, предназначенную для приема первого потока газа и для криогенной сепарации первого потока газа с целью получения второго потока газа и третьего потока газа, при этом второй поток газа содержит метай и/или молекулярный водород, а третий поток газа содержит один или несколько оксидов углерода, углеводороды, углеродное число которых составляет по меньшей мере 2, одно или несколько соединений серы или их смеси; вторую зону криогенной сепарации, предназначенную для приема третьего потока газа и углекислого газа, при этом второй блок криогенной сепарации предназначен для осуществления криогенной сепарации третьего потока газа с целью получения четвертого и пятого потоков, при этом большая часть четвертого потока содержит один или несколько оксидов углерода и углеводороды, углеродное число которых составляет, по меньшей мере, 2, а большая часть пятого потока содержит углеводороды, углеродное число которых составляет, по меньшей мере, 3 и одно или несколько соединений серы.

В изобретении предложен способ обработки пластового флюида, включающий следующее: осуществляют сепарацию пластового флюида, полученного в ходе реализации в подземном пласте процесса тепловой обработки in situ, что делают с целью получения потока жидкости и первого потока газа, при этом первый поток газа содержит один или несколько оксидов углерода, одно или несколько соединений серы, углеводороды и/или молекулярный водород; в первой криогенной зоне осуществляют криогенную сепарацию первого потока газа с целью получения второго потока газа и третьего потока, при этом большая часть второго потока газа содержит метан и/или молекулярный водород, а третий поток содержит углеводороды, углеродное число которых составляет, по меньшей мере, 2, одно или несколько соединений серы, один или несколько оксидов углерода или их смеси; и во второй криогенной зоне, осуществляют криогенную сепарацию третьего потока газа с целью получения четвертого и пятого потоков, при этом большая часть четвертого потока содержит один или несколько оксидов углерода и углеводороды, углеродное число которых составляет, самое большее, 2, а большая часть пятого потока содержит углеводороды, углеродное число которых составляет по меньшей мере 3 и одно или несколько соединений серы.

В других вариантах осуществления изобретения признаки конкретных вариантов осуществления изобретения могут быть объединены с признаками других вариантов осуществления изобретения. Например, признаки одного варианта осуществления изобретения могут быть объединены с признаками любого другого варианта осуществления изобретения.

В других вариантах осуществления изобретения обработка подземного пласта осуществляется с использованием любых описанных здесь способов и/или систем.

В других вариантах осуществления изобретения к описанным конкретным вариантам осуществления изобретения могут быть добавлены дополнительные признаки.

Краткое описание чертежей

Достоинства настоящего изобретения будут ясны специалистам в рассматриваемой области из подробного описания, содержащего ссылки на приложенные чертежи, на которых:

фиг.1 - схематический вид варианта осуществления части системы тепловой обработки in situ, предназначенной для обработки пласта, содержащего углеводороды;

фиг.2 - вид, схематически показывающий вариант осуществления системы обработки смеси, полученной в ходе процесса тепловой обработки in situ;

фиг.3 - вид, схематически показывающий вариант осуществления системы, предназначенной для обработки газа, полученного в ходе процесса тепловой обработки in situ;

фиг.4 - вид, схематически показывающий вариант осуществления системы, предназначенной для обработки газа, полученного в ходе процесса тепловой обработки in situ;

фиг.5 - вид, схематически показывающий вариант осуществления системы, предназначенной для обработки газа, полученного в ходе процесса тепловой обработки in situ;

фиг.6 - вид, схематически показывающий вариант осуществления системы, предназначенной для обработки газа, полученного в ходе процесса тепловой обработки in situ;

фиг.7 - вид, схематически показывающий вариант осуществления системы, предназначенной для обработки газа, полученного в ходе процесса тепловой обработки in situ;

фиг.8 - вид, схематически показывающий вариант осуществления системы, предназначенной для получения топлива для внутрискважинных устройств окисления.

Хотя изобретение не исключает различные модификации и альтернативные формы, далее для примера на чертежах показаны и подробно описаны конкретные варианты осуществления изобретения. Чертежи могут быть выполнены не в масштабе. Тем не менее, необходимо понимать, что чертежи и подробное описание не ограничивают изобретение конкретной описанной формой, а, наоборот, изобретение подразумевает все модификации, эквиваленты и альтернативы, не выходящие за рамки объема настоящего изобретения, который определен в прилагаемой формуле изобретения.

Подробное раскрытие изобретения

Последующее описание, в общем, относится к системам и способам обработки углеводородов в пластах. Такие пласты обрабатывают с целью добычи углеводородных продуктов, водорода и других продуктов.

Под «плотностью в градусах АНИ» понимается плотность в градусах АНИ (Американский нефтяной институт) при 15,5°C (60°F). Плотность в градусах АНИ определяют согласно способу ASTM D6822 или способу ASTM D1298.

Под «ASTM» понимается Американское общество по испытанию материалов.

«Конденсирующиеся углеводороды» - это углеводороды, которые конденсируются при температуре 25°C и давлении, равном одной атмосфере абсолютного давления. Конденсирующиеся углеводороды могут содержать смесь углеводородов, углеродное число которых больше 4. «Неконденсирующиеся углеводороды» - это углеводороды, которые не конденсируются при температуре 25°C и давлении, равном одной атмосфере абсолютного давления. Неконденсирующиеся углеводороды могут содержать углеводороды, углеродное число которых меньше 5.

«Обогащенным воздухом» называется воздух, молярная доля кислорода в котором больше, чем в атмосферном воздухе. Воздух обычно обогащают с целью увеличения его способности поддерживать горение.

«Пласт» включает в себя один или несколько слоев, содержащих углеводороды, один или несколько неуглеводородных слоев, покрывающий слой и/или подстилающий слой. «Углеводородными слоями» называются слои пласта, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородные материалы и углеводородные материалы. «Покрывающий слой» и/или «подстилающий слой» содержат один или несколько различных типов непроницаемых материалов. Например, покрывающий и/или подстилающий слои могут представлять собой скалу, сланцевую глину, алевритоглинистую породу или плотную карбонатную горную породу, не пропускающую влагу. В некоторых вариантах осуществления процессов тепловой обработки in situ, покрывающий и/или подстилающий слои могут включать содержащий углеводороды слой или содержащие углеводороды слои, которые сравнительно непроницаемы и не подвергаются воздействию температур в процессе тепловой обработки in situ, в результате которой характеристики содержащих углеводороды слоев покрывающего и/или подстилающего слоев значительно изменяются. Например, подстилающий слой может содержать сланцевую глину или алевритоглинистую породу, но при осуществлении процесса тепловой обработки in situ подстилающий слой не нагревают до температуры пиролиза. В некоторых случаях покрывающий слой и/или подстилающий слои могут быть до некоторой степени проницаемыми.

«Пластовыми флюидами» называются флюиды, присутствующие в пласте, и они могут содержать флюид, полученный в результате пиролиза, синтез-газ, подвижные углеводороды и воду (пар). Пластовые флюиды могут содержать углеводородные флюиды, а также неуглеводородные флюиды. Под «подвижными флюидами» понимают флюиды пласта, содержащего углеводороды, которые способны течь в результате тепловой обработки пласта. «Добытыми флюидами» называются флюиды, извлеченные из пласта.

«Источник тепла» представляет собой любую систему, подводящую теплоту, по меньшей мере, к части пласта, теплота передается в основном в результате кондуктивного и/или радиационного теплообмена. Например, источник тепла может содержать электрические нагреватели, такие как изолированный проводник, длинномерный элемент и/или проводник, расположенный в трубе. Также источник тепла может содержать системы, вырабатывающие теплоту в результате горения топлива вне пласта или в нем. Эти системы могут быть горелками, расположенными на поверхности, забойными газовыми горелками, беспламенными распределенными камерами сгорания и природными распределенными камерами сгорания. В некоторых вариантах осуществления изобретения теплота, подведенная к одному или нескольким источникам тепла или выработанная в них, может подводиться от других источников энергии. Другие источники энергии могут непосредственно нагревать пласт или энергия может сообщаться передающей среде, которая непосредственно или косвенно нагревает пласт. Ясно, что один или несколько источников тепла, которые передают теплоту пласту, могут использовать различные источники энергии. Таким образом, например, для заданного пласта некоторые источники тепла могут подводить теплоту от резистивных нагревателей, некоторые источники тепла могут обеспечивать нагревание благодаря камере сгорания, а другие источники тепла могут подводить теплоту из одного или нескольких источников энергии (например, энергия от химических реакций, солнечная энергия, энергия ветра, биомасса или другие источники возобновляемой энергии). Химическая реакция может включать в себя экзотермические реакции (например, реакцию окисления). Также источник тепла может включать в себя нагреватель, который подводит теплоту в зону, расположенную рядом с нагреваемым местом, таким как нагревательная скважина, и/или окружающую это место.

«Нагреватель» - это любая система или источник тепла, предназначенный для выработки теплоты в скважине или рядом со стволом скважины. К нагревателям относят, помимо прочего, электрические нагреватели, горелки, камеры сгорания, в которых в реакцию вступает материал пласта или материал, добытый из пласта, и/или их комбинации.

«Тяжелые углеводороды» представляют собой вязкие углеводородные флюиды. К тяжелым углеводородам могут относиться вязкие углеводородные флюиды такие, как тяжелая нефть, битум и/или асфальтовый битум. Тяжелые углеводороды могут содержать углерод и водород, а также еще более маленькие концентрации серы, кислорода и азота. Также в тяжелых углеводородах могут присутствовать дополнительные элементы в следовых количествах. Тяжелые углеводороды можно классифицировать по плотности в градусах АНИ. В общем, плотность тяжелых углеводородов в градусах АНИ составляет менее примерно 20°. Например, плотность тяжелой нефти в градусах АНИ составляет 10-20°, а плотность битума в градусах АНИ в целом составляет менее примерно 10°. Вязкость тяжелых углеводородов в целом составляет более примерно 100 сантипуаз при 15°C. Тяжелые углеводороды могут содержать ароматические или другие сложные циклические углеводороды.

Тяжелые углеводороды могут быть найдены в сравнительно проницаемом пласте. Сравнительно проницаемый пласт может содержать тяжелые углеводороды, расположенные, например, в песке или карбонатных горных породах. По отношению к пластам или их частям термин «сравнительно проницаемый» означает, что средняя проницаемость составляет от 10 мдарси или более (например, 10 или 100 мдарси). По отношению к пластам или их частям термин «сравнительно малопроницаемый» означает, что средняя проницаемость составляет менее примерно 10 мдарси. 1 дарси равен примерно 0,99 квадратного микрометра. Проницаемость непроницаемого слоя, в общем, составляет менее примерно 0,1 мдарси.

Некоторые типы пластов, содержащих тяжелые углеводороды, также могут содержать, помимо прочего, природные минеральные воски или природные асфальтиты. Обычно «природные минеральные воски» расположены, по существу, в цилиндрических жилах, ширина которых составляет несколько метров, длина равна нескольким километрам, а глубина составляет сотни метров. К «природным асфальтитам» относятся твердые углеводороды ароматического состава, и они обычно расположены в больших жилах. Добыча in situ из пластов углеводородов, таких как природные минеральные воски и природные асфальтиты, может включать в себя расплавление с целью получения жидких углеводородов и/или с целью добычи растворением углеводородов из пластов.

Под «углеводородами» обычно понимают молекулы, образованные в основном атомами углерода и водорода. Углеводороды также могут содержать другие элементы, такие как, например, галогены, металлические элементы, азот, кислород и/или серу. Углеводородами являются, например, кероген, битум, пиробитум, масла, природные минеральные воски и асфальтиты и др. Углеводороды могут располагаться в природных вмещающих породах в земле или рядом с ними. Вмещающими породами, помимо прочего, являются осадочные горные породы, пески, силицилиты, карбонатные горные породы, диатомиты и другие пористые среды. «Углеводородные флюиды» - это флюиды, содержащие углеводороды. Углеводородные флюиды могут содержать, увлекать с собой или быть увлеченными неуглеводородными флюидами, такими как водород, азот, оксид углерода, диоксид углерода, сероводород, вода и аммиак.

Под «процессом переработки in situ» понимается процесс нагревания пласта, содержащего углеводород, от источников тепла, при этом указанный процесс направлен на повышение температуры, по меньшей мере, части пласта, выше температуры пиролиза, с целью получения в пласте флюида, являющегося результатом пиролиза.

Под «процессом тепловой обработки in situ» понимается процесс нагревания пласта, содержащего углеводороды, с помощью источников тепла, направленный на повышение температуры, по меньшей мере, части пласта выше температуры, при которой получается подвижный флюид, происходит легкий крекинг и/или пиролиз материала, содержащего углеводороды, так что в пласте вырабатываются подвижные флюиды, флюиды, являющиеся результатом легкого крекинга, и/или флюиды, являющиеся результатом пиролиза.

«Органической серой» называются углеводороды, содержащую серу. Примерами сероорганических соединений являются, помимо прочего, тиофен, тиолы, меркаптаны или их смеси.

«Пиролизом» называется разрушение химических связей, происходящее из-за подвода тепла. Например, пиролиз может включать в себя превращение соединения в одно или несколько других веществ с помощью только тепла. Чтобы вызвать пиролиз, к участку пласта может подводиться тепло.

«Флюидами, являющимися результатом пиролиза» или «продуктами пиролиза» называются флюиды, полученные, по существу, во время процесса пиролиза углеводородов. Флюид, полученный в результате реакций пиролиза, может смешиваться в пласте с другими флюидами. Эта смесь будет считаться флюидом, являющимся результатом пиролиза или продуктом пиролиза. Здесь под «зоной пиролиза» понимается объем пласта (например, сравнительно проницаемого пласта, такого как пласт битуминозных песков), в котором происходит или происходила реакция, направленная на образование флюида, являющегося результатом пиролиза.

«Наложением тепла» называется подвод тепла из двух или нескольких источников тепла в выбранный участок пласта, так что источники тепла влияют на температуру пласта, по меньшей мере, в одном месте между источниками тепла.

«Битум» - это вязкий углеводород, вязкость которого обычно больше примерно 10000 сантипуаз (10 Па·с) при температуре 15°C. Относительная плотность битума обычно превышает 1,000. Плотность битума в градусах АНИ может быть меньше 10°.

«Пласт битуминозных песков» - это пласт, в котором углеводороды преимущественно являются тяжелыми углеводородами и/или битумом, захваченными в минеральной зернистой структуре или другой вмещающей породе (например, песке или карбонатной горной породе). Примерами пластов битуминозных песков являются пласт Athabasca, пласт Grosmont и пласт Peace River, все три указанных пласта находятся в Канаде, провинция Альберта, и пласт Faja, который находится в поясе Ориноко в Венесуэле.

«Толщиной» слоев называется толщина поперечного разреза слоя, при этом плоскость сечения перпендикулярна поверхности слоя.

Под «обогащением» понимают улучшение качества углеводородов. Например, обогащение тяжелых углеводородов может приводить к увеличению плотности в градусах АНИ тяжелых углеводородов.

Под «легким крекингом» понимают распутывание молекул флюида при тепловой обработке и/или разрушение больших молекул на более мелкие молекулы при тепловой обработке, что приводит к уменьшению вязкости флюида.

Если не оговорено другое, то под «вязкостью» понимают кинематическую вязкость при 40°C. Вязкость определяют согласно способу ASTM D445.

Под термином «ствол скважины» понимается отверстие в пласте, изготовленное бурением или введением трубы в пласт. Поперечное сечение ствола скважины может быть, по существу, круглым или каким-либо другим. Здесь термины «скважина» и «отверстие», когда говорится об отверстии в пласте, могут быть использованы взаимозаменяемо с термином «ствол скважины».

С целью добычи многих различных продуктов, углеводороды в пласте могут быть обработаны разными способами. Для обработки пласта в ходе процесса тепловой обработки in situ могут быть использованы различные этапы или процессы. В некоторых вариантах осуществления изобретения добыча из одного или нескольких участков пласта ведется с помощью растворения, что делается для извлечения из участков растворимых неорганических веществ. Добыча растворением неорганических веществ может быть осуществлена до процесса тепловой обработки in situ, во время этого процесса и/или после этого процесса. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков, участвующих в добыче растворением, может поддерживаться на уровне, меньшем примерно 120°C.

В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают с целью извлечения из участков воды и/или метана и других летучих углеводородов. В некоторых вариантах осуществления изобретения при извлечении воды и летучих углеводородов средняя температура может быть повышена от температуры окружающей среды до температур, меньших примерно 220°C.

В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур придания подвижности и/или легкого крекинга углеводородов в пласте. В некоторых вариантах осуществления изобретения среднюю температуру одного или нескольких участков пласта поднимают до температур придания углеводородам подвижности в пласте (например, до температур, находящихся в диапазоне от 100°C до 250°C, от 120°C до 240°C или от 150°C до 230°C).

В некоторых вариантах осуществления изобретения один или несколько участков пласта нагревают до температур проведения в пласте реакций пиролиза. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть поднята до температур проведения пиролиза углеводородов в пласте (например, до температур, находящихся в диапазоне от 230°C до 900°C, от 240°C до 400°C или от 250°C до 350°C).

Нагревание пласта, содержащего углеводороды, несколькими источниками тепла может установить температурный градиент вокруг источников тепла, которые повышают температуру углеводородов в пласте до желательных температур с желательными скоростями нагревания. Скорость повышения температуры в диапазоне температур придания подвижности и/или диапазоне температур проведения пиролиза для нужных продуктов может влиять на количество и качество пластовых флюидов, которые добывают из пласта, содержащего углеводороды. Медленное увеличение температуры пласта в диапазоне температур придания подвижности и/или диапазоне температур проведения пиролиза может позволить добывать из пласта высококачественные углеводороды, с высокой плотностью в градусах АНИ. Медленное увеличение температуры пласта в диапазоне температур придания подвижности и/или диапазоне температур проведения пиролиза может позволить извлекать большое количество углеводородов, присутствующих в пласте, в качестве углеводородного продукта.

В некоторых вариантах осуществления тепловой обработки in situ, вместо того, чтобы медленно нагревать в некотором диапазоне температур, до нужной температуры нагревают часть пласта. В некоторых вариантах осуществления изобретения нужная температура составляет 300°C, 325°C или 350°C. В качестве нужной температуры может быть выбрано другое значение температуры.

Наложение тепла от источников тепла позволяет сравнительно быстро и эффективно установить в пласте нужную температуру. Можно регулировать подвод энергии в пласт от источников тепла с целью поддержания, по существу, нужного значения температуры в пласте.

Продукты, полученные в результате придания подвижности и/или проведения пиролиза, могут быть добыты из пласта через добывающие скважины. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть поднята до температур придания углеводородам подвижности, и углеводороды добывают через добывающие скважины. Средняя температура одного или нескольких участков пласта может быть повышена до температур осуществления пиролиза после того, как добыча, осуществляемая благодаря приданию углеводородам подвижности, уменьшится ниже заданного значения. В некоторых вариантах осуществления изобретения средняя температура одного или нескольких участков пласта может быть поднята до температур осуществления пиролиза без проведения существенной добычи углеводородов до достижения температур осуществления пиролиза. Пластовые флюиды, в том числе продукты пиролиза, могут быть добыты через добывающие скважины.

В некоторых вариантах осуществления изобретения после придания подвижности и/или осуществления пиролиза средняя температура одного или нескольких участков пласта может быть поднята до температур, достаточных для получения синтез-газа. В некоторых вариантах осуществления изобретения температура углеводородов может быть поднята до значений, достаточных для получения синтез-газа, без проведения существенной добычи углеводородов до достижения температур, достаточных для получения синтез-газа. Например, синтез-газ может быть получен в диапазоне температур примерно от 400°C до примерно 1200°C, примерно от 500°C до примерно 1100°C или примерно от 550°C до примерно 1000°C. Флюид для получения синтез-газа (например, пар и/или вода) может быть введен в участки с целью получения синтез-газа. Синтез-газ можно добывать из пласта через добывающие скважины.

Добыча растворением, извлечение летучих углеводородов и воды, придание подвижности углеводородам, проведение пиролиза углеводородов, получение синтез-газа и/или другие процессы могут быть осуществлены в ходе процесса тепловой обработки in situ. В некоторых вариантах осуществления изобретения некоторые процессы могут быть осуществлены после процесса тепловой обработки in situ. Такие процессы, помимо прочего, включают в себя рекуперирование тепла из обработанных участков, хранение флюидов (например, воды и/или углеводородов) в ранее обработанных участках и/или изолирование углекислого газа в ранее обработанных участках.

На фиг.1 показан схематический вид варианта осуществления части системы тепловой обработки in situ, предназначенной для обработки содержащего углеводороды пласта. Система тепловой обработки in situ может содержать барьерные скважины 200. Барьерные скважины используют для образования барьера вокруг обрабатываемой области. Барьер препятствует течению флюида в обрабатываемую область и/или из нее. Барьерные скважины включают, но не ограничиваются только этим, водопонижающие скважины, скважины создания разряжения, коллекторные скважины, нагнетательные скважины, скважины для заливки раствора, замораживающие скважины или их комбинации. В некоторых вариантах осуществления изобретения барьерные скважины 200 представляют собой водопонижающие скважины. Водопонижающие скважины могут удалять жидкую воду и/или препятствовать проникновению жидкой воды в часть пласта, которую будут нагревать, или в нагреваемый пласт. В варианте осуществление изобретения с фиг.1 показаны барьерные скважины 200, расположенные только вдоль одной стороны источников 202 тепла, но барьерные скважины могут окружать все источники 202 тепла, используемые или планируемые к использованию для нагревания обрабатываемой области пласта.

Источники 202 тепла расположены, по меньшей мере, в части пласта. Источники 202 тепла могут представлять собой нагреватели, такие как изолированные проводники, нагревательные устройства с проводником в трубе, горелки, расположенные на поверхности, беспламенные распределенные камеры сгорания и/или природные распределенные камеры сгорания. Источники 202 тепла могут также представлять собой нагреватели других типов. Источники 202 тепла подводят теплоту, по меньшей мере, в часть пласта с целью нагревания углеводородов в пласте. Энергия может подаваться к источнику 202 тепла по линиям 204 питания. Линии 204 питания могут конструктивно различаться в зависимости от типа источника тепла или источников тепла, используемых для нагревания пласта. Линии 204 питания для источников тепла могут передавать электричество для электрических нагревателей, могут транспортировать топливо для камер сгорания или могут перемещать жидкий теплоноситель, циркулирующий в пласте. В некоторых вариантах осуществления изобретения электричество для процесса тепловой обработки in situ может поставляться атомной электростанцией или атомными электростанциями. Использование атомной энергии может позволить уменьшить или полностью исключить выбросы диоксида углерода в ходе процесса тепловой обработки in situ.

Добывающие скважины 206 используются для извлечения пластового флюида из пласта. В некоторых вариантах осуществления изобретения добывающая скважина 206 может содержать источник тепла. Источник тепла, расположенный в добывающей скважине, может нагревать одну или несколько частей пласта у добывающей скважины или рядом с ней. В некоторых вариантах осуществления процесса тепловой обработки in situ количество теплоты, подводимое в пласт от добывающей скважины, на метр добывающей скважины меньше количества теплоты, подводимого в пласт от источника тепла, который нагревает пласт, на метр источника тепла.

В некоторых вариантах осуществления изобретения источник тепла в добывающей скважине 206 позволяет извлекать из пласта паровую фазу пластовых флюидов. Подвод теплоты к добывающей скважине или через добывающую скважину может: (1) препятствовать конденсации и/или обратному потоку добываемого флюида, когда такой добываемый флюид перемещается в добывающей скважине близко к покрывающему слою, (2) увеличить подвод теплоты в пласт, (3) увеличить темп добычи для добывающей скважины по сравнению с добывающей скважиной без источника тепла, (4) препятствовать конденсации соединений с большим количеством атомов углерода (С6 и больше) в добывающей скважине и/или (5) увеличить проницаемость пласта у добывающей скважины или рядом с ней.

Подземное давление в пласте может соответствовать давлению флюида в пласте. Когда температура в нагретой части пласта увеличивается, то давление в нагретой части может увеличиваться в результате теплового расширения флюидов, увеличенного получения флюидов и испарения воды. Управление скоростью извлечения флюидов из пласта может позволить управлять давлением в пласте. Давление в пласте может быть определено в нескольких различных местах, например, рядом с добывающими скважинами или у них, рядом с источниками тепла или у них или у контрольных скважин.

В некоторых содержащих углеводороды пластах добыча углеводородов из пласта сдерживается до тех пор, пока, по меньшей мере, некоторое количество углеводородов пласта не стало подвижным и/или не подверглось пиролизу. Пластовый флюид можно добывать из пласта тогда, когда качество пластового флюида соответствует выбранному уровню. В некоторых вариантах осуществления изобретения выбранный уровень качества представляет собой плотность в градусах АНИ, которая составляет, по меньшей мере, примерно 15°, 20°, 25°, 30° или 40°. Запрет на добычу до тех пор, пока, по меньшей мере, часть углеводородов не стала подвижной и/или не подверглась пиролизу, может увеличить переработку тяжелых углеводородов в легкие углеводороды. Запрет на добычу в начале может минимизировать добычу тяжелых углеводородов из пласта. Добыча значительных объемов тяжелых углеводородов может потребовать дорогого оборудования и/или уменьшения срока эксплуатации производственного оборудования.

После достижения температур придания подвижности или температур осуществления пиролиза и разрешения добычи из пласта, давление в пласте можно изменять с целью изменения и/или управления составом добываемых пластовых флюидов, с целью регулирования процента конденсирующегося флюида относительно неконденсирующегося флюида в пластовом флюиде и/или с целью регулирования плотности в градусах АНИ добываемого пластового флюида. Например, уменьшение давления может привести к добыче большей доли конденсирующегося компонента флюидов. Конденсирующийся компонент флюидов может содержать больший процент олефинов.

В некоторых вариантах осуществления процесса тепловой обработки in situ давление в пласте может поддерживаться достаточно высоким для содействия добыче пластового флюида с плотностью более 20° в градусах АНИ. Поддержание повышенного давления в пласте может препятствовать оседанию пласта во время тепловой обработки in situ. Поддержание повышенного давления может уменьшить или исключить необходимость сжатия пластовых флюидов на поверхности с целью транспортировки флюидов по трубам до установок обработки.

Как ни удивительно, но поддержание повышенного давления в нагретой части пласта может позволить добывать большие количества углеводородов улучшенного качества и со сравнительно малой молекулярной массой. Давление может поддерживаться таким, что добытый пластовый флюид содержит минимальное количество соединений, в которых углеродное число превышает выбранное углеродное число. Выбранное углеродное число может составлять самое большее 25, самое больше 20, самое большее 12 или самое большее 8. Некоторые соединения с большим углеродным числом могут быть в пласте захвачены паром и могут быть извлечены из пласта с паром. Поддержание повышенного давления в пласте может препятствовать захвату паром соединений с большим углеродным числом и/или полициклических углеводородных соединений. Соединения с большим углеродным числом и/или полициклические углеводородные соединения могут оставаться в пласте в жидкой фазе в течение значительных периодов времени. Эти значительные периоды времени могут предоставлять достаточное количество времени для пиролиза соединений с целью получения соединений с меньшим углеродным числом.

Пластовый флюид, извлекаемый из добывающих скважин 206, может быть перекачен по к