Пластмассовая пленка, имеющая функцию поглощения кислорода, и пакет для инфузий
Иллюстрации
Показать всеИзобретение относится области химико-фармацевтической промышленности, в частности к пластмассовой пленке для медицинских контейнеров, имеющей функцию поглощения кислорода, включающей по меньшей мере 4 слоя. Пленку получают способом соэкструзии. Также изобретение относится к пакету для инфузий, изготовленному из упомянутой пленки. Пленка включает: первый слой (1), состоящий из полиамида; второй слой (2) смешанного состава, который прилегает к первому слою и содержит сополимер этилена и винилового спирта и сополимер α-олефина и ангидрида ненасыщенной карбоновой кислоты или мономера ненасыщенной дикарбоновой кислоты в качестве основного компонента и соль переходного металла и полимер на основе полиена, содержащего ненасыщенную двойную связь, в качестве вспомогательных компонентов; третий слой (3), который прилегает ко второму слою и содержит сополимер α-олефина и мономера ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты в качестве основного компонента; и герметизирующий слой (4), содержащий полиэтилен в качестве основного компонента. 3 н. и 12 з.п. ф-лы, 1 пр., 5 ил., 1 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к пластмассовой пленке, имеющей функцию поглощения кислорода, используемой для медицинских контейнеров, и к пакету для инфузий с использованием указанной пластмассовой пленки.
Испрашивается приоритет японской патентной заявки № 2009-251627, поданной 02 ноября 2009 г., содержание которой включено в настоящий документ посредством ссылки.
Уровень техники
В качестве медицинских контейнеров, таких как пакеты для инфузий, растворов сред, энтерального питания, и т.п., используют мягкие пакеты, которые состоят из полиэтилена, полипропилена, поливинилхлорида и т.п., превращаемого в пакет пневмоформованием или термосвариванием, в дополнение к стеклянным флаконам предшествующего уровня техники. Поскольку такие мягкие пакеты имеют малую массу, малый объем при хранении и даже не требуют вентиляционных игл, которые вызывают внутрибольничную инфекцию, возникающую во время использования, мягкие пакеты представляют собой преобладающую тенденцию.
Пленку, используемую в мягких пакетах предшествующего уровня техники, получают из полиолефинового материала, включая полиэтилен, полипропилен и т.п., чтобы уменьшить количество элюируемых материалов при обработке паром в автоклаве и сохранить прозрачность и гибкость.
Однако скорость переноса кислорода в полиолефиновом материале является высокой. Таким образом, чтобы предотвратить ухудшение качества медицинского раствора, вызываемое поступлением газообразного кислорода из окружающей среды, в патентном документе 1 и т.п. предложено упаковывать мягкий пакет во внешний упаковочный материал, обладающий высокой кислородонепроницаемостью. Примеры такого внешнего упаковочного материала представляют собой материалы, включающие слой, состоящий из металлической фольги, неорганической пленки, осажденной из паровой фазы, и т.п.
Однако растворы для аминокислотных инфузий, жировых инфузий и т.п. смешиваются с воздухом во время растворения, перемешивания, суспендирования, встряхивания, перекачивания в процессе приготовления и наполнения, в результате чего воздух остается в таких медицинских растворах в виде растворенного кислорода. Концентрация растворенного кислорода составляет от 3 до 50 м.д., и известно, что растворенный кислород вызывает окислительное разложение медицинского раствора. Скорость реакции окислительного разложения логарифмически увеличивается с ростом температуры. Другими словами, окислительное разложение резко ускоряется при обработке паром в автоклаве. Чтобы предотвратить это, предложен способ добавления или ламинирования восстановителя внутрь внешней упаковки пакета для инфузий с заполнением инертным газом внешней упаковки пакета для инфузий. Заполнение пакета для инфузий медицинским раствором, который вытесняет инертный газ, или добавление антиоксидантов в медицинский раствор предложено в качестве изобретения в патентных документах 2 и 3 и т.п. и практически осуществлено. Добавление и ламинирование восстановителя и заполнение инертным газом эффективно подавляют окислительное разложение, но существуют проблемы в том, что при неправильном использовании возникают повреждения или проколы внешней упаковки, которая обладает защитным свойством. Кроме того, поскольку в способе сухого ламинирования, в котором используется органический растворитель в качестве среды, согласно предшествующему уровню техники, проблема состоит в том, что не только элюируется материал в количестве, которое не является пренебрежимо малым, несмотря даже на то, что данное количество соответствует стандартному испытанию на элюирование, предусмотренному в японской фармакопее, но также при ламинировании инородные вещества внедряются в межфазную поверхность, которая открывается в процессе ламинирования. Кроме того, к примерам антиоксидантов, добавляемых в медицинский раствор, относятся витамин C (аскорбиновая кислота), витамин E (токоферол), BHT (дибутилгидрокситолуол), BHA (бутилгидроксианизол), эриторбат натрия, сульфит натрия, диоксид серы, экстракт кофейных бобов (хлорогеновая кислота), экстракт зеленого чая (катехин), экстракт розмарина и т.п., но среди них содержащий сульфит-ионы материал широко используют в качестве добавки вследствие его высокой противоокислительной активности. Однако для организма человека этот материал не является благоприятным, поскольку он может вызывать анафилактический шок и т.п.
Учитывая вышеописанный предшествующий уровень техники, предложены следующее изобретения, которые придают кислородонепроницаемость или функцию поглощения кислорода самому контейнеру, который вступает в непосредственный контакт с медицинским раствором.
В патентном документе 4 предложена пятислойная структура, которую получают, изготавливая «полиамидный, сложнополиэфирный или полиолефиновый слой», «промежуточный слой», «центральный слой сополимера этилена и винилового спирта», «промежуточный слой» и «полиолефиновый контактирующий с раствором слой», расположенные в пленке в таком порядке, начиная снаружи, способом соэкструзионного литья. Описанная в публикации структура обладает превосходной кислородонепроницаемостью, но она сама не способна поглощать кислород. Кроме того, поскольку при изготовлении пленки в виде рулона посредством литья контактирующая с раствором сторона оказывается открытой наружу в процессе изготовления мягкого пакета, было необходимо предпринимать меры по противодействию внедрению инородных веществ в пакет.
В патентном документе 5 предложена многослойная структура, получаемая путем изготовления пленки, содержащей, по меньшей мере, «кислородонепроницаемый слой, состоящий из сополимера этилена и винилового спирта», «кислородопоглощающий газонепроницаемый слой a», «кислородопоглощающий газонепроницаемый слой b», и «термосваренный полимерный слой» расположенные в пленке в таком порядке, начиная снаружи, способом соэкструзии. Описанная в публикации структура обладает превосходной кислородонепроницаемостью и способностью поглощать кислород при температуре окружающей среды. Но сополимер этилена и винилового спирта в наиболее внешнем слое обладает неудовлетворительной влагонепроницаемостью и не является благоприятным, потому что белеет, когда медицинский контейнер подвергают гидротермической обработке, такой как обработка паром в автоклаве.
Документы предшествующего уровня техники
Патентный документ
[Патентный документ 1] Японская патентная заявка, первая публикация № 2005-280749
[Патентный документ 2] Японская патентная заявка, первая публикация № 2009-154924
[Патентный документ 3] Японская патентная заявка, первая публикация № 2008-37065
[Патентный документ 4] Японская патентная заявка, первая публикация № 2009-22753
[Патентный документ 5] Японская патентная заявка, первая публикация № 2007-283565
Сущность изобретения
Проблема, решаемая изобретением
Как описано выше, упаковка, которая предотвращает окислительное разложение медицинского раствора, вызываемое кислородом, на предшествующем уровне техники имеет ряд проблем. Примеры таких проблем представляют собой повреждения и проколы внешней упаковки, элюирование связующих на основе органического растворителя в результате ее использования, анафилактический шок, вызываемый антиоксидантами, добавляемыми в медицинский раствор, окислительное разложение, вызываемое растворенным кислородом, внедрение инородных веществ, недостаточная влагонепроницаемость и беление во время обработки паром в автоклаве.
Средства решения проблемы
Для достижения вышеуказанной цели в настоящем изобретении использованы следующие средства. Другими словами:
(1) Настоящее изобретение представляет собой пластмассовую пленку, используемую для медицинского контейнера, которая состоит, по меньшей мере, из четырех слоев, полученных способом соэкструзии при раздувании с водяным охлаждением, и имеет функцию поглощения кислорода. Пластмассовая пленка включает: первый слой, который содержит полиамид, полученный полимеризацией с раскрытием цикла лактама, содержащего 11 или более атомов углерода, или поликонденсацией ω-аминокислоты, содержащей 11 или более атомов углерода, или полиамид, полученный сополиконденсацией дикарбоновой кислоты, содержащей 10 или более атомов углерода, и диамина, содержащего 6 или более атомов углерода; второй слой, который прилегает к первому слою и содержит в качестве основного компонента сополимер этилена и винилового спирта и в качестве вспомогательных компонентов соль переходного металла и полимер на основе полиена, содержащего ненасыщенную двойную связь; третий слой, который содержит сополимер α-олефина и мономера ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты в качестве основного компонента; и герметизирующий слой, который содержит полиэтилен в качестве основного компонента.
(2) В качестве альтернативы, настоящее изобретение представляет собой пластмассовую пленку, используемую для медицинского контейнера, которая состоит, по меньшей мере, из пяти слоев, полученных способом соэкструзии при раздувании с водяным охлаждением, и имеет функцию поглощения кислорода. Пластмассовая пленка включает: первый слой, который содержит полиамид, полученный полимеризацией с раскрытием цикла лактама, содержащего 11 или более атомов углерода, или поликонденсацией ω-аминокислоты, содержащей 11 или более атомов углерода, или полиамид, полученный сополиконденсацией дикарбоновой кислоты, содержащей 10 или более атомов углерода, и диамина, содержащего 6 или более атомов углерода; второй слой, который прилегает к первому слою и содержит сополимер α-олефина и мономера ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты в качестве основного компонента; третий слой, который прилегает ко второму слою и содержит в качестве основного компонента сополимер этилена и винилового спирта и в качестве вспомогательных компонентов соль переходного металла и полимер на основе полиена, содержащего ненасыщенную двойную связь; четвертый слой, который прилегает к третьему слою и содержит сополимер α-олефина и мономера ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты в качестве основного компонента; и герметизирующий слой, который содержит полиэтилен в качестве основного компонента.
(3) В пластмассовой пленке согласно описанным выше пп. (1) и (2) слой смешанного состава, содержащий сополимер этилена и винилового спирта в качестве основного компонента и соль переходного металла и полимер на основе полиена, содержащего ненасыщенную двойную связь, в качестве вспомогательного компонента, абсорбирует 30 см3 или более кислорода на грамм, и толщина слоя смешанного состава составляет от 5 до 35%.
(4) В пластмассовой пленке согласно описанным выше пп. (1)-(3) температура пика плавления первого слоя может составлять 175°C или выше, и разность между температурой пика плавления первого слоя и температурами пиков плавления герметизирующих слоев может составлять 40°C или более.
(5) В пластмассовой пленке согласно описанным выше пп. (1) или (2) герметизирующий слой может представлять собой смесь от 60 до 95 мас.% линейного полиэтилена низкой плотности и от 5 до 40 мас.% полиэтилена высокой плотности.
(6) В пластмассовой пленке согласно описанным выше пп. (1)-(3) герметизирующий слой может включать два слоя, в том числе слой, который прилегает к четвертому слою и содержит, в качестве основного компонента, сополимер α-олефина и мономера ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты, и слой, который прилегает к внешнему слою и состоит из полиэтилена высокой плотности.
(7) В качестве альтернативы, настоящее изобретение представляет собой пакет для инфузий, где литьевое отверстие предусмотрено на основном корпусе пакета для инфузий, изготовленного из пластмассовой пленки согласно пп. (1)-(5).
Эффекты изобретения
Настоящее изобретение делает возможным получение пластмассовой пленки, которая абсорбирует растворенный кислород в медицинском растворе, имеет превосходную непроницаемость по отношению к кислороду, поступающему из окружающей среды, обеспечивает превосходную гигиеническую безопасность, предусмотренную японской фармакопеей, может быть превращена в пленку простым термосвариванием при высокой температуре в течение короткого периода времени, обеспечивает предельно низкую вероятность внедрения инородных веществ, попадающих из окружающей среды между слоями пленки, и обладает термостойкостью, чтобы выдерживать обработку паром в автоклаве при температуре 121°C, прозрачностью, гибкостью и ударопрочностью. Кроме того, вышеописанными отличительными признаками обладает пакет для инфузий, изготовленный из пластмассовой пленки согласно настоящему изобретению.
Краткое описание чертежей
Фиг. 1 представляет частичный вид поперечного сечения примера пластмассовой пленки согласно настоящему изобретению.
Фиг. 2 представляет частичный вид поперечного сечения модифицированного примера пластмассовой пленки согласно настоящему изобретению,
Фиг. 3 представляет частичный вид поперечного сечения другого модифицированного примера пластмассовой пленки согласно настоящему изобретению,
Фиг. 4 представляет частичный вид поперечного сечения еще одного модифицированного примера пластмассовой пленки согласно настоящему изобретению.
Фиг. 5 представляет вид сверху примера пакета для инфузий, изготовленного с использованием пластмассовой пленки согласно настоящему изобретению.
Описание вариантов осуществления
Далее настоящее изобретение будет описано более подробно.
Фиг. 1 представляет слоистую структуру примера пластмассовой пленки согласно первому аспекту настоящего изобретения. Для пленки важно наличие четырех слоев, включая, начиная с поверхности, первый слой 1, второй слой 2, третий слой 3 и герметизирующий слой 4.
Первый слой 1 (далее называется «наиболее внешний слой») представляет собой слой, который включает полиамид, полученный реакцией полимеризации с раскрытием цикла лактама, содержащего 11 или более атомов углерода, или в реакции поликонденсации ω-аминокислоты, содержащей 11 или более атомов углерода, или полиамид, полученный в реакции сополиконденсации дикарбоновой кислоты, содержащей 10 или более атомов углерода, и диамина, содержащего 6 или более атомов углерода. Второй слой 2 (далее называется «кислородопоглощающий слой») представляет собой слой, который прилегает к первому слою 1 и имеет смешанный состав, включающий сополимер этилена и винилового спирта в качестве основного компонента и полимер на основе полиена, содержащего ненасыщенную двойную связь, и соль переходного металла в качестве вспомогательных компонентов. Третий слой 3 (далее называется «промежуточный адгезионный слой») представляет собой слой, который прилегает ко второму слою 2 и содержит сополимер α-олефина и мономера ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты в качестве основного компонента. Герметизирующий слой 4 представляет собой, содержащий полиэтилен в качестве основного компонента.
Наиболее внешний слой представляет собой слой, который защищает пленку от повреждений, вызываемых внешним нагреванием в процессе изготовления пакета при термосваривании детали отверстия для выпуска и введения медицинский раствор, которая называется «впуск». Первый слой 1 состоит из полиамида, полученного в процессе полимеризации с раскрытием цикла лактама, содержащего 11 или более атомов углерода, или в процессе поликонденсации ω-аминокислоты, содержащей 11 или более атомов углерода. В качестве альтернативы, первый слой 1 состоит из полиамида, полученного в процессе сополиконденсации дикарбоновой кислоты, содержащей 10 или более атомов углерода, и диамина, содержащего 6 или более атомов углерода.
Лактам, который подвергается полимеризации с раскрытием цикла, содержит 11 или более атомов углерода, но верхний предел числа атомов углерода составляет 12. Если число атомов углерода мономера лактама составляет менее чем 11, это не является благоприятным, потому что тогда реакция деполимеризации полиамида легко проходит при использовании высокой температуры, и медицинский контейнер оказывается неудовлетворительным в отношении стандартов элюирования, определенных для такого контейнера, и происходит беление во время обработки паром в автоклаве при высоком давлении вследствие высокой гигроскопичности.
В качестве примера лактама, можно привести ундеканлактам, лауриллактам и т.п. Способ полимеризации с раскрытием цикла хорошо известен как способ получения полиамида и присутствует на рынке. Если полимеризации с раскрытием цикла подвергают ундеканлактам, получается нейлон 11, и если полимеризации с раскрытием цикла подвергают лауриллактам, получается нейлон 12.
Число атомов углерода ω-аминокислоты, которую подвергают поликонденсации, также составляет 11 или более, но верхний предел числа атомов углерода составляет 12. Если число атомов углерода составляет менее чем 11, существует такая же проблема, как в случае полиамида, получаемого полимеризацией с раскрытием цикла лактама. Примеры ω-аминокислоты представляют собой ω-аминоундекановая кислота или ω-аминододекановая кислота, и способ поликонденсации также хорошо известен как способ получения полиамида и также присутствует на рынке.
Дикарбоновая кислота, используемая для проведения сополиконденсации дикарбоновой кислоты и диамина, содержит 10 или более атомов углерода, и верхний предел числа атомов углерода составляет 12. Примеры дикарбоновой кислоты представляют собой себациновая кислота, додекандикарбоновая кислота и т.п. Диамин содержит 6 или более атомов углерода. Примеры диамина представляют собой гексаметилендиамин и т.п. Способ сополиконденсации хорошо известен как способ получения полиамида и также присутствует на рынке. Если себациновую кислоту подвергают сополиконденсации с гексаметилендиамином, получается нейлон 610, и если додекандикарбоновую кислоту подвергают сополиконденсации с гексаметилендиамином, получается нейлон 612.
Полиамид, полученный любым из трех вышеуказанных способов, можно использовать индивидуально или можно смешивать в произвольном соотношении.
Предназначенный для использования полиамид может иметь температуру пика плавления, составляющую 175°C или выше, предпочтительно приблизительно от 175 до 245°C и предпочтительнее приблизительно от 175 до 230°C. Что касается способа измерения пика плавления, пик плавления измеряли на основании стандарта JIS-K7121, используя дифференциальный сканирующий калориметр (DSC).
Толщина первого слоя 1 составляет от 2 до 15% суммарной толщины, предпочтительно от 2 до 10% суммарной толщины и предпочтительнее от 2 до 8% суммарной толщины. Если толщина первого слоя 1 составляет менее чем 2% суммарной толщины, не является достаточным эффект защиты от повреждения, вызываемого теплопередачей во время сваривания. Если толщина первого слоя 1 превышает 15% суммарной толщины, значительно увеличивается жесткость многослойной пленки, и уменьшается гибкость медицинского контейнера.
Второй слой 2 представляет собой кислородопоглощающий слой и имеет смешанный состав, включающий сополимер этилена и винилового спирта в качестве основного компонента и соль переходного металла и полимер на основе полиена, содержащего ненасыщенную двойную связь, в качестве вспомогательных компонентов.
Сополимер этилена и винилового спирта представляет собой основной компонент, и содержание этилена составляет приблизительно от 25 до 45 мол.% и предпочтительно от 27 до 44 мол.%.
Полимер на основе полиена, который является вспомогательным компонентом и содержит ненасыщенную двойную связь, представляет собой полимер, содержащий углеводородные звенья, в которых число двойных связей составляет 2 или более. Предпочтительный полимер на основе полиена представляет собой сопряженный диеновый полимер и, например, линейный полимер и циклический полимер, такой как полиизопрен, то есть полимер цис- или транс-1,4-изопрена, который представляет собой линейный сопряженный диен, полиизопрен, который включает циклизованный полиизопрен, полученный реакцией перициклизации полиизопрена, полибутадиен, то есть полимер 1,3-бутадиена, который представляет собой линейный сопряженный диен, полибутадиен, который включает циклизованный полибутадиен, полученный реакцией перициклизации полибутадиена, и т.п. Содержание полимера на основе полиена составляет приблизительно от 20 до 40 мас.% и предпочтительно приблизительно от 25 до 35 мас.%.
Примеры соли переходного металла в качестве вспомогательного компонента представляют собой соли железа, никеля, меди, марганца, кобальта, родия, титана, хрома, ванадия, рутения и т.п. В качестве примера кислоты, которая образует соль, органическая кислота, в частности, монокарбоновая кислота, является приемлемой, и например, стеариновая кислота, неодекановая кислота и т.п. являются соответствующими. Примеры предпочтительной соли переходного металла представляют собой кобальтовую соль стеариновой кислоты, кобальтовую соль неодекановой кислоты. Содержание соли кислоты и переходного металла составляет от 50 до 500 м.д. и предпочтительно от 100 до 300 м.д.
Полимер на основе полиена, с которым сополимер этилена и винилового спирта смешивают в качестве основного компонента, и соль переходного металла абсорбируют кислород, образуя спирт, альдегид, кетон и карбоновую кислоту в ходе реакции окислительного разрыва цепи полимера на основе полиена с солью переходного металла в качестве катализатора. Предпочтительно, когда композиция смешанного состава согласно настоящему изобретению включает сопряженный диеновый компонент, который абсорбирует кислород в количестве, составляющем не менее чем 30 см3 на грамм. Толщина второго слоя 2 составляет от 5 до 35% суммарной толщины пластмассовой пленки и предпочтительно от 10 до 30%. Если толщина второго слоя 2 составляет менее чем 5% суммарной толщины, функция поглощения кислорода становится недостаточной. С другой стороны, если толщина второго слоя 2 превышает 35% суммарной толщины, слой обладает функцией поглощения кислорода сверх необходимости. Кроме того, не является благоприятным, что уменьшается физическая прочность пленки и что стоимость изготовления неоправданно увеличивается.
В качестве имеющихся в продаже продуктов такого смешанного состава, которые обладают функцией поглощения кислорода, можно использовать продукты под наименованиями Proact от фирмы Kuraray Co., Ltd., Quintier от фирмы Zeon Corporation, и т.п.
Третий слой 3 представляет собой промежуточный адгезионный слой, который обладает влагонепроницаемостью и расположен между вторым слоем 2 и герметизирующим слоем 4, который будет описан далее, и содержит, в качестве основного компонента, сополимер α-олефина и мономера, такого как ненасыщенная карбоновая кислота или ангидрид ненасыщенной дикарбоновой кислоты.
Примеры α-олефина представляют собой этилен, пропилен и т.п. Полиолефин, который представляет собой гомополимер или сополимер этилена, пропилена и т.п., получают, осуществляя гомополимеризацию или сополимеризацию олефина, используя каталитическую систему (катализатор Циглера (Ziegler)), получаемую из соединения переходного металла и алюминийорганического соединения, используя каталитическую систему (катализатор Филлипса (Phillips)), получаемую осаждением на вещество подложки (например, диоксид кремния) соединения хрома (например, сесквиоксид хрома), или используя радикальный инициатор (например, органический пероксид).
Кроме того, мономер, такой как ненасыщенная карбоновая кислота или ангидрид ненасыщенной дикарбоновой кислоты, используемый в настоящем изобретении, представляет собой соединение, содержащее, по меньшей мере, одну двойную связь и, содержащее, по меньшей мере, одну карбоксильную группу или соответствующую ангидридную группу, и примеры представляют собой (мет)акриловую кислоту, малеиновую кислоту, фталевую кислоту, малеиновый ангидрид, фталевый ангидрид, итаконовую кислоту, цитраконовую кислоту, 1,2,3,6-тетрагидро-3,6-метанофталевую кислоту, итаконовый ангидрид, 1,2,3,6-тетрагидро-3,6-метанофталевый ангидрид, цитраконовый ангидрид и т.п.
Сополимер α-олефина и мономера, такого как ненасыщенная карбоновая кислота или ангидрид ненасыщенной дикарбоновой кислоты, используемый в третьем слое 3, означает привитой сополимер ненасыщенного мономера и вышеописанного полиолефина. Привитой сополимер получают, подавая в экструдер смесь, полученную добавлением от 0,01 до 20 мас.ч. ненасыщенного мономера и от 0,001 до 20 мас.ч. органического пероксида к 100 мас.ч. полиолефина, и расплавляя смесь для проведения реакции.
Примеры органического пероксида, используемого в настоящем изобретении, представляют собой трет-бутилпероксибензоат, 2,5-диметил-2,5-ди(трет-бутилперокси)гексан, и ди(трет-бутил)пероксид. Среди органических пероксидов желательным является органический пероксид, имеющий одноминутный период полураспада при температуре от 100 до 280°C, и предпочтительным является органический пероксид, имеющий одноминутный период полураспада при температуре от 120 до 230°C. Такие органические пероксиды можно использовать индивидуально, или их можно использовать в сочетании двух или более видов.
Если менее чем 0,01 мас.ч. мономера, такого как ненасыщенная карбоновая кислота или ангидрид ненасыщенной дикарбоновой кислоты, смешивают со 100 мас.ч. полиолефина, адгезия между полученным сополимером и сополимером этилена и винилового спирта и полиамидом, описанным ниже, является неудовлетворительной. С другой стороны, если соотношение в смеси превышает 20 мас.ч., снижается эффективность реакции прививки. Таким образом, остается некоторое количество ненасыщенных соединений, которые не прореагировали или образовали гомополимеры во время реакции прививки, и ухудшаются даже собственные физические свойства полиолефина.
Кроме того, если менее чем 0,001 мас.ч. органического пероксида смешивают со 100 мас.ч. полиолефина, не получается удовлетворительный привитой сополимер. С другой стороны, если соотношение превышает 20 мас.ч., ухудшаются собственные физические свойства полиолефина.
Приготовленную таким способом смесь помещают в экструдер общего назначения, плавят и перемешивают в нем, проводя реакцию прививки, и затем получают привитой модифицированный материал. В этом случае в качестве используемого экструдера можно использовать оба типа экструдера (без отвода газов и с отводом газов), но экструдер с отводом газов является желательным с точки зрения удаления ненасыщенных соединений, которые остались непрореагировавшими или образовали гомополимеры, и продуктов разложения органических пероксидов. Кроме того, температура перемешивания составляет от 230 до 300°C, и эта температура может изменяться в зависимости от вида используемого полиолефина и органического пероксида, но желательной является температура от 230 до 250°C. Кроме того, время пребывания смеси в экструдере составляет 60 секунд или более, и, в частности, предпочтительным является время, составляющее 90 секунд или более. Реакция прививки не протекает удовлетворительно при температуре перемешивания, составляющей менее чем 230°C. С другой стороны, если температура перемешивания превышает 300°C, часть полиолефина начинает разлагаться. Кроме того, если время пребывания смеси в экструдере составляет менее чем 60 секунд, не происходит удовлетворительная реакция прививки.
В продаже имеются продукты на основе сополимера α-олефина и ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты, и такие коммерческие продукты могут быть использованы.
В третьем слое 3 согласно настоящему изобретению можно использовать индивидуальный сополимер или смешанный состав, содержащий сополимер и полиолефин. В последнем, случае соотношение вязкости расплава сополимера и вязкости расплава полиолефина η(полиолефин)/η(сополимер) при постоянной температуре составляет предпочтительно 2,0 или более. В том случае, где это соотношение составляет менее чем 2,0, сополимер и полиолефин склонны к образованию однородной микродисперсии. Таким образом, разбавляются полярные группы, существующие на границе раздела между полиамидом, описанным ниже, и сополимером этилена и винилового спирта, в результате чего адгезионная сила стремится к уменьшению.
Третий слой 3 представляет собой слой, содержащий сополимер α-олефина и ненасыщенной карбоновой кислоты или ангидрида ненасыщенной дикарбоновой кислоты, и в качестве основного компонента, и суммарное количество третьего слоя 3 может составлять сополимер. С другой стороны, можно также включать другие полимеры. В таком случае снижается интенсивность адгезии, но в результате эксперимента, проведенного заявителем, третий слой 3 можно приготовить даже из смеси 50% сополимера и 50% полиэтилена.
Толщина третьего слоя 3 составляет от 2 до 15% и предпочтительно от 2 до 10% суммарной толщины пластмассовой пленки. Если толщина третьего слоя 3 составляет менее чем 2% суммарной толщины, становится недостаточной адгезия полиамида, описываемого ниже, и сополимера этилена и винилового спирта. Если толщина третьего слоя 3 превышает 15%, это не является предпочтительным, потому что ухудшается физическая прочность пленки, и стоимость производства неоправданно увеличивается.
Герметизирующий слой 4 согласно настоящему изобретению означает слой, прилегающий к внутренней стороне третьего слоя 3 и содержащий полиэтилен в качестве основного компонента, и он может быть однослойным или многослойным. Примеры полиэтилена герметизирующего слоя 4 представляют собой полиэтилен низкой плотности, полиэтилен высокой плотности и линейный полиэтилен низкой плотности, и его состав может представлять собой индивидуальное соединение или смесь соединений. Среди этих примеров полиэтилена смесь, содержащая от 60 до 95 мас.% линейного полиэтилена низкой плотности, который обладает превосходной прозрачностью, гибкостью и ударопрочностью, и от 5 до 40 мас.% полиэтилена высокой плотности, который обладает превосходной термостойкостью, является предпочтительной в том смысле, что компоненты данной смеси обладают свойствами, которые дополняют друг друга.
Линейный полиэтилен низкой плотности согласно настоящему изобретению означает сополимер этилена и одного или более видов α-олефинов, выбранных из α-олефинов, содержащих от 3 до 20 атомов углерода. Среди α-олефинов, содержащих от 3 до 20 атомов углерода, предпочтительными являются α-олефины, содержащие от 3 до 12 атомов углерода. В частности, примеры представляют собой пропилен, 1-бутен, 1-пентен, 4-метилпентен, 1-гексен, 1-октен, 1-децен, 1-додецен и т.п., и предпочтительными являются пропилен, 1-бутен, 1-гексен и 1-октен. Количество α-олефина, содержащегося в сополимере, составляет обычно от 1 до 30 мол.% и предпочтительно от 3 до 20 мол.%. Кроме того, плотность линейного полиэтилена низкой плотности при измерении способом согласно стандарту JIS-K7112-D составляет от 0,900 до 0,940 г/см3, и показатель текучести расплава (MFR), измеряемый в условиях температуры 190°C и нагрузки 21,18N на основе стандарта JIS-K7210 с предпочтительным использованием линейного полиэтилена низкой плотности, составляющей от 0,1 до 20 г/10 минут.
В качестве полиэтилена высокой плотности согласно настоящему изобретению можно предпочтительно использовать полиэтилен высокой плотности, имеющий плотность от 0,940 до 0,970 г/см3 и MFR от 0,1 до 20 г/10 минут. Условия измерения плотности и MFR такие же, как в случае линейного полиэтилена низкой плотности.
Кроме того, чтобы повысить прозрачность и термостойкость, в полиэтилен герметизирующего слоя 4 можно добавлять зародыш кристаллизации. Пример предпочтительного зародыша кристаллизации представляет собой смесь кальциевой соли циклогександикарбоновой кислоты и стеарата цинка, но можно смешивать зародыш кристаллизации с герметизирующим слоем 4 таким образом, чтобы зародыш кристаллизации составлял 2,5 мас.% или менее суммарной массы герметизирующего слоя. Нижний предел добавляемого количества зародыша кристаллизации составляет приблизительно 0,5 мас.%.
Температура пика плавления герметизирующего слоя 4 не превышает температуру пика плавления первого слоя 1, и разность между температурой пика плавления первого слоя 1 и температурой пика плавления герметизирующего слоя 4 составляет 40°C или более, предпочтительно 45°C или более. Если разность этих температур составляет менее чем 40°C, это не является предпочтительным, потому что тогда пленка легко повреждается в процессе термосваривания. Хотя верхний предел разности температур пиков плавления не ограничен определенным образом, он обычно составляет приблизительно 100°C. Если разность температур плавления первого слоя 1 и герметизирующего слоя 4 является чрезмерно большой, из герметизирующего слоя 4 также получается пленка при высокой температуре в процессе соэкструзии. Соответственно, вязкость расплава герметизирующего слоя 4 значительно уменьшается, и таким образом, невозможно обеспечить устойчивое изготовление пленки.
Толщина герметизирующего слоя 4 составляет от 30 до 89%, предпочтительно от 35 до 85% и предпочтительнее от 35 до 80% суммарной толщины пластмассовой пленки. Если толщина герметизирующего слоя 4 составляет менее чем 30% суммарной толщины, ухудшается физическая прочность пленки. Если толщина превышает 89% суммарной толщины, толщина слоев 1-3 является недостаточной.
Все измеренные параметры пластмассовой пленки согласно настоящему изобретению для каждого испытания, предусмотренного законом об испытании пластмассовых фармацевтических контейнеров общего закона об испытаниях в первой части пятнадцатого издания японской фармакопеи, соответствуют техническим условиям полиэтиленового или полипропиленового контейнера для водных инъекций.
Слоистая структура модифицированного примера пластмассовой пленки согласно первому аспекту представлена на фиг. 2. Структура пленки состоит из пяти слоев, включая, начиная с поверхности, первый слой 1, второй слой 2, третий слой 3, герметизирующий слой 41, сохраняющий прозрачность и гибкость, и герметизирующий слой прямой плавки 42, прилегающий к герметизирующему слою 41.
Когда герметизирующие слои состоят из двух слоев, предпочтительно устанавливать герметизирующий слой 41 в качестве основного слоя. В частности, соотношение толщины герметизирующего слоя 41, прилегающего ко второму слою, и толщины герметизирующего слоя прямой плавки 42 составляет предпочтительно от 50:50 до 97:3 и предпочтительнее от 70:30 до 95:5.
В частности, герметизирующий слой 41, прилегающий ко второму слою, представляет собой смесь, содержащую от 60 до 95 мас.% линейного полиэтилена низкой плотности и от 5 до 40 мас.% полиэтилена высокой плотности в качестве полимера используемого герметизирующего слоя, и герметизирующий слой прямой плавки 42 представляет собой слой, включающий только полиэтилен высокой плотности. Составляя герметизирующие слои, как указано выше, можно надежно предотвращать прилипание, возникающее, когда части поверхностей герметизирующих слоев плотно пристают друг к другу после обработки паром в автоклаве.
Фиг. 3 представляет слоистую структуру примера пластмассовой пленки согласно второму аспекту настоящего изобретения. Пленка имеет пятислойную структуру, включающую, начиная с поверхности, первый слой 1, второй слой 31, третий слой 2, четвертый слой 32 и герметизирующий слой 4. Во втором аспекте пластмассовой пленки согласно настоящему изобретению первый слой 1 (наиболее внешний слой) представляет собой слой, состоящий из полиамида, полученного путем полимеризации с раскрытием цикла лактама, содержащего 11 или более атомов углерода, или поликонденсации ω-аминокислоты, содержащей 11 или более атомов углерода, или из полиамида, полученного путем сополиконденсации дикарбоновой кислоты, содержащей 10 или более атомов углерода, и диамина, содержащего 6 или более атомов углерода. Второй слой 31 (первый промежуточный