Усовершенствованные композитные материалы

Иллюстрации

Показать все

Изобретение относится к композитным материалам и касается композитных усовершенствованных материалов. Композитный материал включает препрег, который, в свою очередь, включает, по меньшей мере, два слоя электропроводящего волокнистого упрочнителя и слой полимерной смолы, расположенный между этими слоями, электропроводящие частицы, диспергированные в полимерной смоле; и верхний слой из покрытого металлом углеродного волокна, включающий дополнительный смоляной компонент, в котором металл представляет собой один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра. Изобретение обеспечивает создание композитных материалов, обладающих улучшенной электропроводностью, без ухудшения механических характеристик материала. 6 н. и 23 з.п. ф-лы, 9 ил., 1 табл.

Реферат

Настоящее изобретение относится к композитным материалам, в частности к упрочненным волокнами композитным материалам с покрытием, обладающим повышенной электропроводностью.

Композитные материалы все чаще используются в конструкционных сооружениях во многих областях благодаря их привлекательным механическим свойствам и небольшому весу по сравнению с металлами. Композиты состоят из послойных материалов, образующих структурно выгодный материал ламинатного типа. Однако несмотря на то что электропроводность является одним из наиболее очевидных свойств металлов, упрочненные волокнами композитные материалы (такие как клейкие пленки, покрывающие поверхность пленки и предварительно импрегнированные материалы (препреги)) обычно имеют намного более низкую электропроводность.

Традиционные композитные материалы обычно состоят из упрочняющей фазы, как правило, включающей непрерывные или прерывистые волокна, и матричной фазы, обычно термоотверждающегося или термопластичного полимера. Самые ранние матричные полимеры первого поколения для изготовления композитов были хрупкими по своей природе, поэтому возникла необходимость разработки более упрочненных полимеров. Композитные материалы, используемые в качестве первичных структур авиационно-космических деталей, представляют собой так называемые упрочненные материалы второго или третьего поколения.

Существует насущная потребность в композитных материалах, обладающих электропроводностью и используемых для различных целей. Такие цели включают использование для защиты от ударов молнии, электростатической диссипации (ESD) и электромагнитных помех (EMI). Существующие композитные материалы, такие как материалы на основе углеродных волокон, обладают некоторой электропроводностью, обычно связанной с графитной природой углеродных нитей. Однако уровень электропроводности является недостаточным для защиты композитного материала от повреждающего действия сильных электрических разрядов, таких как удар молнии.

Упрочненные композиты второго поколения являются более совершенными по сравнению с более ранними материалами первого поколения благодаря введению упрочняющих фаз в матричный материал. Улучшенную электропроводность таким материалам обычно придают различными способами. Они включают введение металлов в материал с помощью вспененной фольги, металлических сеток или переплетенной проволоки. Типичные материалы, используемые для данной цели, включают алюминий, бронзу и медь. Такие композитные материалы способны обеспечить более высокую электропроводность. Однако обычно они имеют большой вес и гораздо худшие механические и эстетические свойства. Такие композиты обычно составляют верхний один или два слоя материала, что часто приводит к некачественной общей отделке поверхности.

При ударе молнии в композиты второго поколения разрушение обычно ограничивается поверхностным защитным слоем. Энергии удара молнии обычно достаточно для испарения некоторого количества металла и прожигания небольшой дыры в сетке или ином защитном слое. Повреждение нижележащего композита может оказаться минимальным, ограничиваясь верхним одним или двумя слоями.

Тем не менее после такого удара необходимо вырезать поврежденный участок и вставлять вместо него новую металлическую защиту и, при необходимости, новый композит.

Как упомянуто выше, материалы с углеродными волокнами обладают некоторой электропроводностью. Однако электропроводность наблюдается только в направлении волокон и имеет ограниченную способность к диссипации электрического тока в направлениях, ортогональных плоскости упрочнения волокон (направление z). Упрочненные углеродом материалы часто имеют чередующуюся структуру, зачастую включающую слой смолы некоторого рода, что обеспечивает по существу низкую удельную электропроводность в направлении z благодаря электроизоляционным свойствам чередования. Такая структура может привести к катастрофе при ударе молнии, поскольку электрический разряд может проникнуть в чередование, вызвать расслоение массы и пройти через композитный материал.

Другие электропроводящие частицы, такие как углеродная сажа, полипиррол, углеродные нановолокна и их смеси, использовались по отдельности в качестве добавок к композитным материалам, но не для улучшения стойкости к разрушению, вызванному, например, ударом молнии.

Оказалось, что введение покрытых металлами частиц в препреги чередующегося типа эффективно снижает уровень повреждения композита, вызываемого ударом молнии, к тому же уровень повреждения поверхности и нижних слоев может быть снижен еще больше.

Так называемые “упрочненные композитные материалы третьего поколения” основаны на чередующейся технологии, при которой слои смолы перемежаются с упрочненными волокнами слоями, обеспечивая защиту от ударов. Однако такие слои смолы действуют как электрический изолятор, поэтому электропроводность в направлении z материала (т.е. ортогонально направлению волокон) является невысокой. Удары молнии в композитный материал могут привести к катастрофическому разрушению детали и получению дыры, пробитой через многослойный ламинат.

Поэтому целью настоящего изобретения является разработка композитного материала, имеющего улучшенную электропроводность по сравнению с предыдущими, описанными здесь разработками, а также небольшой вес или вес, не больший по сравнению со стандартным композитным материалом. Целью настоящего изобретения также является разработка композитного материала, имеющего улучшенную электропроводность без ухудшения механических характеристик материала. Целью настоящего изобретения также является разработка способа получения композитного материала, обладающего улучшенной электропроводностью.

Следующей целью является разработка выдерживающего удар молнии композитного материала, удобного для производства, использования и ремонта.

Согласно первому аспекту настоящего изобретения разработан композитный материал, включающий:

i) препрег, включающий, по меньшей мере, одну полимерную смолу и, по меньшей мере, один электропроводящий, волокнистый упрочнитель;

ii) электропроводящие частицы, диспергированные в полимерной смоле; и

iii) верхний слой из покрытого металлом углеродного волокна, включающий дополнительный смоляной компонент, в котором металл представляет собой один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра.

Согласно второму аспекту настоящего изобретения разработан способ получения композитного материала, включающий следующие стадии:

i) получение препрега, включающего, по меньшей мере, одну полимерную смолу и, по меньшей мере, один электропроводящий волокнистый упрочнитель;

ii) диспергирование электропроводящих частиц в полимерной смоле; и

iii) нанесение верхнего слоя из покрытого металлом углеродного волокна, включающего дополнительный смоляной компонент, в котором металл представляет собой один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра.

Верхний слой может быть нанесен во время или после изготовления препрега и может быть отвержден на месте с использованием адгезии, обеспечиваемой смолой, содержащейся в препреге.

Было установлено, что использование электропроводящих частиц в полимерной смоле препрега в комбинации со слоем покрытого металлом углеродного волокна, включающего дополнительный смоляной компонент, в котором металл представляет собой один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра, в качестве верхнего слоя препрега обеспечивает снижение объемного удельного сопротивления, поверхностного сопротивления и улучшение электропроводности в направлении z через композитный материал. Кроме того, было установлено, что электропроводящие частицы, диспергированные в составе смолы, а затем подвергнутые предварительному импрегнированию, обеспечивают получение препрега, имеющего по существу такие же технологические характеристики, как и подобный немодифицированный препрег.

Использование слоя покрытого металлом углеродного волокна, включающего дополнительный смоляной компонент, в котором металл представляет собой один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра, в качестве верхнего слоя композитного материала с препрегом, содержащим покрытые металлом частицы, улучшает электропроводящие свойства композитного материала с препрегом. Это делает композитный материал еще более стойким к повреждению, которое может быть нанесено сильным электрическим разрядом, таким как удар молнии.

Ссылки на композитные материалы подразумевают материалы, содержащие армирующие волокна, причем полимерная смола находится в контакте с волокном, но не пропитывает волокно. Термин “композитный материал” также включает альтернативный вариант, при котором смола частично погружена или частично импрегнирована в волокно, обычно известный в данной области техники как препрег. Препрег может также иметь полностью импрегнированный волокнистый армирующий слой. Композитный материал может также включать многослойные материалы, содержащие большое количество таких слоев, как волокно-смола-волокно.

Ссылки на “чередующуюся структуру” относятся к многослойному материалу, имеющему структуру волокно-смола-волокно. Термин “чередующийся” относится к полимерной среде, присутствующей и перемежающейся между слоями волокон. Ссылки на “чередующуюся толщину” относятся к среднему расстоянию поперек чередующегося слоя, измеряемого от самой верхней поверхности нижней волокнистой прослойки до самой нижней поверхности верхней волокнистой прослойки. Следовательно, чередующаяся толщина равна толщине перемежающегося слоя из полимерной смолы, и ссылки на чередующуюся толщину и толщину полимерной смолы взаимозаменяемы.

Все используемые здесь термины, такие как “промежуточный слой”, “промежуточный смоляной слой”, “прослоечный смоляной слой” и “свободный от волокон слой”, являются взаимозаменяемыми и относятся к полимерному смоляному слою.

Используемый здесь термин “полимерная смола” относится к полимерной системе.

В данной заявке термины “полимерная смола” и “полимерная система” являются взаимозаменяемыми и относятся к смесям длинноцепочечных смол, имеющих различные длины цепей. Следовательно, термин “полимерный” относится к варианту, согласно которому смолы присутствуют в виде смеси смол, включающей любые мономеры, такие как димеры, тримеры, или смол, имеющих длину цепи более 3. Получаемая полимерная смола при ее отверждении формирует поперечносшитую матрицу смолы.

Объемное удельное сопротивление относится к измерению объемного удельного сопротивления полупроводникового материала. Очевидно, что ссылка на “первоначальное объемное удельное сопротивление” относится к объемному удельному сопротивлению полимерной смолы до добавления к ней электропроводящих частиц. Величина в Ом·м представляет собой собственное сопротивление данного материала. Ом-м (Ωm) используют для измерения сопротивления трехмерного материала.

Объемное электрическое сопротивление ρ материала обычно определяют по следующей формуле:

ρ = R A l ,

где

ρ представляет собой статическое сопротивление (измеряемое в Ом-метрах),

R представляет собой электрическое сопротивление равномерного образца материала (измеряемое в Омах),

l представляет собой длину образца (измеряемую в метрах),

А представляет собой площадь поперечного сечения образца (измеряемую в квадратных метрах).

Согласно настоящему изобретению объемное удельное сопротивление измеряют только в направлении z (через толщину композитного материала). При каждом упоминании “объемного” удельного сопротивления при расчетах всегда принимают во внимание толщину.

Цель настоящего изобретения достигается посредством нанесения верхнего слоя из покрытого металлом углеродного волокна, включающего дополнительный смоляной компонент, в котором металл представляет собой один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра, на препрег, помимо введения в зону чередования препрега небольшой фракции электропроводящих частиц в количестве, совершенно недостаточном для придания электропроводности самой полимерной смоле (т.е. при отсутствии углеродного волокна), из которой получен данный препрег.

Кроме того, было установлено, что введение в композитный материал электропроводящих частиц, таких как углеродные частицы и покрытые серебром стеклянные сферы, а также верхний слой из покрытого металлом углеродного волокна, включающего дополнительный смоляной компонент, в котором металл представляет собой один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра, снижает объемное удельное сопротивление и, в результате, обеспечивает уровень электропроводности, превышающий разумно ожидаемый уровень.

Обычно общее количество металлического покрытия составляет приблизительно от 10 до 65% от массы волокна.

Любой из металлов, таких как никель, медь, золото, платина, палладий, индий и серебро, может быть использован для нанесения покрытия на углеродное волокно, по отдельности или в комбинации, но обычно для нанесения покрытия на углеродное волокно используют никель в комбинации с одним или несколькими металлами, выбранными из меди, золота, платины, палладия, индия и серебра. Чаще всего в качестве покрытия углеродного волокна используют покрытие из меди-никеля.

Эффективность покрытого металлом слоя из углеродного волокна такова, что общее количество электропроводящих слоев в композитном комплекте может быть снижено, тем самым позволяя ограничить проводящие слои внешней частью, где защита от молнии является наиболее важной. Кроме того, повреждение, вызываемое ударами молнии, по существу ограничено наружным слоем благодаря повышенной электропроводности композитного материала согласно настоящему изобретению.

Композитный материал согласно настоящему изобретению удобен для производства, в то время как существующие пассивные материалы неудобны в использовании. Согласно настоящему изобретению слой из углеродного волокна может быть легко введен в препрег и, при необходимости, может быть легко получен в виде цельного изделия.

Кроме того, окончательная отделка поверхности является хорошей, и композитный материал согласно настоящему изобретению может быть обработан подобно препрегу.

Дальнейшим преимуществом настоящего изобретения является улучшенная теплопроводность препрега, обеспечивающая более короткую продолжительность нагревания и лучшую диссипацию тепла, образующегося во время экзотермической реакции при отверждении. Еще одно преимущество заключается в том, что электрическое сопротивление композитного материала остается по существу неизменным при колебании температуры.

Снижение объемного удельного сопротивления и улучшение электропроводности обеспечивает улучшенную защиту от ударов молнии. Поэтому такое улучшение, обеспечиваемое настоящим изобретением, является удивительным ввиду низкого содержания используемых электропроводящих частиц и высокого электрического сопротивления, обычно оказываемого самой чередующейся смолой.

Используемые здесь термины “сопротивление” и “проводимость” относятся к электрическому сопротивлению и электрической проводимости, соответственно.

В данном описании термин “частицы” относится к дискретным трехмерным добавкам, которые являются отличными, обрабатываемыми как отдельные единицы и отделяемыми от других отдельных добавок, однако это не исключает возможность контакта между добавками. Данный термин охватывает формы и размеры описанных и установленных здесь электропроводящих частиц.

Подразумевается, что используемый здесь термин “отношение ширины к толщине” относится к отношению самого большого размера к самому малому размеру трехмерного объекта. Данный термин применим к используемым здесь добавкам любой формы и размера. При использовании данного термина в связи со сферическими или по существу сферическими объектами соответствующее отношение представляет собой отношение наибольшего диаметра поперечного сечения к наименьшему диаметру поперечного сечения сферического объекта. Подразумевается, что такое отношение идеальной сферы равно единице. Приведенные здесь отношения ширины к толщине электропроводящих частиц основаны на размерах частиц после нанесения на них любого металлического покрытия.

Слой покрытого металлом углеродного волокна обычно включает нетканое углеродное волокно, поскольку оно имеет очень хорошую окончательную отделку поверхности, однако вместо нетканого углеродного волокна такой слой может также включать тканые или вязаные материалы. В качестве альтернативы, рубленые покрытые металлом углеродные волокна могут быть нанесены непосредственно на поверхность препрега. Важно, чтобы углеродное волокно имело небольшой вес.

Плотность углеродного волокна может варьироваться приблизительно от 5 г/м2 до 100 г/м2. Нанесение слоя углеродного волокна в количестве 34 г/м2 способно уменьшить повреждение, вызываемое ударом молнии, приблизительно на 30-40% по площади и глубине.

Ссылки на размер электропроводящих частиц включают наибольший диаметр поперечного сечения частиц.

Иллюстративные электропроводящие частицы могут включать, но не ограничиваются ими, сферы, микросферы, дендриты, шарики, порошки, любые другие подходящие трехмерные добавки или любые их комбинации.

Электропроводящие частицы, используемые в настоящем изобретении, могут включать любые электропроводящие частицы, способные снизить удельное объемное сопротивление и тем самым облегчить электропроводность композитного материала.

Электропроводящие частицы могут быть выбраны из покрытых металлом электропроводящих частиц, неметаллических электропроводящих частиц или их комбинации.

Электропроводящие частицы диспергированы в полимерной смоле. Предполагается, что термин “диспергированы” может включать варианты, согласно которым электропроводящие частицы присутствуют по существу во всей массе полимерной смолы, не присутствуя в существенно более высокой концентрации в любой части полимерной смолы. Кроме того, термин “диспергированы” также включает электропроводящие частицы, присутствующие на локализованных участках полимерной смолы, в тех случаях, когда пониженное объемное удельное сопротивление требуется на конкретных участках композитного материала.

Покрытые металлом электропроводящие частицы могут включать частицы с сердцевиной, по существу покрытые соответствующим металлом.

Частицы с сердцевиной могут представлять собой любые соответствующие частицы. Соответствующие частицы включают, но не ограничиваются ими, частицы, сформированные из полимера, резины, керамики, стекла, минерала или огнеупорных материалов, таких как летучая зола.

Полимер может представлять собой любой термопластичный или термоотверждающийся полимер. Термины “термопластичный полимер” и “термоотверждающийся” полимер охарактеризованы ниже.

Частицы с сердцевиной, сформированные из стекла, могут принадлежать к любым видам, используемым для изготовления цельных или полых стеклянных микросфер.

Неограничивающие примеры соответствующих содержащих диоксид кремния стеклянных частиц включают натриевое стекло, боросиликат и кварц. В качестве альтернативы, стекло может быть по существу свободным от диоксида кремния. Соответствующие свободные от диоксида кремния виды стекла включают, только в качестве примера, халькогенидные виды стекла.

Частицы с сердцевиной могут быть пористыми или полыми либо могут сами по себе иметь серцевинно-оболочечную структуру, например, серцевинно-оболочечные полимерные частицы. Частицы с сердцевиной до покрытия металлом могут быть вначале покрыты активирующим слоем, ускоряющим адгезию слоем, грунтовочным слоем, полупроводящим слоем или иным слоем.

Частицы с сердцевиной обычно представляют собой полые частицы, сформированные из стекла. Использование частиц с полой сердцевиной, сформированных из стекла, может оказаться предпочтительным в тех случаях, когда снижение веса имеет особое значение.

Смеси частиц с сердцевиной могут быть использованы для получения, например, более низкой плотности или других полезных свойств, например, часть полых, покрытых металлом стеклянных частиц может быть использована вместе с частью покрытых металлом резиновых частиц для получения упрочненного слоя с более низким удельным весом.

Металлы, подходящие для нанесения в виде покрытия на частицы с сердцевиной, включают, но не ограничиваются ими, серебро, золото, никель, медь, олово, алюминий, платину, палладий и любые другие металлы, которые, как известно, обладают высокой электропроводностью, либо комбинацию любых двух или более из них. Обычно используют серебро благодаря его высокой электропроводности.

Для нанесения покрытия на частицы с сердцевиной могут быть использованы несколько слоев металлических покрытий, например, покрытая золотом медь и покрытая серебром медь. Возможно также одновременное осаждение металлов, обеспечивающее получение смешанных металлических покрытий.

Нанесение металлических покрытий может быть осуществлено любыми известными способами нанесения покрытий на частицы. Примеры соответствующих способов нанесения покрытий включают химическое осаждение из паровой фазы, распыление, электроосаждение или химическое осаждение.

Металл может присутствовать в виде массы, пористого металла, столбчатом, микрокристаллическом, волокнистом, дендритном или любом ином виде, известном в области нанесения металлических покрытий. Металлическое покрытие может быть ровным или может включать неровности поверхности, такие как волокна или выступы, таким образом, чтобы увеличить удельную площадь поверхности и улучшить межповерхностное сцепление.

Металлическое покрытие может быть затем обработано любым известным в данной области техники агентом для улучшения межповерхностного сцепления с полимерной смолой, например, силанами, титанатами и цирконатами.

Электрическое сопротивление металлического покрытия должно предпочтительно составлять менее 3×10-5 Ом·м, более предпочтительно - менее 1×10-7 Ом·м, и наиболее предпочтительно - менее 3×10-8 Ом·м.

Покрытые металлом электропроводящие частицы могут иметь любую подходящую форму, например, сферическую, эллипсоидную, сфероидальную, дискоидальную, дендритную, форму стержней, дисков, иголок, прямоугольного параллелепипеда или многоугольника. Могут быть также использованы мелко нарубленные или размолотые волокна, такие как покрытые металлом размолотые стеклянные волокна. Частицы могут иметь хорошо очерченную геометрическую форму или неправильную форму.

Покрытые металлом электропроводящие частицы обычно имеют отношение ширины к толщине <100, предпочтительно - <10 и наиболее предпочтительно - <2.

Гранулометрический состав покрытых металлом электропроводящих частиц может быть монодисперсным или полидисперсным. Предпочтительно, по меньшей мере, приблизительно 90% покрытых металлом частиц имеют размер в диапазоне, составляющем приблизительно от 0,3 мкм до 100 мкм, более предпочтительно - приблизительно от 1 мкм до 50 мкм, и наиболее предпочтительно - приблизительно от 5 мкм до 40 мкм.

Электропроводящие частицы могут представлять собой неметаллические проводящие частицы. Подразумевается, что данный термин включает любые соответствующие неметаллические частицы, не имеющие металлического покрытия и способные обеспечить снижение объемного удельного сопротивления, тем самым снижая электрическую проводимость композитного материала.

Соответствующие неметаллические проводящие частицы включают, но не ограничиваются ими, графитовые чешуйки, графитовые порошки, графитовые частицы, графеновые листы, фуллерены, углеродную сажу, собственно проводящие полимеры (ICP - включая полипиррол, политиофен и полианилин), комплексы с переносом заряда или любую их комбинацию.

Пример соответствующей комбинации неметаллических проводящих частиц включает комбинации ICP с углеродной сажей и графитовыми частицами.

Гранулометрический состав неметаллических проводящих частиц может быть монодисперсным или полидисперсным. Предпочтительно, по меньшей мере, приблизительно 90% покрытых неметаллических проводящих частиц имеют размер в диапазоне, составляющем приблизительно от 0,3 мкм до 100 мкм, более предпочтительно - приблизительно от 1 мкм до 50 мкм, и наиболее предпочтительно - приблизительно от 5 мкм до 40 мкм.

Электропроводящие частицы имеют размер, при котором, по меньшей мере, около 50% частиц, присутствующих в полимерной смоле, имеют размер, составляющий около 10 мкм от толщины слоя полимерной смолы. Иными словами, разница между толщиной слоя смолы и размером электропроводящих частиц составляет менее приблизительно 10 мкм. Обычно электропроводящие частицы имеют размер, при котором, по меньшей мере, около 50% частиц, присутствующих в полимерной смоле, имеют размер, составляющий около 5 мкм от толщины слоя полимерной смолы.

Поэтому размер, по меньшей мере, 50% электропроводящих частиц таков, что они перекрывают толщину чередования (слой полимерной смолы), и частицы находятся в контакте с верхним волокнистым упрочняющим слоем и нижним волокнистым упрочняющим слоем, расположенным вокруг слоя полимерной смолы.

Электропроводящие частицы могут присутствовать в диапазоне, составляющем приблизительно от 0,2% об. до 20% об. от объема композитного материала. Проводящие частицы предпочтительно присутствуют в диапазоне, составляющем приблизительно от 0,4% об. до 15% об. Более предпочтительно, проводящие частицы присутствуют в диапазоне, составляющем приблизительно от 0,8% об. до 10% об.

Согласно альтернативному варианту осуществления настоящего изобретения электропроводящие частицы могут присутствовать в количестве, составляющем приблизительно 10% об. от объема слоя полимерной смолы.

Очевидно, что предпочтительные диапазоны содержания электропроводящих частиц выражены в % об., поскольку вес частиц может сильно меняться из-за колебаний плотности.

Электропроводящие частицы могут быть использованы по отдельности или в любой соответствующей комбинации.

Без чрезмерной привязки к теории было установлено, что преимущества настоящего изобретения могут быть реализованы благодаря проводящим частицам (покрытым металлом или неметаллическим), действующим как электропроводящие соединения через толщину чередования (т.е. через слой полимерной смолы и между слоями волокнистого упрочнения), тем самым соединяя прослойки волокнистого упрочнения и улучшая электропроводность в направлении z. Верхний слой покрытого металлом углеродного волокна, включающий дополнительный смоляной компонент, в котором металл включает один или более металлов, выбранных из никеля, меди, золота, платины, палладия, индия и серебра, еще больше улучшает электропроводность в направлении z.

Было также установлено, что использование электропроводящих частиц, имеющих размеры, по существу равные толщине чередования, обеспечивает выгодную электропроводимость композитного материала (в плоскости z) при сравнительно низких уровнях нагрузки. Такие низкие уровни нагрузки электропроводящих частиц меньше уровней нагрузки, обычно необходимых для того, чтобы придать электропроводность самой полимерной смоле.

Поэтому электропроводящие частицы облегчают электропроводность, снижая объемное удельное сопротивление композитного материала.

Композитный материал может также включать углеродные наноматериалы. Углеродные наноматериалы могут быть выбраны из любых соответствующих углеродных нанотрубок и углеродных нановолокон.

Углеродные наноматериалы могут иметь диаметр, составляющий приблизительно от 10 до 500 нм, предпочтительно - приблизительно от 100 до 150 нм. Углеродные наноматериалы могут предпочтительно иметь длину, составляющую приблизительно от 1 до 10 мкм.

Углеродные наноматериалы могут обеспечить дополнительные электропроводящие пути через композитный материал (в плоскости z) посредством дополнительного соединения через чередование. Волокнистые усилители обычно наносят в виде слоев или прослоек, включающих ряд волокнистых прядей. Композитный материал обычно включает две прослойки из волокнистых упрочнителей, расположенных по обе стороны полимерного смоляного слоя. Наряду с обеспечением электропроводности в плоскостях х и у материала, прослойки играют роль поддерживающих слоев для структуры материала и по существу содержат полимерную смолу.

Волокнистое упрочнение препрега может быть выбрано из гибридных или смешанных волокнистых систем, включающих синтетические или натуральные волокна либо их комбинацию. Волокнистое упрочнение формируют из электропроводящих волокон, поэтому волокнистое упрочнение является электропроводящим.

Волокнистое упрочнение может быть обычно выбрано из любого соответствующего материала, такого как металлизированное стекло, углерод, графит, металлизированные полимерные волокна (с непрерывными или прерывистыми слоями металла), полимер которых может быть растворимым или нерастворимым в полимерной смоле. Может быть выбрана любая комбинация таких волокон. Могут быть также использованы смеси таких волокон с непроводящими волокнами (такими как стекловолокно).

Волокнистое упрочнение наиболее предпочтительно формируют по существу из углеродных волокон.

Волокнистое упрочнение может включать расщепленные (т.е. разорванные с натяжением) или селективно прерывистые волокна, или непрерывные волокна. Предполагается, что использование расщепленных или селективно прерывистых волокон способно облегчить сборку отвержденного композитного материала до полного отверждения согласно настоящему изобретению, а также улучшить его способность к формованию.

Волокнистое упрочнение может иметь вид тканых, не извитых, нетканых, однонаправленных или многоосных текстильных лент или жгутов.

Волокнистое упрочнение предпочтительно выбирают из простых, сатиновых или саржевых тканей. Не извитые и многоосные ткани могут иметь ряд прослоек и ориентаций волокон.

Такие виды и формы тканевого упрочнения хорошо известны в области композитного усиления и выпускаются для коммерческих целей рядом компаний, включая Hexcel Reinforcements of Villeurbanne, France.

Как полимерная смола препрега, так и дополнительный смоляной компонент предпочтительно независимо включают, по меньшей мере, одну термоосажденную или термопластичную смолу.

Термин “термоосажденная смола” включает любой соответствующий материал, представляющий собой пластмассу и обычно находящийся в жидком, порошковом или вязком виде до отверждения и предназначенный для формования в окончательном виде. Термоосажденная смола может представлять собой любую соответствующую термоосажденную смолу. После отверждения термоосажденная смола не может быть расплавлена и подвергнута повторному формованию. Соответствующие термоосажденные смолы, применимые в настоящем изобретении, включают, но не ограничиваются ими, смолы фенолформальдегида, карбамидоформальдегида, 1,3,5-триазин-2,4,6-триамина (меламин), бисмалеимида, эпоксидные смолы, сложноэфирные виниловые смолы, бензоксазиновые смолы, фенольные смолы, сложные полиэфиры, ненасыщенные сложные эфиры, сложноэфирные цианатные смолы или комбинацию любых двух или более их них.

Термоосажденную смолу предпочтительно выбирают из эпоксидных смол, сложноэфирных цианатных смол, бисмалеимида, сложного винилового эфира, бензоксазина и фенольных смол.

Термин “термопластичная смола” включает любой материал, который является пластичным или деформируемым, плавится до жидкого состояния при нагревании, замерзает до хрупкого твердого состояния и приобретает стеклообразное состояние при достаточном охлаждении. После формования и отверждения термопластичная смола может быть расплавлена и подвергнута повторному формованию. Соответствующие термоосажденные смолы, применимые в настоящем изобретении, включают любое из таких соединений, как полиэфирсульфон (PES), полиэфир-эфирсульфон (PEES), полифенилсульфон, полисульфон, простой полиэфир, полимеризуемые макроциклы (т.е. циклический бутилентерефталат), жидкие кристаллические полимеры, полиимид, полиэфиримид, арамид, полиамид, сложный полиэфир, поликетон, полиэфир-эфиркетон (PEEK), полиуретан, полимочевина, полиарилэфир, полиарилсульфиды, поликарбонаты, полифениленоксид (РРО) и модифицированный РРО или комбинация двух или более из них.

Полимерная эпоксисмола предпочтительно включает, по меньшей мере, одно из таких соединений, как простой диглицидиловый эфир бисфенола-А (ВРА) и простой диглицидиловый эфир бисфенола-F (BPF) и их производные; тетраглицидиловое производное 4,4'-диаминодифенилметана (TGDDM); триглицидиловое производное аминофенолов и другие простые глицидиловые эфиры и глицидиловые амины, хорошо известные в данной области техники.

Полимерную смолу применяют для волокнистого упрочнения. Волокнистый упрочнитель может быть полностью или частично импрегнирован полимерной смолой. Согласно альтернативному варианту осуществления настоящего изобретения полимерный слой может представлять собой отдельный слой, находящийся поблизости и в контакте с волокнистым усилителем, но не импрегнирующий по существу упомянутый волокнистый упрочнитель.

Дополнительный смоляной компонент, используемый для импрегнирования слоя углеродного волокна, может быть или не быть электропроводящим и может включать, по меньшей мере, одну термоосажденную или термопластичную смолу. Иллюстративные смолы включают, но не ограничиваются ими, все перечисленные выше соединения полимерных смол. Дополнительный смоляной компонент может представлять или не представлять собой полимерную смолу. Дополнительный смоляной компонент может также необязательно эффективно содержать электропроводящие частицы (покрытые металлом или неметаллические).

Композитный материал может включать, по меньшей мере, один отверждающий агент. Отверждающий агент может по существу присутствовать в полимерной смоле. Предполагается, что термин “по существу присутствующий” означает присутствие, по меньшей мере, около 90% отверждающего агента, как правило, около 95% отверждающего агента.

Согласно настоящему изобретению отверждающие агенты для эпоксидных смол должны облегчать отверждение эпокси-функциональных соединений согласно настоящему изобретению и, в частности, облегчать полимеризацию с раскрытием цикла таких эпоксисоединений. В соответствии с особенно предпочтительным вариантом осуществления такие отверждающие агенты включают соединения, полимеризующиеся с эпокси-функциональным соединением или соединениями при их полимеризации с раскрытием цикла. Отверждающие агенты обычно включают цианогуанидин, ароматические и алифатические амины, кислотные ангидриды, кислоты Льюиса, замещенные мочевины, имидазолы и гидразины.

Два или более таких отверждающих агентов могут быть использованы в комбинации.

Подходящие отверждающие агенты включают ангидриды, в частности, поликарбоновые ангидриды, такие как надиковый ангидрид (NA), метилнадиковый ангидрид, фталевый ангидрид, тетрагидрофталевый ангидрид, гексагидрофталевый ангидрид, метилтетрагидрофталевый ангидрид, метилгексагидрофталевый ангидрид, эндометилентетрагидрофталевый ангидрид или тримеллитовый ангидрид.

Дальнейшими подходящими отверждающими агентами являются амины, включая ароматические амины, такие как 1,3-диаминобензол, 1,4-д