Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе

Изобретение относится к области машиностроения и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора и турбины из легированных сталей и сплавов на никелевой основе для повышения выносливости и циклической долговечности деталей. Способ включает создание требуемого вакуума турбомолекулярным насосом, ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота. Вакуум создают от 10-5 до 10-7 мм рт.ст. Ионную очистку проводят при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа. Ионно-имплантационную обработку поверхности детали проводят либо в непрерывном, либо в импульсном режиме при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 2·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1. Повышаются эксплуатационные характеристики деталей. 16 з.п. ф-лы.

Реферат

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора ГТД или паровой турбины из высоколегированных сталей и сплавов на основе никеля, а также никеля и железа для повышения выносливости и циклической долговечности деталей.

Известен способ восстановления рабочей поверхности лопатки турбины теплового двигателя, включающий удаление отработанного слоя потоком ионов плазмы тугоплавких материалов и нанесение жаростойкого покрытия с последующей термообработкой (А.С. СССР №1832132, МПК С23С 14/02, 1993).

Однако известный способ очистки поверхности (А.С. СССР №1832132, МПК С23С 14/02, 1993) потоком ионов плазмы инертного газа не предусмотривает последующее ионно-имплантационное модифицирование, что не позволяет обеспечить комплекс необходимых повышенных эксплуатационных характеристик (выносливости, длительной прочности) деталей из сплавов на основе титана.

Известен также способ модификации поверхности жаропрочных сплавов включающий ионную очистку поверхности пучком ионов азота, ионную имплантацию и стабилизирующий отжиг (Патент РФ №20007501, МПК С23С 14/48, 1994).

Основным недостатком этого способа являются невысокие эксплуатационные характеристики деталей из легированных сталей.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ ионно-имплактационной обработки деталей из легированных сталей, включающий ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота (патент РФ №21 16378, МПК С23С 14/48, 1998 г.; а также А.С. СССР №1642786, МПК С23С 14/48, Способ ионной имплантации. Опубл. 30.09.1994.). При этом, обработка поверхности осуществляется путем имплантации ионного пучка с плотностью мощности 1·103 Вт/см2 с предварительным облучением поверхности импульсным ионным пучком с плотностью мощности 5·106-108 Вт/см2 и удельной энергией в импульсе 0,5-10 Дж/см2.

Основным недостатком аналога способа являются невысокие эксплуатационные характеристики деталей из легированных сталей (предела выносливости, циклической долговечности). Это связано с недостаточно рациональными вариантами обработки поверхности деталей из высоколегированных сталей и сплавов на никелевой основе при использовании методов ионно-имплантационного воздействия. При этом повышение указанных характеристик особенно важно для таких деталей из высоколегированных сталей и сплавов на никелевой основе как лопатки компрессоров высокого давления газотурбинных двигателей (ГТД) и установок (ГТУ), а также лопаток паровых турбин.

Задачей настоящего изобретения является создание такого поверхностного слоя материала детали, который позволил бы обеспечить повышенные эксплуатационные характеристики деталей из высоколегированных сталей и сплавов на никелевой основе (предела выносливости, циклической долговечности).

Техническим результатом заявляемого способа является повышение эксплуатационных характеристик (предела выносливости, циклической долговечности) деталей из высоколегированных сталей и сплавов на никелевой основе за счет обеспечения интенсификации ионно-имплантационной обработки поверхности деталей.

Технический результат достигается тем, что в способе ионно-имплантационной обработки деталей из высоколегированных сталей и сплавов на никелевой основе, включающем ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота, в отличие от прототипа, ионную очистку проводят при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа, а ионно-имплантационную обработку поверхности детали проводят при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 2·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1, при этом возможны следующие варианты способа: создание требуемого вакуума производится турбомолекулярным насосом; создают вакуум от 10-5 до 10-7 мм рт.ст.

Технический результат достигается также тем, что в способе ионно-имплантационной обработки деталей из высоколегированных сталей и сплавов на никелевой основе ионную имплантацию проводят либо в импульсном режиме, либо в непрерывном режиме, а после ионно-имплантационной обработки проводят гтостимплантационный отжиг.

Технический результат достигается также тем, что в способе ионно-имплантационной обработки деталей из высоколегированных сталей и сплавов на никелевой основе в качестве деталей из титановых сплавов используются лопатки компрессора газотурбинного двигателя или газотурбинной установки или лопатка паровой турбины, а перед ионной очисткой деталей проводят электролитно-плазменное полирование деталей погружая их в водный раствор электролита и прикладывая к деталям положительное по отношению к электролиту электрическое напряжение.

Для оценки эксплуатационных свойств лопаток паровых и газовых турбин были проведены следующие испытания. Образцы из высоколегированных сталей и сплавов на никелевой основе, были подвергнуты ионно-имплантационной обработке как по способу- прототипу (патент РФ №2116378, МПК С23С 14/48, 1998 г,).), согласно приведенных в способе-прототипе условий и режимов обработки, так и по предлагаемому способу.

Режимы обработки образцов по предлагаемому способу.

Ионная очистка: ионы аргона при энергии 6 кэВ - неудовлетворительный результат (Н.Р.); 8 кэВ - удовлетворительный результат (У.Р.); 10 кэВ (У.Р.); 12 кэВ (Н.Р.); плотность тока: 110 мкА/см2 (Н.Р.); 130 мкА/см2 (У.Р.); 160 мкА/см2 (У.Р.); 180 мкА/см2 (Н.Р.); время ионной очистки: 0,1 часа (Н.Р.); 0,3 часа (У.Р.); 1,0 часа (У.Р.); 1,5 часа (Н.Р.).

Ионная имплантация ионами N: энергия - 20 кэВ (Н.Р.); 25 кэВ (У.Р.); 30 кэВ (У.Р.); 40 кэВ (Н.Р.); доза - 1,2·1017 см-2 (Н.Р.); 1,6·1017 см-2 (У.Р.); 2·1017 см-2 (У.Р.); 3·1017 см-2 (Н.Р.); скоростью набора дозы - 0,4·1015 с-1 (Н.Р.); 0,7·1015 с-1 (У.Р.); 1·1015 с-1 (У.Р.); 3·1015 с-1 (Н.Р.).

Создание требуемого вакуума производилось турбомолекулярным насосом; создавали вакуум от 10-5 до 10-7 мм рт.ст.

После обработки деталей проводили постимплантационный отжиг, в одном вакуумном объеме установки за один технологический цикл.

Ионную имплантацию проводили как в импульсном так и непрерывном режимах. В качестве деталей из легированных сталей использовались лопатки компрессора газотурбинного двигателя, лопатки газотурбинной установки и лопатки паровой турбины.

Электролитно-плазменное полирование проводили погружая детали в водный раствор электролита и прикладывая к ним положительное по отношению к электролиту электрическое напряжение, осуществляя следующие варианты: полирование вели до обеспечения шероховатости не ниже Ra=0,08…0,12 мкм; полирование вели при рабочем напряжении 18…490 В; как варианты в качестве электролита использовали: водный раствор сульфата аммония с концентрацией 0,8…3,4; водный раствор, содержащий серную и орто-фосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%

Серная кислота - 10-30

Орто-фосфорная кислота - 40-80

Блок-сополимер окисей этилена и пропилена - 0,05-1,1

Натриевая соль сульфированного бутилолеата - 0,01-0,05

Вода - Остальное.

Как варианты в качестве электролита использовали: водный растворы солей неорганических кислот аммония и щелочных металлов или соли низших карбоновых кислот, а также растворы свободных кислот; электролит, содержащий аммонийную соль неорганической кислоты, аммонийные соли низших карбоновых кислот и органические или неорганические вещества, образующие с металлами сплава комплексные соединения; используют электролит состава, мас.%:

(NH4)2SO4 - 5

Трилон Б - 0,8.

Как вариант, в качестве электролита использовали: электролит состава, мас.%:

(NH4)3PO4 - 5

Н3РО4 - 0,5

Тартрат К - 0,5;

Как вариант, в качестве электролита использовали: водные растворы солей натрия; в качестве водного раствора солей натрия используют 3-22%-ый раствор кислого углекислого натрия. В качестве электролита использовали:водные растворы солей аммония; в качестве соли аммония используют аммоний лимоннокислый одно- или двух-, или трехзамещенный, или их смеси при следующем соотношении компонентов, мас.%:

Аммоний лимоннокислый одно-, или двух-, или трехзамещенный, или их смеси - 2-18

Вода - Остальное.

Как вариант, в качестве электролита использовали: водные растворы солей со значением рН 4…9.

Были проведены испытания на выносливость и циклическую прочность образцов из высоколегированных сталей и сплавов на никелевой основе (20X13, 15X1 1МФ, ЭИ961, ЭП866, ЭЦП7О8) на воздухе. В результате эксперимента установлено следующее: условный предел выносливости (σ-1) образцов в исходном состоянии составляет 320 МПа, у образцов, упрочненных по способу-прототипу - 350-360 МПа, МПа, а по предлагаемому способу 370-380 МПа.

Стойкость к солевой коррозии исследовалась по ускоренной методике Всероссийского института авиационных материалов. Сущность методики испытания заключается в ускорении коррозионного процесса под влиянием ионов хлора при высоких и быстроменяющихся температурах и относительной влажности воздуха. В процессе испытаний производилось взвешивание образцов: в исходном состоянии; после испытаний: с продуктами коррозии на поверхности образцов; после удаления коррозионного налета химическим способом. Испытания показали увеличение коррозионной стойкости деталей с покрытиями, нанесенными по предлагаемому способу по сравнению с прототипом в 1,4…1.9 раза.

Таким образом, проведенные сравнительные испытания показали, что применение в способе ионно-имплантационной обработки деталей из высоколегированных сталей и сплавов на никелевой основе, следующих приемов: ионную очистку ионами аргона при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 часа; ионно-имплантационную обработку поверхности детали ионами азота при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 2·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1; создание требуемого вакуума турбомолекулярным насосом; создание вакуума от 10-5 до 10-7 мм рт.ст.; проведение ионной имплантации либо в импульсном режиме, либо в непрерывном режиме; проведение, после ионно-имплантационной обработки постимплантационного отпуска; использование в качестве деталей из высоколегированных сталей и сплавов на никелевой основе лопаток компрессора газотурбинного двигателя или газотурбинной установки или лопаток паровой турбины, проведение перед ионной очисткой деталей электролитно-плазменное полирование деталей погружая их в водный раствор электролита и прикладывая к деталям положительное по отношению к электролиту электрическое напряжение, позволяет увеличить, по сравнению с прототипом, выносливость и циклическую прочность, что подтверждает заявленный технический результат предлагаемого изобретения - повышение предела выносливости и циклической долговечности обработанных деталей.

1. Способ ионно-имплантационной обработки лопаток компрессора из высоколегированных сталей и сплавов на никелевой основе, включающий ионную очистку ионами аргона и ионно-имплантационную обработку поверхности детали ионами азота, отличающийся тем, что ионную очистку проводят при энергии от 8 до 10 кэВ, плотности тока от 130 мкА/см2 до 160 мкА/см2 в течение от 0,3 до 1,0 ч, а ионно-имплантационную обработку поверхности детали проводят при энергии от 25 до 30 кэВ, дозой от 1,6·1017 см-2 до 2·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1.

2. Способ по п.1, отличающийся тем, что требуемый вакуум создают турбомолекулярным насосом.

3. Способ по п.2, отличающийся тем, что создают вакуум от 10-5 до 10-7 мм рт.ст.

4. Способ по любому из пп.1-3, отличающийся тем, что ионную имплантацию проводят в импульсном режиме.

5. Способ по любому из пп.1-3, отличающийся тем, что ионную имплантацию проводят в непрерывном режиме.

6. Способ по любому из пп.1-3, отличающийся тем, что после ионно-имплантационной обработки проводят постимплантационный отжиг.

7. Способ по п.4, отличающийся тем, что после ионно-имплантационной обработки проводят постимплантационный отжиг.

8. Способ по п.5, отличающийся тем, что после ионно-имплантационной обработки проводят постимплантационный отжиг.

9. Способ по любому из пп.1-3, 7-8, отличающийся тем, что в качестве детали из высоколегированных сталей и сплавов на никелевой основе используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

10. Способ по п.4, отличающийся тем, что в качестве детали из высоколегированных сталей и сплавов на никелевой основе используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

11. Способ по п.5, отличающийся тем, что в качестве детали из высоколегированных сталей и сплавов на никелевой основе используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

12. Способ по п.6, отличающийся тем, что в качестве детали из высоколегированных сталей и сплавов на никелевой основе используют лопатку компрессора газотурбинного двигателя или газотурбинной установки или лопатку паровой турбины.

13. Способ по любому из пп.1-3, 7-8, 10-12, отличающийся тем, что перед ионной очисткой детали проводят электролитно-плазменное полирование детали погружением ее в водный раствор электролита и приложением к детали положительного по отношению к электролиту электрического напряжения.

14. Способ по п.4, отличающийся тем, что перед ионной очисткой детали проводят электролитно-плазменное полирование детали погружением ее в водный раствор электролита и приложением к детали положительного по отношению к электролиту электрического напряжения.

15. Способ по п.5, отличающийся тем, что перед ионной очисткой детали проводят электролитно-плазменное полирование детали погружением ее в водный раствор электролита и приложением к детали положительного по отношению к электролиту электрического напряжения.

16. Способ по п.6, отличающийся тем, что перед ионной очисткой детали проводят электролитно-плазменное полирование детали погружением ее в водный раствор электролита и приложением к детали положительного по отношению к электролиту электрического напряжения.

17. Способ по п.9, отличающийся тем, что перед ионной очисткой детали проводят электролитно-плазменное полирование детали погружением ее в водный раствор электролита и приложением к детали положительного по отношению к электролиту электрического напряжения.