Рассчитанный на работу под водой композитный кабель и способы его изготовления и использования
Иллюстрации
Показать всеИзобретение относится к подводным кабелям для передачи электрический мощности и различных сигналов на большие глубины. Рассчитанные на работу под водой композитные кабели включают некомпозитный электропроводящий сердцевинный кабель, множество композитных кабелей, включающих множество композитных проводов, расположенных вокруг сердцевинного кабеля, и изоляционную оболочку, окружающую композитные провода. Прочие воплощения включают электропроводящий сердцевинный кабель; множество элементов, выбираемых из элементов переноса текучей среды, передачи электрической мощности, передачи электрического сигнала, светопередачи, элементов веса, элементов плавучести, заполняющих элементов или бронирующих элементов, расположенных вокруг сердцевинного кабеля в виде по меньшей мере одного цилиндрического слоя с осью, определенной центральной продольной осью сердцевинного кабеля; множество композитных проводов, окружающих указанные элементы и расположенных в виде по меньшей мере одного цилиндрического слоя вокруг центральной продольной оси; и изоляционную оболочку, окружающую композитные провода. Композитные провода могут быть композитными проводами с металлической матрицей или полимерными композитными проводами. Изобретение обеспечивает создание легких по весу и имеющих высокую прочность на растяжение кабелей шлангокабелей и т.п. 24 з.п. ф-лы, 7 ил., 2 табл.
Реферат
Ссылки на патентные заявки, имеющие отношение к настоящей
Настоящая заявка претендует на приоритет предварительных патентных заявок США 61/226056 и 61/226151 (обе поданы 16 июля 2009 года), которые включены в данную заявку посредством ссылки в полном объеме.
Область применения
Настоящее изобретение в общем относится к рассчитанным на работу под водой композитным кабелям и способам их изготовления и использования. Настоящее изобретение дополнительно относится к рассчитанным на работу под водой композитным кабелям, которые могут использоваться, например, как шлангокабели или кабели привязи.
Уровень техники
Подводные кабели используются для передачи электрической мощности и различных сигналов на большие глубины в различных приложениях, включая оффшорные нефтяные платформы, роботизированные механизмы, подводные линии электропередачи и оптоволоконные линии связи. Рассчитанные на работу под водой кабели для подводных линий электропередачи описаны, например, в патенте США 4345112 (Sugata с соавторами) и патентной заявке США 2007/0044992 (автор Bremnes). Такие рассчитанные на работу под водой кабели для линий электропередачи, как правило, включают проводящие элементы и элементы, несущие нагрузку, которые должны полностью выдерживать, не претерпевая разрыва, различные нагрузки, например, вызванные растяжением кабеля и его намоткой на барабан лебедки, а также при укладке кабеля с судна на морское дно и при его подъеме с дна, и действующие на кабель на поверхности воды или под водой. В целом желательно, чтобы кабель мог работать на как можно большей глубине, однако на практике максимальная глубина использования кабеля ограничена максимальной нагрузкой и растяжением под действием собственного веса, которые может выдерживать кабель. То есть, максимальная глубина работы под водой и характеристики передачи мощности ограничены свойствами материалов проводящих элементов и несущих нагрузку элементов кабеля.
Рассчитанные на работу под водой кабели линий электропередачи обычно изготавливаются из металлических проводов (например, стали, меди, алюминия) и/или несущих нагрузку элементов, и обычно имеют достаточно большое поперечное сечение, а следовательно, и значительный вес из-за высокого удельного веса используемых в нем металлов, в частности, меди. Кроме того, так как медные провода обычно имеют низкую способность нести нагрузку, глубина, до которой могут быть использованы подводные кабели для передачи электрической мощности, в которых используются медные проводники, ограничена. Предложены различные конструкции кабелей, имеющих высокие пределы растяжения и сопротивления разрыву, что требуется для укладки подводных кабелей на большие расстояния (1000 метров и более) и глубины. Их примеры описаны, в частности, в патентных заявках США 2007/0271897 (Hanna с соавторами); 2007/0237469 (автор Espen); и 2006/0137880, 2007/0205009, 2007/0253778 (автор всех Figenschou). Для некоторых подводных приложений были разработаны небронированные кабели, в которых используются, например, кевлар и медь. Тем не менее, продолжаются поиски легких по весу и имеющих высокую прочность на растяжение кабелей, шлангокабелей и привязей, способных передавать большую мощность, большой электрический ток, большие объемы сигналов и/или большие количества текучих сред между оборудованием, расположенным на поверхности моря и оборудованием, расположенным на дне моря и, в частности, пригодных к использованию на больших глубинах.
Сущность изобретения
В ряде приложений требуется дальнейшее улучшение конструкции подводных кабелей для передачи электрической мощности, способов их изготовления и использования. В некоторых приложениях требуется, например, улучшение физических свойств рассчитанных на работу под водой кабелей электропередачи, например, уменьшение их веса, повышение сопротивления растяжению и предела прочности на разрыв. В других приложениях требуется повышение надежности и уменьшение себестоимости рассчитанных на работу под водой кабелей передачи электрической мощности.
Поэтому в одном из воплощений настоящего изобретения предлагается рассчитанный на работу под водой композитный кабель, содержащий не композитный электропроводящий сердцевинный кабель; множество композитных кабелей вокруг сердцевинного кабеля, причем композитные кабели содержат множество композитных проводов; и изоляционную оболочку, окружающую множество композитных кабелей. В некоторых воплощениях рассчитанный на работу под водой композитный кабель дополнительно содержит второе множество композитных проводов, причем по меньшей мере часть второго множества композитных проводов расположена вокруг множества композитных кабелей в виде по меньшей мере одного цилиндрического слоя, с осью, определенной центральной продольной осью сердцевинного кабеляВ некоторых предпочтительных воплощениях изобретения рассчитанный на работу под водой композитный кабель имеет предел прочности на растяжение по меньшей мере 0.5%.
В некоторых воплощениях рассчитанный на работу под водой композитный кабель содержит по меньшей мере один элемент, выбираемый из элемента переноса текучей среды, элемента передачи электрической мощности, элемента передачи электрического сигнала, элемента светопередачи, элемента веса, элемента плавучести, заполняющего элемента или бронирующего элемента. В некоторых воплощениях светопередающий элемент содержит по меньшей мере одно оптическое волокно. В дополнительных воплощениях бронирующий элемент содержит множество волокон, окружающих сердцевинный кабель, причем волокна выбираются из группы, состоящей из полиарамидных волокон, керамических волокон, угольных волокон, металлических волокон, стеклянных волокон и их сочетаний. В дополнительных воплощениях рассчитанный на работу под водой композитный кабель содержит множество проводов, окружающих сердцевинный кабель, причем данные провода выбираются из металлических проводов, композитных проводов с металлической матрицей и их сочетаний.
В других воплощениях изобретения сердцевинный кабель содержит по меньшей мере один металлический провод, один металлический элемент, несущий нагрузку, или их сочетание. В некоторых воплощениях сердцевинный кабель содержит множество металлических проводов. В некоторых воплощениях сердцевинный кабель является скрученным. В частности, в некоторых воплощениях скрученный сердцевинный кабель является спирально скрученным.
В некоторых воплощениях множество композитных кабелей расположено вокруг сердцевинного кабеля в виде по меньшей мере двух цилиндрических слоев, с осью, определенной центральной продольной осью сердцевинного кабеля. В некоторых воплощениях по меньшей мере один из по меньшей мере двух цилиндрических слоев содержит только композитные кабели. Еще некоторых воплощениях по меньшей мере один из по меньшей мере двух цилиндрических слоев содержит по меньшей мере один элемент, выбираемый из группы, состоящей из элемента для переноса текучей среды, элемента передачи электрической мощности, элемента светопередачи, элемента веса, заполняющего элемента или бронирующего элемента.
В некоторых воплощениях по меньшей мере один из композитных кабелей является скрученным композитным кабелем, содержащим множество цилиндрических слоев из композитных проводов, закрученных вокруг центральной продольной оси по меньшей мере одного композитного кабеля. В некоторых воплощениях упомянутый по меньшей мере один скрученный композитный кабель является закрученным по спирали. В некоторых воплощениях каждый из композитных проводов является выбираемым из группы, состоящей из композитного провода с металлической матрицей и полимерного композитного провода. В некоторых воплощениях изоляционная оболочка образует внешнюю поверхность рассчитанного на работу под водой композитного кабеля. В некоторых воплощениях изоляционная оболочка содержит материал, выбираемый из группы, состоящей из керамики, стекла, сополимера и их сочетаний.
Во втором типе воплощений настоящего изобретения предлагается способ изготовления рассчитанного на работу под водой композитного кабеля, описанного выше, содержащий этапы: (а) обеспечения не композитного электропроводящего сердцевинного кабеля; (b) расположения вокруг сердцевинного кабеля множества композитных кабелей, содержащих множество композитных проводов; и (с) окружения множества композитных кабелей изоляционной оболочкой.
Еще в одном типе воплощений настоящего изобретения предлагается рассчитанный на работу под водой композитный кабель, содержащий электропроводящий сердцевинный кабель; множество элементов, расположенных вокруг сердцевинного кабеля по меньшей мере в виде одного цилиндрического слоя, с осью, определенной центральной продольной осью сердцевинного кабеля, причем каждый элемент выбирается из группы, состоящей из элемента переноса текучей среды, элемента передачи электрической мощности, элемента передачи электрического сигнала, элемента светопередачи, элемента веса, элемента плавучести, заполняющего элемента или бронирующего элемента; множество композитных проводов, окружающих множество элементов и расположенных в виде по меньшей мере одного цилиндрического слоя, с осью, определенной центральной продольной осью сердцевинного кабеля; и изоляционную оболочку, окружающую множество композитных проводов. В некоторых воплощениях по меньшей мере часть множества композитных проводов закручена и образует по меньшей мере один композитный кабель.
В некоторых воплощениях бронирующий элемент содержит множество волокон, окружающих сердцевинный кабель, причем волокна выбираются из группы, состоящей из полиарамидных волокон, керамических волокон, угольных волокон, металлических волокон, стеклянных волокон и их сочетаний. В некоторых воплощениях бронирующий элемент содержит множество проводов, окружающих сердцевинный кабель, причем провода выбираются из группы, состоящей из металлических проводов, композитных проводов с металлической матрицей и их сочетаний. В некоторых воплощениях рассчитанный на работу под водой композитный кабель дополнительно содержит вторую изоляционную оболочку, расположенную между множеством элементов и множеством композитных проводов, так что вторая изоляционная оболочка окружает множество элементов.
Еще в одном типе воплощений изобретения предлагается способ изготовления рассчитанного на работу под водой композитного кабеля, описанного выше, содержащий этапы: (а) обеспечения электропроводящего сердцевинного кабеля; (b) расположения множества элементов вокруг сердцевинного кабеля в виде по меньшей мере одного цилиндрического слоя, с осью, определенной центральной продольной осью сердцевинного кабеля (то есть расположенного концентрично сердцевинному кабелю в поперечном сечении кабеля), причем каждый из элементов выбирают из группы, состоящей из элемента переноса текучей среды, элемента передачи электрической мощности, элемента передачи электрического сигнала, элемента светопередачи, элемента веса, элемента плавучести, заполняющего элемента или бронирующего элемента; (с) окружения множества элементов множеством композитных проводов, расположенный в виде по меньшей мере одного цилиндрического слоя, с осью, определенной центральной продольной осью сердцевинного кабеля; и (d) окружения множества композитных проводов изоляционной оболочкой.
Воплощения рассчитанного на работу под водой композитного кабеля в соответствии с настоящим изобретением могут иметь различные черты и характеристики, позволяющие их использовать в различных приложениях, и обеспечивающие те или иные преимущества. Рассчитанные на работу под водой композитные кабели в соответствии с различными воплощениями настоящего изобретения могут обладать улучшенными характеристиками благодаря улучшенным свойствам используемых в них материалов, включая низкий удельный вес, более высокий модуль упругости, повышенную прочность, лучшее сопротивление усталости и более высокую проводимость. Так, например, воплощения рассчитанных на работу под водой композитных кабелей в соответствии с настоящим изобретением могут характеризоваться значительно большей предельной глубиной их использования, максимальной нагрузкой и прочностью на разрыв, могут обеспечивать передачу большей или по меньшей мере сравнимой электрической мощности по сравнению с существующими не композитными кабелями. Более того, воплощения рассчитанных на работу под водой композитных кабелей в соответствии с настоящим изобретением могут быть легче по весу, чем не композитные подводные кабели, что облегчает их укладку на морское дно и подъем с морского дна. Сопротивление усталости композитных кабелей, рассчитанных на работу под водой, также может быть выше, чем у аналогичных не композитных кабелей.
Выше были кратко описаны основные типы воплощений настоящего изобретения и их преимущества. В приведенном выше кратком описании не подразумевалось описать каждое из возможных воплощений настоящего изобретения. Для более подробного объяснения различных предпочтительных воплощений настоящего изобретения, общие принципы которых описаны выше, ниже приводится подробное описание изобретения, сопровождаемое прилагаемыми к нему чертежами.
Краткое описание чертежей
Ниже приводится более подробное описание воплощений настоящего изобретения со ссылками на прилагаемые чертежи.
Фиг.1А-1С. Поперечные сечения рассчитанного на работу под водой композитного электрического кабеля в соответствии с различными воплощениями настоящего изобретения.
Фиг.2A-2D. Сечения композитных кабелей, которые могут использоваться для изготовления рассчитанных на работу под водой композитных электрических кабелей в соответствии с настоящим изобретением.
Фиг.3А-3Е. Сечения различных композитных кабелей, включающих один или более слоев, содержащих множество металлических проводов, закрученных вокруг спирально скрученных композитных проводов, которые могут использоваться для изготовления рассчитанных на работу под водой композитных электрических кабелей в соответствии с настоящим изобретением.
Фиг.4А. Вид сбоку скрученного композитного кабеля, содержащего удерживающее средство, наложенное поверх сердцевины из скрученных композитных проводов, который может использоваться для изготовления воплощений рассчитанных на работу под водой композитных электрических кабелей в соответствии с настоящим изобретением.
Фиг.4B-4D. Поперечные сечения различных воплощений скрученных композитных кабелей, включающих различные удерживающие средства вокруг сердцевины из скрученных композитных проводов, которые могут использоваться для изготовления рассчитанных на работу под водой композитных электрических кабелей в соответствии с воплощениями настоящего изобретения.
Фиг.5. Сечение воплощения скрученного композитного кабеля, включающего удерживающее средство, наложенное поверх сердцевины из скрученных композитных проводов, и один или более слоев, содержащих множество металлических проводов, закрученных вокруг сердцевины из скрученных композитных проводов, который может использоваться для изготовления воплощений рассчитанных на работу под водой композитных электрических кабелей в соответствии с настоящим изобретением.
Фиг.6А-6С. Поперечные сечения рассчитанных на работу под водой композитных электрических кабелей, в которые включены бронирующие элементы в соответствии с некоторыми воплощениями настоящего изобретения.
Фиг.7. Диаграмма сравнения прочности, модуля упругости и электропроводности рассчитанных на работу под водой композитных электрических кабелей, в которых используются композитные проводники в соответствии с настоящим изобретением, с соответствующими свойствами аналогичных рассчитанных на работу под водой кабелей, в которых используются медные или стальные проводники.
Аналогичные номера позиций на чертежах обозначают аналогичные элементы. Чертежи не обязательно выполнены в масштабе, и размеры тех или иных компонентов на чертежах могут быть изменены для того, чтобы подчеркнуть те или иные их особенности.
Подробное описание изобретения
Некоторые термины, используемые в настоящем описании и в формуле изобретения, несмотря на то, что большинство из них является хорошо известным, тем не менее требуют некоторого разъяснения.
В частности, следует понимать, что термин «хрупкий» в отношении термина «провод» означает, что провод под растягивающей нагрузкой допускает минимальную пластическую деформацию растяжения и терпит разрыв.
Термин «провод» включает тягучие металлические провода, композитные провода с металлической матрицей, композитные провода с полимерной матрицей, оптоволоконные провода и пустотелые шланги для переноса текучих сред.
Термин «тягучий», употребляемый в отношении деформации провода, означает, что провод при его изгибании в сущности претерпевает пластическую деформацию, не разрываясь и не разламываясь.
Термин «изгиб», употребляемый в отношении деформации провода, включат двухмерную и/или трехмерную деформацию изгиба, которую он претерпевает, например, при скручивании по спирали. Если упоминается, что провод претерпевает деформацию изгиба, это не исключает возможности, что он одновременно претерпевает также деформацию под действиями сил растяжения или скручивания.
Термин "в значительной мере упругий изгиб" означает деформацию, которая происходит при изгибе провода до радиуса кривизны, составляющего до 10000 радиусов сечения провода. В отношении провода круглого сечения деформация «в значительной мере упругого изгиба» соответствует растяжению внешнего волокна провода по меньшей мере 0,01%.
Термин «композитный провод» относится к проводу, сформированному из сочетания материалов, отличающихся друг от друга по составу или форме, которые скреплены друг с другом, и имеющему хрупкие или не тягучие свойства.
Термин «не композитный электропроводящий сердцевинный кабель» означает кабель, который может содержать единичный провод или множество проводов, которые не являются композитными проводами, причем данные провода могут проводить электрический ток и расположены в центре кабеля привязи или шлангокабеля.
Термин «композитный провод с металлической матрицей» означает композитный провод, содержащий один или более армирующих материалов, скрепленных между собой так, что они образуют матрицу, состоящую из одного или более тягучих металлических компонентов.
Термин «композитный провод с полимерной матрицей» подобным образом означает композитный провод, содержащий один или более армирующих материалов, скрепленных между собой так, что они образуют матрицу, состоящую из одного или более полимерных компонентов.
Термин «керамический» означает стекло, кристаллическую керамику, стеклокерамику и их сочетания.
Термин «поликристаллический» означает материал, имеющий преобладающую структуру из множества кристаллических зерен, размер которых меньше диаметра волокна, в котором данные зерна присутствуют.
Термины «закручивание» и «скручивание» используются как взаимно заменяющие друг друга, равно как и термины «закрученный» и «скрученный».
Термин «укладка» означает расположение проводов, при котором провода скрученного слоя спирально скрученного кабеля наматываются по спирали.
Термин «направление укладки» означает направление закручивания проводов в спирально скрученном слое. Направление укладки проводов в слое спирально закрученных проводов определяется следующим образом: необходимо посмотреть на спирально скрученные провода, уходящие от обозревателя. Если скрученные провода, уходя от обозревателя, поворачиваются по часовой стрелке, такой кабель именуется кабелем «правосторонней укладки». Если скрученные провода, уходя от обозревателя, поворачиваются против часовой стрелке, такой кабель именуется кабелем «левосторонней укладки».
Термины «центральная ось» и «центральная продольная ось» используются как взаимно заменяющие друг друга для обозначения общей продольной оси многослойного спирально скрученного кабеля, проходящей через центр любого его поперечного сечения.
Термин «угол укладки» означает угол между касательной к закрученному по спирали проводу и центральной продольной осью спирально закрученного кабеля.
Термин «угол пересечения» означает относительную (абсолютную) разность между углами укладки смежных слоев проводов кабеля, содержащего спирально закрученные провода.
Термин «шаг укладки» означает длину кабеля, содержащего закрученные провода, на которой единичный провод слоя из спирально закрученных проводов образует один полный виток спирали вокруг центральной продольной оси кабеля, содержащего спирально закрученные провода.
Термин «непрерывное волокно» означает волокно, имеющее длину, бесконечно большую по отношению к среднему диаметру волокна. Как правило, это означает, что отношение длины волокна к среднему диаметру волокна составляет по меньшей мере 1×105 (в некоторых воплощениях по меньшей мере 1×106, или даже по меньшей мере 1×107). Как правило, такие волокна имеют длину от по меньшей мере примерно 15 см до по меньшей мере нескольких метров, и даже могут иметь длину в несколько километров, или даже более.
Настоящее изобретение относится к рассчитанным на работу под водой композитным кабелям. Рассчитанные на работу под водой могут использоваться в различных приложениях, например, в подводных кабелях привязи или шлангокабелях для передачи электрической мощности и информационных сигналов с поверхности моря на подводную базу, например, для управления работой механизмов, находящихся на такой базе. Прочие приложения включают шлангокабели аппаратов для бурения скважин и трубопроводов, соединяющих подводное месторождение с платформой, с помощью которых производится передача различных текучих сред между платформой и нефтяной или газовой скважиной. Возможные приложения включают также кабели подземных или воздушных линий электропередачи, используемые во влажной среде, например, в болотах, тропических лесах и им подобных. Примеры кабелей подземных и воздушных линий электропередачи, а также возможные области их применения описаны в предварительной патентной заявке США 61/226151 «Изолированный композитный электрический кабель и способы его изготовления и использования», поданной 16 июля 2009 года одновременно с настоящей заявкой.
Применение композитных материалов обеспечивает улучшенные характеристики кабелей, а именно, большую глубину их применения и передачу большей электрической мощности. Типичные шлангокабели или кабели привязи рассчитаны на максимальную глубину их применения, составляющую примерно 3000 м. Прокладка кабелей на глубины, превышающие 3000 м, очень затруднена из-за растущего риска обрыва кабеля. Тем не менее, существует потребность в кабелях, которые можно было бы прокладывать на глубину до 6000 м и более. Для этого требуются кабели, обладающие низким удельным весом и высоким модулем упругости. Такие свойства могут обеспечить композитные материалы, обладающие низким удельным весом и способностью нести большую нагрузку, проявляя при этом малую степень растяжения.
Одной из важнейших характеристик рассчитанного на работу под водой электрического кабеля является отношение веса кабеля к единице его длины в морской воде. Данный параметр, вместе с характеристиками прочности кабеля, определяет максимальную глубину, на которую может быть проложен (или наращен) кабель до наступления предела его механической прочности на разрыв под действием собственного веса. Кроме того, иногда приходится поднимать кабели со дна моря на поверхность для выполнения ремонтных работ. При этом для подъема такого кабеля может требоваться значительная сила, что требует мощной лебедки и большой плавучести судна, способной противостоять значительному весу кабеля. Важной характеристикой является также сопротивление усталости. Так, например, подводные шлангокабели часто приходится поднимать в течение срока их службы, составляющего примерно пять лет, и при подъеме кабель проходит по различным катушкам или роликам. В таких местах возникают очень большие нагрузки растяжения и изгиба, так как на некоторые ролики может приходиться вес практически всего кабеля, и натяжение кабеля на таком ролике может быть очень большим. Раскачивание платформы в вертикальном и горизонтальном направлениях океаническими волнами может вызывать дополнительные динамические нагрузки изгиба на кабель. Использование композитных материалов может обеспечивать дополнительное сопротивление усталости рассчитанных на работу под водой электрических кабелей.
Ниже описаны различные воплощения настоящего изобретения со ссылками на прилагаемые чертежи. В различные воплощения настоящего изобретения могут быть внесены различные изменения без отхода от идеи и масштабов настоящего изобретения. Соответственно следует понимать, что воплощения настоящего изобретения не ограничены описанными ниже примерами, а ограничены воплощениями, сформулированными в формуле изобретения и их эквивалентами.
Как показано на фиг.1А, в одном из воплощении настоящего изобретения предлагается рассчитанный на работу под водой композитный кабель 20, содержащий электропроводящий не композитный несущий нагрузку кабель 16, расположенный в сердцевине 11 рассчитанного на работу под водой композитного кабеля 20; множество композитных кабелей 10, расположенных вокруг сердцевины 11, причем композитные кабели 10 содержат множество композитных проводов; и изоляционную оболочку 26, окружающую множество композитных кабелей 10.
В некоторых воплощениях типа, изображенного на фиг.1А, вокруг сердцевины 11 сформировано по меньшей мере два цилиндрических слоя; при этом первый цилиндрический слой 22 сформирован вокруг электропроводящего не композитного кабеля 14, а второй цилиндрический слой 24, содержащий множество композитных кабелей 10, сформирован вокруг первого цилиндрического слоя 22. В воплощении, изображенном на фиг.1А, сердцевина 11 содержит несущий нагрузку проводящий кабель 16; а первый цилиндрический слой 22 может дополнительно содержать множество электропроводящих не композитных кабелей 14, которые могут быть проводниками и/или несущими нагрузку элементами, а также различные дополнительные элементы 12, которые могут быть выбраны из элементов для переноса текучей среды, элементов для передачи электрической мощности, элементов для передачи электрического сигнала, светопередающих элементов, весовых элементов, элементов плавучести, заполняющих элементов или бронирующих элементов. В воплощении, изображенном на фиг.1А, по меньшей мере один из по меньшей мере двух цилиндрических слоев 22 и 24 (в данном случае таковым является цилиндрический слой 24) содержит только множество композитных кабелей 10.
И хотя на фиг.1А представлено одно частное воплощение, содержащее определенный тип сердцевины 11, определенное расположение композитных кабелей 10, дополнительно возможные электропроводящие не композитные кабели 14 и/или элементы 12, используемые для формирования соответственно каждого из по меньшей мере двух цилиндрических слоев вокруг сердцевины, следует понимать, что возможны и иные воплощения, с иным расположением слоев и прочих компонентов.
Так, например, как показано на фиг.1В, в настоящем изобретении также предлагается рассчитанный на работу под водой композитный кабель 20', содержащий электропроводящий не композитный мнотопроводной кабель 14, расположенный в сердцевине 11' рассчитанного на работу под водой композитного кабеля 20'; множество композитных кабелей 10, расположенных вокруг сердцевины 11', причем композитные кабели 10 содержат множество композитных проводов; и изоляционную оболочку 26, окружающую множество композитных кабелей 10. В воплощении, изображенном на фиг.1В, сердцевина 11' содержит электропроводящий не композитный кабель 14, и вокруг сердцевины 11' симметричным образом расположено множество композитных кабелей 10 в виде по меньшей мере двух цилиндрических слоев: первого (внутреннего) цилиндрического слоя 22' и второго (внешнего) цилиндрического слоя 24', с осью, определенной центральной продольной осью сердцевины 11'.
В воплощении, изображенном на фиг.1В, каждый из по меньшей мере двух цилиндрических слоев 22' и 24' может содержать дополнительные элементы 12, выбираемые из элементов переноса текучей среды, элементов для передачи электрической мощности, элементов для передачи электрического сигнала, светопередающих элементов, весовых элементов, элементов плавучести, заполняющих элементов или бронирующих элементов. Каждый из упомянутых дополнительных элементов предпочтительно является композитным армированным элементом, например, элементом, армированным матрицей из металлических и/или полимерных композитных проводов, стержней, трубок, слоев и прочих элементов. Как показано на фиг.1В, какой-либо из по меньшей мере двух цилиндрических слоев 22' и 24' (или оба они) не обязательно должен целиком состоять из множества композитных кабелей 10, и композитные кабели 10 в составе соответствующего слоя могут сочетаться с одним или более дополнительными не композитными электропроводящими кабелями 14 и/или дополнительно возможными элементами 12.
В воплощении настоящего изобретения, изображенном на фиг.1C, также предлагается рассчитанный на работу под водой композитный кабель 20", содержащий электропроводящий не композитный однопроводной кабель 5, расположенный в сердцевине 11" рассчитанного на работу под водой композитного кабеля 20"; множество композитных кабелей 10, расположенных вокруг сердцевины 11", причем композитные кабели 10 содержат множество композитных проводов; и изоляционную оболочку 26, окружающую множество композитных кабелей 10. В воплощении, изображенном на фиг.1C, сердцевина 11" содержит электропроводящий не композитный однопроводной кабель 5, и вокруг сердцевины 11" несимметричным образом расположено множество композитных кабелей 10 в виде по меньшей мере двух цилиндрических слоев: первого (внутреннего) цилиндрического слоя 22" и второго (внешнего) цилиндрического слоя 24", с осью, определенной центральной продольной осью сердцевины 11'.
В воплощении, изображенном на фиг.1C, каждый из по меньшей мере двух цилиндрических слоев 22" и 24" может содержать дополнительные элементы 12, выбираемые из элементов переноса текучей среды, элементов для передачи электрической мощности, элементов для передачи электрического сигнала, светопередающих элементов, весовых элементов, элементов плавучести, заполняющих элементов или бронирующих элементов. Как показано на фиг.1C, какой-либо из по меньшей мере двух цилиндрических слоев 22" и 24" (или оба они) не обязательно должен целиком состоять из множества композитных кабелей 10, и композитные кабели 10 в составе соответствующего слоя могут сочетаться с одним или более дополнительными не композитными электропроводящими кабелями 14 и/или дополнительно возможными элементами 12.
В дополнительных воплощениях изобретения по меньшей мере один из по меньшей мере двух цилиндрических слоев дополнительно содержит по меньшей мере один элемент, выбираемый из группы, состоящей из элементов переноса текучей среды, элементов для передачи электрической мощности, светопередающих элементов, весовых элементов, заполняющих элементов или бронирующих элементов. Так, как показано на фиг.1А- 1C, рассчитанный на работу под водой композитный кабель может дополнительно содержать по меньшей мере один элемент 12, выбираемый из элементов переноса текучей среды, элементов для передачи электрической мощности, элементов для передачи электрического сигнала, светопередающих элементов, весовых элементов, элементов плавучести, заполняющих элементов или бронирующих элементов. В некоторых воплощениях светопередающий элемент содержит по меньшей мере одно оптическое волокно. Кроме того, как показано на фиг.1А-1C, сердцевина (11, 11' или 11") в различных воплощениях данного типа может содержать не композитный электропроводящий кабель, выбираемый из однопроводного металлического кабеля 5, многопроводного металлического кабеля 14, или сочетания 16 металлических проводов и металлических элементов, несущих нагрузку.
В некоторых воплощениях изобретения рассчитанный на работу под водой композитный кабель дополнительно содержит второе множество композитных проводов, причем по меньшей мере часть второго множества композитных проводов расположена вокруг множества композитных кабелей в виде по меньшей мере одного цилиндрического слоя, с осью, определенной центральной продольной осью сердцевинного кабеля. В некоторых воплощениях, изображенных на фиг.1В и 1C, второе множество композитных проводов может быть обеспечено в виде одного или более дополнительных композитных кабелей 10. В частности, в воплощении, изображенном на фиг.1В, второе множество композитных проводов содержит множество композитных кабелей 10, симметрично расположенных вокруг сердцевины 11', и первый цилиндрический слой 22', образующий, вместе с дополнительно возможными не композитными электропроводящими кабелями 14 и/или дополнительно возможными элементами 12, второй цилиндрический слой 24'. В воплощениях, изображенных на фиг.1C, второе множество композитных проводов содержит множество композитных кабелей 10, расположенных асимметрично вокруг сердцевины 11" и первого цилиндрического слоя 22", образуя, вместе с дополнительно возможными не композитными электропроводящими кабелями 14 и/или дополнительно возможными элементами 12, второй цилиндрический слой 24".
Более того, в некоторых воплощениях настоящего изобретения предлагается рассчитанный на работу под водой композитный кабель (20, 20', 20"), содержащий один или более композитных кабелей 10, включающих множество композитных проводов, которые могут быть скрученными, а предпочтительно - спирально скрученными. Композитные провода могут быть не тягучими, вследствие чего они могут не претерпевать значительной деформации при обычном процессе скручивания кабеля и лучше сохраняют скрученность по спирали. За счет этого в некоторых воплощениях настоящего изобретения обеспечивается скрученный композитный кабель, характеризующийся более высокой прочностью на растяжение, или, еще в некоторых воплощениях, - средство для поддержания спиральной скрутки проводов кабеля. В связи с этим предлагаемый скрученный кабель может использоваться как промежуточное изделие (заготовка) или готовое изделие. При использовании в качестве заготовки скрученный композитный кабель может быть на более позднем этапе встроен в готовое изделие, например, в кабель для линий электропередачи, например, в рассчитанный на работу под водой кабель для передачи электрической мощности, или кабель для переноса течей среды, например, кабель для бурения.
Так, например, на фиг.2A-2D показаны поперечные сечения композитных кабелей 10, которые могут быть скрученными или предпочтительно спирально скрученными кабелями, и которые могут использоваться для формирования рассчитанных на работу под водой композитных кабелей (20, 20' или 20") в соответствии с различными не ограничивающими воплощениями настоящего изобретения. Так, например, в воплощениях, изображенных на фиг.2А и 2С, композитный кабель 10 может включать одиночный композитный провод 2, определяющий центральную продольную ось, первый слой, содержащий первое множество композитных проводов 4, которые могут быть закручены вокруг одиночного композитного провода 2 в первом направлении укладки, и второй слой, содержащий второе множество композитных проводов 6, которое может быть закручено вокруг первого множества композитных проводов 4 в первом направлении укладки.
Дополнительно, как показано на фиг.2С, вокруг второго множества композитных проводов 6 в первом направлении укладки может быть закручен третий слой, содержащий третье множество композитных проводов 8, в результате чего может быть сформирован композитный кабель 10. Вокруг третьего множества композитных проводов 8