Способ обнаружения радиоэлектронных средств

Иллюстрации

Показать все

Изобретение относится к области радиотехники, используется для контроля за изменениями радиоэлектронной обстановки. Достигаемый технический результат - обеспечение возможности обнаружения сигналов непрерывно работающих радиоэлектронных средств. Для этого дополнительно осуществляют перемножение и низкочастотную фильтрацию выходного напряжения каждого антенного элемента с напряжениями эталонного сигнала, соответствующими всем антенным элементам, и представление результатов перемножения и фильтрации в виде взаимной корреляционной матрицы сигналов, выполняют соответствующие операции умножения, сложения и вычитания с сигналами соответствующих элементов взаимной корреляционной матрицы сигналов, в результате которых получают определитель взаимной корреляционной матрицы сигналов, находят максимальное значение определителя взаимной корреляционной матрицы сигналов и при максимальном значении определителя взаимной корреляционной матрицы сигналов по параметрам эталонного сигнала определяют значение частоты и направление прихода сигнала непрерывно излучающего радиоэлектронного средства. 9 ил.

Реферат

Способ обнаружения радиоэлектронных средств относится к области радиотехники, и может быть использован для контроля за изменениями радиоэлектронной обстановки, обнаружения сигналов радиоэлектронных средств, измерения их частот и направлений прихода сигналов при реализации его в технике радиомониторинга и радиоподавления радиосвязи.

В настоящее время известны следующие способы обнаружения радиоэлектронных средств, реализованные методами поиска, описанные в книге Борисов В.И., Зинчук В.М. Помехозащищенность систем радиосвязи. Вероятностно-временной подход. Радио и связь, 1999, стр.47-56, 62-71:

параллельный (многоканальный);

последовательный (одноканальный);

параллельно-последовательный поиск (комбинированный).

При параллельном поиске диапазон поиска Δf разделяется на ряд элементарных каналов (поддиапазонов) ΔfЭ шириной Δ f Э = Δ f N . Обнаружение осуществляется с использованием N неперестраеваемых радиоприемников (или N-канального радиоприемника).

При этом в каждом канале одновременно производится анализ входного воздействия с целью установления факта наличия или отсутствия сигнала на входе радиоприемника. Недостаток способа параллельного поиска: аппаратурная избыточность поста поиска, высокая его стоимость.

При одноканальном (последовательном) поиске обзор всего диапазона поиска производится путем последовательной перестройки одного радиоприемника с начала и до конца диапазона и анализа в ходе перестройки входного воздействия с целью установления факта наличия или отсутствия сигнала на входе радиоприемника. Последовательный поиск прост и экономичен в реализации, однако, имеет существенно большее среднее время поиска, нежели параллельный поиск. При небольшой скорости перестройки велика вероятность пропуска (необнаружения) сигналов малой длительности. Увеличение скорости перестройки приводит к снижению чувствительности радиоприемника и динамическим ошибкам измерения параметров сигнала (частоты, амплитуды и др.).

Комбинированный способ поиска обеспечивает возможность сочетания достоинств параллельного и последовательного способов поиска и достижение компромисса между требуемой эффективностью и стоимостью, однако полностью не исключает недостатков, присущих описанным выше способам: избыточность аппаратуры сохраняется, а время поиска для решения некоторых задач радиомониторинга остается неприемлемо большим.

Известны также способы обнаружения сигналов радиоэлектронных средств, основанные на использовании методов пространственной обработки сигналов, реализуемых многоканальными устройствами, в составе которых применяются многоэлементные антенные системы (АС), см., например Paula A., Kaula Т. Eigenstructure methods for direction of arrival estimation in the presence of unknown noise fields. «/IEEE Trans.» 1986. V.ASSP-34, c.13-20, патент РФ №2341024, патент РФ №2292650, которые за счет реализации беспоискового обнаружения сигналов и пеленгования их источников обеспечивают существенное сокращение временных затрат на обнаружение радиоэлектронных средств, начавших или прекративших излучение по сравнению с вышеуказанными «классическими» способами обнаружения.

Наиболее близким из известных способов обнаружения радиоэлектронных средств является способ по патенту РФ №2292650, принятый за прототип.

Способ-прототип заключается в приеме сигналов многоэлементной антенной системой, их усилении, перемножении и низкочастотной фильтрации выходного напряжения каждого антенного элемента с выходными напряжениями всех антенных элементов и представлении результатов перемножения и фильтрации в виде корреляционной матрицы сигналов, задержке этих сигналов на время задержки τз, значение которого обеспечивает выполнение условия, что вероятность изменения числа воздействующих на многоэлементную антенную систему за время τз сигналов более чем на один, пренебрежимо мала, поэлементном вычитании сигналов текущей и задержанной матриц сигналов и представлении результатов вычитания в виде разностной корреляционной матрицы сигнала, которая является ненулевой матрицей в случае изменения количества излучающих радиоэлектронных средств за период времени, равный τз и представляет собой корреляционную матрицу появившегося или исчезнувшего сигнала, определении по ней значений рабочей частоты и направления прихода сигнала радиоэлектронного средства, прекратившего или начавшего излучение за этот период времени с использованием последовательно формируемых эталонных сигналов, соответствующих конструкции антенной системы, со всеми возможными сочетаниями частот, азимутов и углов места в заданном диапазоне, отличающимися друг от друга на значения разрешений по этим параметрам, измерении полярности разностной корреляционной матрицы сигнала и определении по ее значению принадлежности сигнала к радиоэлектронным средствам, прекратившим или начавшим излучение, записи значений рабочей частоты, направления прихода сигнала раздельно для сигнала радиоэлектронного средства, прекратившего излучение и сигнала радиоэлектронного средства, начавшего излучение, сравнении значений рабочей частоты и направления прихода сигнала вновь появившегося излучения со всеми записанными значениями рабочих частот и направлений прихода сигналов радиоэлектронных средств, прекративших излучение, и определении излучающего радиоэлектронного средства, сменившего рабочую частоту, по признаку направления прихода сигнала этого радиоэлектронного средства.

Недостаток способа-прототипа заключается в том, что он не обеспечивает выявление сигналов радиоэлектронных средств, непрерывно работающих длительное время, то есть не обеспечивает выявление сигналов радиоэлектронных средств, которые начали и продолжают излучение до момента начала применения данного способа.

Задача изобретения - расширение функциональных возможностей способа обнаружения радиоэлектронных средств за счет обеспечения возможности обнаружения сигналов непрерывно работающих радиоэлектронных средств.

Для решения поставленной задачи в способе обнаружения радиоэлектронных средств, заключающемся в приеме сигналов многоэлементной антенной системой, их усилении, перемножении и низкочастотной фильтрации выходного напряжения каждого антенного элемента с выходными напряжениями всех антенных элементов и представлении результатов перемножения и фильтрации в виде корреляционной матрицы сигналов, задержке этих сигналов на время задержки τз, значение которого обеспечивает выполнение условия, что вероятность изменения числа воздействующих на многоэлементную антенную систему за время τз сигналов более чем на один пренебрежимо мала, поэлементном вычитании сигналов текущей и задержанной матриц сигналов и представлении результатов вычитания в виде разностной корреляционной матрицы сигнала, которая является ненулевой матрицей в случае изменения количества излучающих радиоэлектронных средств за период времени, равный τз и представляет собой корреляционную матрицу появившегося или исчезнувшего сигнала, определении по ней значений рабочей частоты и направления прихода сигнала радиоэлектронного средства, прекратившего или начавшего излучение за этот период времени с использованием последовательно формируемых эталонных сигналов, соответствующих конструкции антенной системы, со всеми возможными сочетаниями частот, азимутов и углов места в заданном диапазоне, отличающимися друг от друга на значения разрешений по этим параметрам, измерении полярности разностной корреляционной матрицы сигнала и определении по ее значению принадлежности сигнала к радиоэлектронным средствам, прекратившим или начавшим излучение, записи значений рабочей частоты, направления прихода сигнала раздельно для сигнала радиоэлектронного средства, прекратившего излучение и сигнала радиоэлектронного средства, начавшего излучение сравнении значений рабочей частоты и направления прихода сигнала вновь появившегося излучения со всеми записанными значениями рабочих частот и направлений прихода сигналов радиоэлектронных средств, прекративших излучение, и определении излучающего радиоэлектронного средства, сменившего рабочую частоту, по признаку направления прихода сигнала этого радиоэлектронного средства, согласно изобретению, дополнительно осуществляют перемножение и низкочастотную фильтрацию выходного напряжения каждого антенного элемента с напряжениями эталонного сигнала, соответствующими всем антенным элементам и представлении результатов перемножения и фильтрации в виде взаимной корреляционной матрицы сигналов, выполняют соответствующие операции умножения, сложения и вычитания с сигналами соответствующих элементов взаимной корреляционной матрицы сигналов, в результате которых получают определитель взаимной корреляционной матрицы сигналов, находят максимальное значение определителя взаимной корреляционной матрицы сигналов и при максимальном значении определителя взаимной корреляционной матрицы сигналов по параметрам эталонного сигнала определяют значение частоты и направление прихода сигнала непрерывно излучающего радиоэлектронного средства.

При изучении других известных технических решений в данной области техники указанная совокупность признаков, отличающая изобретение от прототипа, не была выявлена.

Предлагаемый способ заключается в следующем.

Осуществляется прием сигналов многоэлементной антенной системой, их усиление. Производится перемножение и низкочастотная фильтрация выходного напряжения каждого антенного элемента с выходными напряжениями всех антенных элементов и представление результатов перемножения и фильтрации в виде корреляционной матрицы сигналов, затем задержка этих сигналов на время τз (значение τз, должно обеспечить выполнение условия, что вероятность изменения числа воздействующих на антенную систему сигналов более чем на один пренебрежимо мала). Поэлементное вычитание сигналов текущей и задержанной матриц и представление результатов в виде разностной корреляционной матрицы сигнала. (Матрица является ненулевой матрицей в случае изменения количества излучающих радиоэлектронных средств за время задержки и представляет собой корреляционную матрицу появившегося или исчезнувшего сигнала). Определение по этой матрице значений рабочей частоты и направления прихода сигнала радиоэлектронного средства, прекратившего или начавшего излучение за время задержки. (Для этого используются последовательно формируемые эталонные сигналы, соответствующие конструкции антенной системы, со всеми возможными сочетаниями частот, азимутов и углов места в заданном диапазоне, отличающимися друг от друга на значения разрешений по этим параметрам). Измерение полярности разностной корреляционной матрицы сигнала и определение по ее знаку принадлежности сигнала к радиоэлектронным средствам, прекратившим или начавшим излучение. Запись значений рабочей частоты, направления прихода для сигнала радиоэлектронного средства, прекратившего излучение и сигнала радиоэлектронного средства, начавшего излучение в соответствующие запоминающие устройства. Сравнение значений рабочей частоты и направления прихода сигнала вновь появившегося излучения со всеми записанными значениями рабочих частот и направлений прихода сигналов радиоэлектронных средств, прекративших излучение, и определении излучающего радиоэлектронного средства, сменившего рабочую частоту (по признаку направления прихода сигнала этого радиоэлектронного средства). Перемножение и низкочастотная фильтрация выходного напряжения каждого антенного элемента с напряжениями эталонного сигнала, соответствующими всем антенным элементам и представлении результатов перемножения и фильтрации в виде взаимной корреляционной матрицы сигналов. Выполнение операций умножения, сложения и вычитания (по известному алгоритму) над сигналами соответствующих элементов взаимной корреляционной матрицы сигналов для получения ее определителя. Поиск максимального значения определителя взаимной корреляционной матрицы сигналов. Определение значения частоты и направления прихода сигнала непрерывно излучающего радиоэлектронного средства (они соответствуют по параметрам эталонного сигнала при максимальном значении определителя взаимной корреляционной матрицы сигналов).

На фиг.1 приведена структурная схема устройства, поясняющего сущность заявляемого способа обнаружения радиоэлектронных средств, на фиг.2 - схема расположения антенных элементов антенной системы, на фиг.3 - структурная схема блока корреляционной матрицы сигналов, на фиг.4 - структурная схема коррелятора, входящего в состав блока корреляционной матрицы сигналов, на фиг.5 - структурная схема блока взаимной корреляционной матрицы сигналов, на фиг.6 - структурная схема блока определения частотных и пространственных параметров сигналов, на фиг.7 - структурная схема блока определителя взаимной корреляционной матрицы сигналов, на фиг.8 - структурная схема блока определения максимума определителя взаимной корреляционной матрицы сигналов, на фиг.9 - временные диаграммы, поясняющие сущность заявляемого способа.

На фиг.1 приняты следующие обозначения:

1 - многоэлементная антенная система (АС);

2 - усилитель;

3 - блок корреляционной матрицы сигналов (КМС);

4 - блок взаимной корреляционной матрицы сигналов;

5 - вычитающее устройство;

6 - блок линий задержки;

7 - блок определителя взаимной корреляционной матрицы сигналов;

8 - блок определения знака разностной корреляционной матрицы сигналов;

9 - блок определения частотных и пространственных параметров сигналов;

10 - блок определения максимума определителя взаимной корреляционной матрицы сигналов;

11 - запоминающее устройство параметров сигналов радиоэлектронных средств, прекративших излучение;

12 - запоминающее устройство параметров сигналов радиоэлектронных средств, начавших излучение;

13 - запоминающее устройство параметров сигналов постоянно излучающих радиоэлектронных средств;

14 - блок сравнения;

15 - блок учета погрешности оценивания;

16 - устройство управления;

На фиг.3 приняты следующие обозначения:

17.1-17.9 - корреляторы.

На фиг.4 приняты следующие обозначения:

18 - умножитель;

19 - низкочастотный фильтр.

На фиг.5 приняты следующие обозначения:

20.1-20.9 - корреляторы.

На фиг.6 приняты следующие обозначения:

21.1-21.3 - генераторы значений параметров;

22 - блок формирования эталонных сигналов;

23 - блок корреляционной матрицы эталонного сигнала;

24 - вычитающее устройство;

25 - блок оценки разности;

26 - преобразователь "параметр - цифровой код";

27 - блок управления генераторами;

28 - блок регистров.

На фиг.7 приняты следующие обозначения:

29.1-29.12 - умножители;

30.1, 30.2 - сумматоры;

31 - вычитающее устройство.

На фиг.8 приняты следующие обозначения:

32 - регистр кода уровня;

33 - аналогово-цифровой преобразователь;

34 - блок сравнения.

На фиг.9 приняты следующие обозначения:

U1…U3 - напряжения сигналов на входе АС 1;

UБОЗ - напряжения сигналов на выходе блока определения знака разностной КМС 8;

UБО - напряжения сигналов на выходе блока определителя взаимной КМС 7;

UБОМ - напряжения сигналов на выходе блока определения максимума определителя взаимной КМС 10;

UУУ - напряжения сигналов на выходе устройства управления 16.

Устройство, поясняющее сущность заявляемого способа обнаружения радиоэлектронных средств, содержит последовательно соединенные многоэлементную антенную систему 1, усилитель 2, блок корреляционной матрицы сигналов 3, выход которого соединен с входами вычитающего устройства 5 и блока линии задержки 6, выход которого соединен со вторым входом вычитающего устройства 5, выход которого соединен с входом блока определения знака разностной корреляционной матрицы сигнала 8 и с соответствующим входом блока определения частотных и пространственных параметров сигналов 9, первый выход которого соединен с информационными входами запоминающего устройства параметров сигналов радиоэлектронных средств, прекративших излучение 11, запоминающего устройства параметров сигналов радиоэлектронных средств, начавших излучение 12 и запоминающего устройства параметров сигналов постоянно излучающих радиоэлектронных средств 13, выходы которых соединены с соответствующими входами блока сравнения 14, выход которого через блок учета погрешности оценивания 15 соединен с первым входом устройства управления 16, выход которого соединен с управляющими входами блока определения максимума определителя взаимной корреляционной матрицы сигналов 10, запоминающего устройства параметров сигналов радиоэлектронных средств, прекративших излучение 11, запоминающего устройства параметров сигналов радиоэлектронных средств, начавших излучение 12, запоминающего устройства параметров сигналов постоянно излучающих радиоэлектронных средств 13, блока сравнения 14 и вторым управляющим входом блока определения частотных и пространственных параметров сигналов 9.

Кроме того, последовательно соединенные блок взаимной корреляционной матрицы сигналов 4, блок определителя взаимной корреляционной матрицы сигналов 7 и блок определения максимума определителя взаимной корреляционной матрицы сигналов 10, выход которого соединен с первым управляющим входом блока определения частотных и пространственных параметров сигналов 9 и с третьим входом устройство управления 16. При этом второй выход блока определения частотных и пространственных параметров сигналов 9 соединен со вторым входом блока взаимной корреляционной матрицы сигналов 4, первый вход которого соединен с выходом усилителя 2. Причем выход блока определения знака разностной корреляционной матрицы сигнала 8 соединен со вторым входом устройства управления 16.

Блоки, используемые в устройстве, осуществляющем предлагаемый способ, могут быть реализованы следующим образом.

Антенная система 1 в общем случае представляет собой N-элементную антенную решетку (в качестве примера на фиг.2 приведена 3-х элементная).

Усилитель 2 представляет собой N-канальный усилитель.

Блок корреляционной матрицы сигналов 3 представляет собой (N×N) корреляторов, выходные сигналы которых характеризуют корреляционную связь между сигналами в соответствующих антенных элементах, и для рассматриваемого случая 3-х элементной АС может быть реализован по схеме, приведенной на фиг.3. Входящие в состав блока КМС 3 корреляторы 17.1…17.9 широко используются в устройствах обработки сигналов многоканальных АС, например Ямпольский В.Г., Фролов О.П. Антенны и ЭМС. - М.: Радио и связь, 1983, с.235 рис.10.10, с.240, рис.10.16, Венскаускас К.К. Компенсация помех в судовых радиотехнических системах. - Л.: Судостроение, 1989, с.111, рис.2.31 и могут быть реализованы по схеме, фиг.4 в виде последовательно соединенных умножителя 18 и низкочастотного фильтра 19.

Блок взаимной корреляционной матрицы сигналов 4 представляет собой (N×N) корреляторов, выходные сигналы которых характеризуют взаимную корреляционную связь между входными и эталонным сигналами и может быть реализован по схеме, приведенной на фиг.5. Входящие в состав блока взаимной КМС 4 корреляторы 20.1…20.9 аналогичны корреляторам 17.1…17.9.

Вычитающее устройство 5 представляет собой набор функциональных узлов (количество которых определяется числом сигналов, составляющих КМС), и может быть реализовано с использованием соответствующих дифференциальных усилителей, реализующих операции вычитания сигналов.

Блок линий задержки 6 содержит N×N идентичных линий задержки и может быть реализован на основе ультразвуковых линий задержки.

Блок определителя взаимной корреляционной матрицы сигналов 7 представляет собой совокупность умножителей, сумматоров и вычитающего устройства, взаимосвязанных между собой по входам и выходам для реализации операции нахождения определителя Δ взаимной корреляционной матрицы. Правило нахождения определителя квадратной матрицы общеизвестно, см. например, Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся вузов - М.: Наука, 1986, с.158 и для рассматриваемого случая 3-х элементной АС блок определителя взаимной корреляционной матрицы сигналов 7 может быть выполнен по структурной схеме, приведенной на фиг.7. Выходное напряжение этого блока пропорционально значению определителя взаимной корреляционной матрицы.

Блок определения знака разностной корреляционной матрицы сигналов 8 может быть реализован с использованием логических элементов.

Блок определения частотных и пространственных параметров сигналов 9 может быть выполнен по структурной схеме, приведенной на фиг.6. Он содержит последовательно соединенные блок формирования эталонных сигналов 22, блок корреляционной матрицы эталонного сигнала 23, вычитающее устройство 24, блок оценки разности 25, блок регистров 28, а также блок управления генераторами 27, генераторы значений параметров 21.1…21.3, входы которых соединены с соответствующими выходами блока управления генераторами 27, преобразователь "параметр - цифровой код" 26, входы которого соединены с соответствующими входами блока формирования эталонных сигналов 22 и выходами соответствующих генераторов значений параметров 21.1…21.3, а выходы соединены с соответствующими входами блока регистров 28.

Блок определения максимума определителя взаимной КМС 10 может быть реализован по схеме определения максимума сигнала, применяемой в панорамном обнаружителе Р-381 Т1-5, упрощенная структурная схема которой приведена на фиг.8.

Запоминающие устройства параметров сигналов радиоэлектронных средств 11, 12, 13 реализуются с использованием цифровых регистров записи двоичного кода, выполненных на основе RS или D-триггеров.

Блок сравнения 14 является цифровым аналогом компаратора (используемого для сравнения напряжений при операциях с непрерывными сигналами), представляет собой комбинационное логическое устройство и реализуется на основе каскадов логических элементов И-ИЛИ-НЕ.

Блок учета погрешности оценивания 15, устройство управления 16 могут быть реализованы с использованием цифровой элементной базы (программируемого микропроцессора).

Таким образом, реализация предложенного способа не вызывает сомнений, так как в устройстве для его осуществления используются типовые радиотехнические устройства и элементы цифровой техники.

Заявляемый способ обнаружения радиоэлектронных средств основан на использовании методов пространственной обработки сигналов, реализуемых многоканальными устройствами, в составе которых применяются многоэлементные АС.

Устройство, реализующее предложенный способ, работает следующим

образом.

В качестве примера рассмотрим трехэлементную антенную систему, элементы которой расположены в вершинах равностороннего треугольника, вписанного в окружность радиусом R, (фиг.2).

На выходе каждого антенного элемента (АЭ) напряжения (отклики) одного и того же входного сигнала отличаются для идентичных АЭ фазовыми сдвигами, определяемыми разностью хода электромагнитной волны до АЭ.

Напряжения i-го сигнала на выходах антенных элементов АС 1 имеют следующий вид:

U i 1 ( t ) = U m i cos ( ω i t + ϕ i 1 ) U i 2 ( t ) = U m i cos ( ω i t + ϕ i 2 ) U i 3 ( t ) = U m i cos ( ω i t + ϕ i 3 )                       ( 1 )

где φi1 - сдвиг фазы i-го сигнала в первом антенном элементе относительно центра антенной системы 1;

φi2 - сдвиг фазы i-го сигнала во втором антенном элементе относительно центра антенной системы 1;

φi3 - сдвиг фазы i-го сигнала в третьем антенном элементе относительно центра антенной системы 1,

то есть на выходах антенных элементов АС 1 напряжения (отклики) i-го сигнала имеют фазовые сдвиги φi1, φi2, φi3, величины которых определяются соотношением радиуса круга антенного массива R, длины волны (частоты) сигнала λ, а также направлением прихода электромагнитных волн, и определяются следующими формулами:

ϕ i 1 = ( 2 π R / λ ) cos α cos ε ϕ i 2 = ( 2 π R / λ ) cos ( 120 ° − α ) cos ε ϕ i 3 = ( 2 π R / λ ) cos ( 240 ° − α ) cos ε                       ( 2 )

где α - азимут, ε - угол места, характеризующие направление прихода сигнала.

Для обеспечения возможности дальнейшей обработки сигналов с выходов АЭ производится их усиление в соответствующих каналах усилителя 2 до необходимого уровня.

Извлечение информации, заложенной в набеге (сдвиге) фазы выходных напряжений АЭ имеет определенные трудности, обусловленные следующими факторами. Выходное напряжение каждого АЭ представляет собой аддитивную смесь сигнала, помех и шума. Сигналы, помехи и шумы описываются статистическими характеристиками, а оцениваются усредненными значениями, которые получают путем корреляционной обработки. Поэтому результаты корреляционной обработки выходных сигналов многоэлементных АС удобно представлять в виде корреляционной матрицы (КМ) сигналов. Корреляционная матрица сигналов содержит полную информацию о внешних источниках, воздействующих на АС. Диагональные элементы КМ дают информацию о мощности собственных и внешних шумов в парциальных каналах приема, остальные элементы КМ содержат информацию о длинах волн (частотах) и о направлениях прихода сигналов, см. например Ямпольский В.Г., Фролов О.П. Антенны и ЭМС. - М.: Радио и связь, 1983, стр.227, Монзинго Р.А., Миллер Т.У. Адаптивные антенные решетки: введение в теорию: Пер. с англ. - М: Радио и связь 1986, с.71-73, Венскаускас К.К. Компенсация помех в судовых радиотехнических системах. - Л.: Судостроение, 1989, с.13, 14., Адаптивная компенсация помех в каналах связи /Ю.И. Лосев, А.Г. Бердников, Э.Ш. Гойхман, Б.Д. Сизов/ под. ред. Ю.И. Лосева. - М.: Радио и связь, 1988, с.22-23.

Для удобства извлечения информации, заложенной в набеге (сдвиге) фазы сигнала, необходимо получить корреляционную матрицу сигналов на выходе АС 1, диагональные элементы которой являются функциями автокорреляции, а остальные элементы - функциями взаимной корреляции сигналов в соответствующих антенных элементах.

Для получения элементов КМ производится перемножение и низкочастотная фильтрация выходного напряжения каждого АЭ с выходными напряжениями всех остальных АЭ в блоке КМС 3, схема которого приведена на фиг.3. Корреляторы в блоке КМС 3 идентичны.

Для рассматриваемого случая корреляционная матрица сигналов на выходе блока КМС 3 при наличии М сигналов радиоэлектронных средств имеет вид:

Ф x x ⋅ = [ ∑ i = 1 M P C i + P Ш ∑ i = 1 M P C i exp ( − j φ i 12 ) ∑ i = 1 M P C i exp ( − j φ i 13 ) ∑ i = 1 M P C i exp ( j φ i 21 ) ∑ i = 1 M P C i + P Ш ∑ i = 1 M P C i exp ( − j φ i 23 ) ∑ i = 1 M P C i exp ( j φ i 31 ) ∑ i = 1 M P C i exp ( j φ i 32 ) ∑ i = 1 M P C i + P Ш ]         ( 3 )

φi12i1i2 - набег фазы принимаемого сигнала в первом АЭ относительно второго;

φi13i1i3 - набег фазы принимаемого сигнала в первом АЭ относительно третьего;

φi21i2i1 - набег фазы принимаемого сигнала в третьем АЭ относительно второго и так далее.

Задержка сигналов, являющихся элементами КМ, производится в блоке линий задержки 6, причем количество линий задержки определяется числом сигналов, составляющих КМ.

Время задержки τз выбирается из условий: вероятность изменения числа воздействующих на многоэлементную антенную систему за время τз сигналов более чем на один должна быть пренебрежимо мала, в то же время величина τз должна быть не меньше длительности переходных процессов при формировании выходных сигналов корреляторов.

Поэлементное вычитание сигналов текущей и задержанной матриц и представление результатов вычитания в виде разностной корреляционной матрицы сигналов осуществляется в вычитающем устройстве 5 путем вычитания из каждого сигнала, являющегося элементом текущей КМС вида (3) соответствующего сигнала задержанной КМС. Таким образом, на выходе вычитающего устройства 5 в рассматриваемом примере имеются девять разностных сигналов, являющихся элементами разностной КМС:

Ф X X Δ ( t ) = Ф X X ( t ) − Ф X X ( t − τ з )                       ( 4 )

При выполнении операции вычитания КМС возможны три исхода:

1. За время, равное τз число сигналов воздействующих на АС 1 не изменилось, тогда соответствующие элементы текущей и задержанной КМС не отличаются друг от друга, и поэтому все элементы разностной КМС равны нулю:

Ф x x Δ ⋅ = [ 0 0 0 0 0 0 0 0 0 ] .                       ( 5 )

2. За время, равное τз число воздействующих на АС 1 сигналов уменьшилось на один (исчез k-й сигнал), тогда разностная КМС является отрицательной матрицей и имеет вид:

Ф x x Δ ⋅ = Ф x x k ⋅ = − [ P c k P c k exp ( − j φ k 12 ) P c k exp ( − j φ k 13 ) P c k exp ( j φ k 21 ) P c k P c k exp ( − j φ k 23 ) P c k exp ( j φ k 31 ) P c k exp ( j φ k 32 ) P c k ] .       ( 6 )

3. За время τ число воздействующих на АС 1 сигналов увеличилось на один (появился l-й сигнал), тогда разностная КМС является положительной матрицей и имеет вид:

Ф x x Δ ⋅ = Ф x x l ⋅ = [ P c l P c l exp ( − j ϕ l 12 ) P c l exp ( − j ϕ l 13 ) P c l exp ( j ϕ l 21 ) P c l P c l exp ( − j ϕ l 23 ) P c l exp ( j ϕ l 31 ) P c l exp ( j ϕ l 32 ) P c l ] .       ( 7 )

Так как значение времени задержки τз выбрано с тем условием, что вероятн