Способ и система мембранного газоразделения с регулируемым количеством пермеата, рециркулируемым в подачу

Иллюстрации

Показать все

Изобретение относится к мембранному газоразделению. Способы для извлечения быстрого газа из исходного, содержащего быстрый и медленный газ с использованием газоразделительной мембраны. Устройство управления может регулировать положение клапана, соединенного с контуром частичной рециркуляции газа-пермеата, отводимого после мембраны и направляемого на объединение с исходным газом. Устройство управления может регулировать положение клапана, осуществляющего регулирование противодавления остаточного газа после мембраны, а также системы, включающие данные устройства. Техническим результатом является повышение степени чистоты газа. 7 н. и 14 з.п. ф-лы, 6 ил.

Реферат

Перекрестная ссылка на родственные заявки

Настоящая заявка испрашивает приоритет по отношению к предварительной заявке на патент США №61/185965, поданной 10 июня 2009 г.

Уровень техники

Существует множество процессов с использованием газов, в ходе которых, из-за относительно высокой стоимости газа, было бы желательно его извлекать. Однако во многих из этих процессов образуется различное количество газа, подлежащего извлечению. Таким образом, идеальная газоулавливающая система должна обеспечивать эффективное и рентабельное извлечение газа даже несмотря на то, что количество газа, подлежащего извлечению, переменно во времени. Два примера таких процессов - это охлаждение оптических волокон в охлаждающих башнях в ходе производства оптических волокон и тепловая обработка деталей в вакуумных печах. Специалистам в области газоразделения известно, что имеется множество других процессов, в которых образуются такие переменные потоки, и для которых может оказаться желательным извлечение относительно дорогостоящего газа.

При производстве оптических волокон, расплавленное стекло экструдируют через головку. Расплавленное стекло быстро охлаждают в длинной охлаждающей башне (вытяжной башне). Чтобы повысить теплопередачу в охлаждающей башне, в качестве теплопередающей среды используют гелий. Поскольку запасы гелия ограничены, а цены на него растут, гелий желательно улавливать и рециркулировать.

Повторное использование гелия в охлаждающей вытяжной башне для вытягивания оптических волокон - сложная задача. Из-за добавления в гелий воздуха во время процесса извлечения из башни, полученный гелий может содержать всего лишь 60% об. гелия, остальное - воздух. Было бы желательно иметь возможность извлечения гелия высокой степени чистоты. Высокая степень чистоты продукта извлечения - гелия (например, >99% об./об.), предназначенного для рециркуляции в охлаждающую башню, необходима с точки зрения повышения эффективности охлаждения, тогда как приемлемо высокая степень извлечения гелия требуется с точки зрения экономической обоснованности процесса извлечения.

Типичные установки для вытягивания оптических волокон включают множество башен. Поток гелия в каждой из них изменяется в зависимости от потребностей охлаждения в данной башне. Понятно, что в каждой башне подаваемый поток гелия индивидуален. По экономическим причинам было бы предпочтительно, чтобы все башни обслуживались одной установкой по извлечению гелия. В идеале, такая потенциальная система должна обладать способностью компенсации изменений потока. Таким образом, такая потенциальная система должна быть пригодна для функционирования в широком диапазоне изменения подаваемого потока в условиях подключения или отключения отдельных вытяжных башен.

Одним из типов технологий газоразделения является отделение газа при помощи мембран, в частности, полимерных мембран. Мембранное газоразделение осуществляют путем подачи исходного газа на вход газоразделительной мембраны. В зависимости от состава конкретной полимерной мембраны, некоторые газы (именуемые быстрые газы) в большей степени проникают сквозь мембрану, чем другие газы (именуемые медленные газы). Быстрые газ(ы) собирают как поток пермеата, тогда как медленные газ(ы) собирают как поток ретентата или остаточный поток. Было предложено использовать мембраны для извлечения гелия из охлаждающих башен при производстве оптических волокон. В случае стеклообразных полимерных мембран, гелий является быстрым газом, тогда как компоненты воздуха кислород и азот являются медленными газами. Мембранные устройства, обычно, проектируют на основании расхода при постоянной подаче. Другими словами, количество мембранных модулей с мембраной данного типа определяют на основании ожидаемого расхода исходного газа при его постоянной подаче в устройство. Число мембранных модулей, необходимых для данного варианта применения, прямо пропорционально расходу исходного газа. Для мембранных устройств с высоким расходом нужно большое число мембранных модулей. Диапазон изменения представляет собой параметр, который характеризует способность процесса или устройства справляться с изменениями исходного потока относительно максимального потока. Он может быть выражен следующим уравнением:

Изменение этого параметра для относительно крупных устройств можно без труда компенсировать путем подключения или отключения одного или более из множества мембранных модулей. Проще говоря, чтобы компенсировать изменения расхода подаваемого газа, регулируют общую площадь поверхности мембран, с которой вступает в контакт исходный газ.

Для устройств с относительно небольшим исходным потоком, таких как вытяжные башни для оптических волокон, такой многомодульный подход реализовать сложно. Причина в том, что при максимальном потоке для достижения заданной степени чистоты и извлечения продукта может быть достаточно только одного мембранного модуля. Например, одной мембраны диаметром 1'' или 2'' (25,4 или 50,8 мм) (часто, минимальное из выпускаемых серийно мембранных устройств) может быть достаточно для максимального потока. Хотя использование единственного мембранного модуля может быть рентабельным с точки зрения капитальных затрат, неприемлемые эксплуатационные характеристики могут иметь место, когда исходный поток намного меньше, чем максимальный. Одним из потенциальных вариантов решения этой проблемы, связанной с наличием таких потоков, является использование указанного выше многомодульного подхода. Чтобы адаптировать многомодульный подход для таких малых потоков, необходимо использовать многочисленные, изготовленные на заказ мембранные разделители. Таким образом, это в значительной степени специализированное и неэффективное (в отношении затрат) решение.

При тепловой обработке деталей в вакуумных печах, относительно высокую температуру деталей быстро снижают при помощи инертного охлаждающего газа, такого как гелий. В зависимости от количества деталей, подлежащих тепловой обработке, может быть приведена в действие или отключена одна или более вакуумная печь. Уже предложены различные стратегии рециркуляции охлаждающего газа, включающие стадию очистки, на которой может быть предусмотрено использование газоразделительных мембран. Также как и при рециркуляции гелия из охлаждающих башен для оптических волокон, с экономической точки зрения было бы предпочтительно рециркулировать инертные газы, такие как гелий, из множества вакуумных печей, используя единственное устройство извлечения газа, такое как устройство, включающее газоразделительные мембраны. В идеальном случае, такое потенциальное устройство должно обладать возможностью компенсации изменения исходного потока в широком диапазоне, когда отдельные вакуумные печи приводятся в действие или отключаются.

Что касается конкретно гелия, в патентной литературе предложено несколько стратегий извлечения.

В патенте US 6517791 описано устройство извлечения гелия для процесса формообразования холодным распылением. Мембрана функционирует в однопроходном режиме. Целью очистки в данном устройстве является увеличение содержания гелия от, приблизительно, 90% He до 97% He - относительно небольшое увеличение. Для случая вытягивания оптических волокон, напротив, часто нужно относительно более значительное обогащение газа.

В патенте US 4448582 для извлечения гелия, рециркулируемого в вытяжную башню для вытягивания оптических волокон, используют криогенный способ.

Патенты US 5377491 и 5452583 также имеют отношение к рециркуляции гелия из вытяжной башни для вытягивания оптических волокон. Использование мембраны описано в качестве одного из нескольких способов очистки гелия, рециркулируемого в вытяжную башню. Точно так же, в патентах US 6092391 и 6253575 B1 описаны устройства более полного извлечения гелия для всего процесса вытягивания оптических волокон, включая консолидацию, вытяжную печь и охлаждение вытянутых волокон. Мембранное устройство описано как одно из средств извлечения гелия.

В патенте US 5158625 описан способ тепловой обработки изделий путем их закалки в рециркулируемой газовой среде, которая вступает в контакт с обрабатываемыми изделиями, каковой закалочный газ охлаждают при помощи теплообменника, при этом в качестве закалочного газа используют гелий. В конце операции закалки, используемое количество гелия выводят из отделения для обработки, на конечном этапе, посредством насоса, до достижения первичного вакуума. В отведенном гелии создают давление очистки при помощи компрессора, соединенного с механическим фильтром, гелий с давлением очистки направляют очистительное устройство, в котором из него удаляют загрязняющие примеси.

В патенте US 6517791 описан трехстадийный способ извлечения и очистки газообразного гелия и устройство, в котором реализуется этот трехстадийный способ. Газ из камеры формообразования холодным распылением подают в устройство удаления макрочастиц с целью получения не содержащего макрочастицы газообразного гелия. Первую часть не содержащего макрочастицы газообразного гелия рециркулируют обратно в камеру. Вторую часть не содержащего макрочастицы газообразного гелия направляют в первый компрессор, затем подают на мембрану очистки газообразного гелия с получением очищенного газообразного гелия и отходящего газа. Очищенный газообразный гелий затем направляют на смешивание с первой частью не содержащего макрочастицы газообразного гелия, подаваемой в камеру. Третью часть не содержащего макрочастицы газообразного гелия направляют в отделитель жидкости с целью удаления воды и в накопитель для ослабления пульсации, получая не содержащий жидкости газообразный гелий. Не содержащий жидкости газообразный гелий рециркулируют в камеру формообразования холодным распылением.

Хотя в цитируемой выше патентной литературе описаны различные варианты решений, ни один из описанных способов удовлетворительным образом не решает проблему, связанную с изменением в широком диапазоне расхода исходного потока.

Таким образом, имеется задача обеспечения усовершенствованных способа и системы для мембранного извлечения газа, пригодных для достижения достаточно высокой степени чистоты в широком диапазоне изменения расхода исходного потока.

Другой задачей является обеспечение усовершенствованных способа и систем для мембранного извлечения газа, пригодных для достижения достаточно высокой степени извлечения в широком диапазоне изменения расхода исходного потока.

Еще одной задачей является обеспечение усовершенствованных способа и система для мембранного извлечения газа, пригодных для получения удовлетворительных эксплуатационных характеристик в широком диапазоне изменения расхода исходного потока при приемлемо низких капитальных затратах.

Сущность изобретения

В настоящем документе раскрывается способ извлечения быстрого газа из процесса, производящего изменяющийся расход отходящего газа, содержащего быстрый газ и, по меньшей мере, один медленный газ. Данный способ включает следующие стадии. Обеспечивают множество источников газовой смеси, каковая газовая смесь содержит быстрый и медленный газы. Поток исходного газа принимают из одного или более таких источников, при этом поток исходного газа содержит быстрый и медленный газы, каковой поток исходного газа характеризуется переменным расходом, зависящим от того, сколько из множества источников активно производят газовую смесь. Поток исходного газа подвергают сжатию. Сжатый исходный газ подают на первичную газоразделительную мембрану. После первичной газоразделительной мембраны отводят первичный поток пермеата, обогащенный быстрым газом, и первичный остаточный поток, обедненный быстрым газом. Первую часть первичного потока пермеата направляют в компрессор, где первую часть первичного потока пермеата смешивают с потоком исходного газа и сжимают. Оставшуюся часть первичного потока пермеата отводят в качестве газа-продукта. Степень, в соответствии с которой первичный поток пермеата распределяют между первой частью и оставшейся частью, регулируют на основании одного из рабочих параметров данного способа.

Кроме того, в настоящем документе раскрывается система для извлечения представляющего интерес газа из процесса, производящего изменяющийся расход отходящего газа. Данная система включает: множество источников отходящего газа; канал подачи исходного газа, избирательно сообщается по текучей среде с этим множеством источников; компрессор, в котором имеется вход, сообщающийся по текучей среде с каналом исходного газа, и выход; первичную газоразделительную мембрану, имеющую вход, выход для пермеата и выход для остаточного потока; канал первичного пермеата, сообщающийся по текучей среде с выходом для пермеата первичной газоразделительной мембраны; канал газа-продукта, сообщающийся по текучей среде с каналом первичного пермеата; рециркуляционный канал, сообщающийся по текучей среде между каналом первичного пермеата и входом компрессора; рециркуляционный регулирующий клапан, сообщающийся по текучей среде с каналом первичного пермеата, рециркуляционным каналом и каналом газа-продукта; и устройство управления, предназначенное для управления пропорциональным регулированием, осуществляемым рециркуляционным регулирующим клапаном. Отходящий газ содержит быстрый газ и, по меньшей мере, один медленный газ. Рециркуляционный регулирующий клапан предназначен для регулирования пропорциональной доли газа-пермеата, которая может поступать из канала первичного пермеата в рециркуляционный канал, по отношению к доле, поступающей в канал газа-продукта. Вход первичной газоразделительной мембраны сообщается по текучей среде с выходом компрессора. Первичная газоразделительная мембрана является селективно проницаемой для быстрого газа в противоположность, по меньшей мере, одному медленному газу.

Способ и/или система могут характеризоваться одним или более из следующих аспектов:

- рабочий параметр подобран из группы, состоящей из количества источников из имеющегося множества, из которых поступает поток исходного газа; степени чистоты газа-продукта; степени извлечения представляющего интерес газа, достигаемой посредством осуществления указанного способа; расхода потока исходного газа; давления объединенного потока исходного газа и первой части первичного потока пермеата.

- множество источников включает множество охлаждающих башен для оптических волокон, быстрый газ представляет собой гелий, медленный представляет собой воздух.

множество источников включает множество гелиевых печей, быстрый газ представляет собой гелий.

Способ дополнительно включает следующие стадии:

подача первичного остаточного потока на вторичную газоразделительную мембрану;

отведение с вторичной газоразделительной мембраны вторичного потока пермеата и вторичного остаточного потока; и

направление вторичного потока пермеата в компрессор, где вторичный поток пермеата подвергается сжатию вместе в первой частью и потоком исходного газа.

Указанная стадия приема потока исходного газа включает следующие стадии:

объединение потоков отходящего газа из одного или более из множества источников;

сжатие объединенных потоков отходящего газа;

подача сжатых объединенных потоков отходящего газа на вторичную газоразделительную мембрану; и

отведение с вторичной газоразделительной мембраны вторичного потока пермеата, обогащенного быстрым газом, и вторичного остаточного потока, обедненного быстрым газом, где вторичный поток пермеата является потоком исходного газа.

Способ дополнительно включает следующие стадии:

обеспечение регулирующего клапана, сообщается по текучей среде с первичным потоком пермеата; и

подача на устройство управления сигнала, отражающего число источников из имеющегося множества, из которых принимается поток исходного газа, где:

- рабочий параметр представляет собой число источников из имеющегося множества, из которых принимается поток исходного газа; и

- устройство управления осуществляет распределение первичного потока пермеата на первую часть и оставшуюся часть посредством регулирующего клапана на основании полученного сигнала.

Способ дополнительно включает следующие стадии:

обеспечение регулирующего клапана, сообщающийся по текучей среде с первичным остаточным потоком, каковой регулирующий клапан пригоден для избирательного регулирования давления первичного остаточного потока;

измерение степени чистоты быстрого газа в газе-продукте; и

подача на устройство управления сигнала, отражающего измененную степень чистоты, при этом, устройство управления осуществляет регулирование давления первичного остаточного потока на основании сигнала степени чистоты газа-продукта посредством регулирующего клапана, сообщающийся по текучей среде с первичным остаточным потоком.

Указанная стадия приема потока исходного газа включает следующие стадии:

объединение потоков отходящего газа из одного или более из имеющегося множества источников;

сжатие объединенных потоков отходящего газа;

подача сжатых объединенных потоков отходящего газа на вторичную газоразделительную мембрану; и

отведение с вторичной газоразделительной мембраны вторичного потока пермеата, обогащенного быстрым газом, и вторичного остаточного потока, обедненного быстрым газом, где вторичный поток пермеата является потоком исходного газа.

Способ дополнительно включает следующие стадии:

обеспечение регулирующего клапана, сообщающийся по текучей среде с вторичным остаточным потоком, каковой регулирующий клапан пригоден для избирательного регулирования давления вторичного остаточного потока;

измерение степени чистоты быстрого газа в газе-продукте; и

подача на устройство управления сигнала, отражающего измененную степень чистоты, при этом, устройство управления осуществляет регулирование давления вторичного остаточного потока на основании измеренной степени чистоты посредством регулирующего клапана, сообщающегося по текучей среде со вторичным остаточным потоком.

Способ дополнительно включает следующие стадии:

обеспечение регулирующего клапана, сообщающегося по текучей среде с первичным потоком пермеата;

определение степени извлечения быстрого газа, достигаемой при помощи данного способа;

подача на устройство управления сигнала, отражающего определенную степень извлечения, при этом:

- рабочий параметр представляет собой степень извлечения представляющего интерес газа, достигаемую посредством реализации данного способа;

- устройство управления осуществляет распределение первичного потока пермеата на первую часть и оставшуюся часть на основании полученного сигнала посредством регулирующего клапана.

Способ дополнительно включает следующие стадии:

обеспечение регулирующего клапана, сообщающегося по текучей среде с первичным остаточным потоком, каковой регулирующий клапан пригоден для избирательного регулирования давления первичного остаточного потока;

измерение степени чистоты быстрого газа в газе-продукте; и

подача на устройство управления сигнала, отражающего измененную степень чистоты, при этом, устройство управления осуществляет регулирование давления первичного остаточного потока на основании сигнала степени чистоты газа-продукта посредством регулирующего клапана, сообщающегося по текучей среде с первичным остаточным потоком.

Указанная стадия приема потока исходного газа включает следующие стадии:

объединение потоков отходящего газа из одного или более из имеющегося множества источников;

сжатие объединенных потоков отходящего газа;

подача сжатых объединенных потоков отходящего газа на вторичную газоразделительную мембрану; и

отведение с вторичной газоразделительной мембраны вторичного потока пермеата, обогащенного быстрым газом, и вторичного остаточного потока, обедненного быстрым газом, где вторичный поток пермеата является потоком исходного газа.

Способ дополнительно включает следующие стадии:

обеспечение регулирующего клапана, сообщающегося по текучей среде с вторичным остаточным потоком, каковой регулирующий клапан пригоден для избирательного регулирования давления вторичного остаточного потока;

измерение степени чистоты быстрого газа в газе-продукте; и

подача на устройство управления сигнала, отражающего измененную степень чистоты, при этом, устройство управления осуществляет регулирование давления вторичного остаточного потока на основании измеренной степени чистоты газа-продукта посредством регулирующего клапана, сообщающегося по текучей среде с вторичным остаточным потоком.

Способ дополнительно включает следующие стадии:

обеспечение устройства управления;

осуществление стадий указанного способа при первом расходе потока исходного газа;

изменение числа охлаждающих башен, из которых поступает поток исходного газа и, тем самым, изменение расхода потока исходного газа;

подача на устройство управления сигнала, отражающего новое число охлаждающих башен, из которых поступает поток исходного газа;

регулирование при помощи устройства управления степени, в соответствии с которой первичный поток пермеата распределяется между первой частью и оставшейся частью, на основании поданного сигнала.

Способ дополнительно включает следующие стадии:

измерение давления объединенного потока исходного газа и первой части потока пермеата;

обеспечение регулирующего клапана, сообщающегося по текучей среде с первичным потоком пермеата; и

подача на устройство управления сигнала, отражающего измеренное давление, при этом:

- рабочий параметр представляет собой давление объединенного потока исходного газа и первой части потока пермеата; и

- устройство управления осуществляет распределение первичного потока пермеата на первую часть и оставшуюся часть на основании полученного сигнала посредством регулирующего клапана.

Быстрый газ и медленный газ подобраны из группы, состоящей из: H2 и Ne, H2 и CO2, H2 и CH4, H2 и N2, H2 и O2, H2 и O2/N2, CO2 и N2, CO2 и O2, CO2 и N2/O2, CO2 и CH4, Ne и N2, Ne и O2, Ne и N2/O2, He и N2, He и O2, He и N2/O2.

Быстрый газ представляет собой гелий, медленный газ представляет собой воздух.

Вторичная газоразделительная мембрана имеет вход, сообщающийся по текучей среде с выходом для остаточного потока первичной газоразделительной мембраны, выход для вторичного остаточного потока и выход для вторичного пермеата; и

канал вторичного пермеата сообщающийся по текучей среде между выходом для пермеата вторичной газоразделительной мембраны и рециркуляционным каналом.

Вторичная газоразделительная мембрана имеет вход, избирательно сообщающийся по текучей среде со множеством источников, выход для вторичного остаточного потока и выход для вторичного пермеата, сообщающийся по текучей среде с каналом исходного газа.

Имеется устройство, определяющее, происходит ли или не происходит активное образование отходящего газа в одном или более источнике, при этом устройство управления дополнительно пригодно для приема от датчика сигнала, отражающего число источников, в которых активно образуется отходящий газ, и управления на основании этого сигнала пропорциональным регулированием, осуществляемым рециркуляционным регулирующим клапаном.

Устройство управления дополнительно пригодно для:

приема от датчика сигнала, отражающего степень извлечения быстрого газа, достигаемую в ходе функционирования данной системы;

управления на основании этого сигнала пропорциональным регулированием, осуществляемым рециркуляционным регулирующим клапаном.

Имеется датчик, пригодный для измерения концентрации быстрого газа в газе-продукте, находящемся в канале газа-продукта, и подачи на устройство управления сигнала, отражающего измеренную концентрацию, каковое устройство управления дополнительно пригодно для:

приема от датчика сигнала, отражающего измеренную концентрацию; и

управления на основании сигнала, отражающего измеренную концентрацию, пропорциональным регулированием, осуществляемым рециркуляционным регулирующим клапаном.

Имеется вторичная газоразделительная мембрана, которая имеет вход, сообщающийся по текучей среде с выходом для остаточного потока первичной газоразделительной мембраны, выход для вторичного остаточного потока и выход для вторичного пермеата.

Канал вторичного пермеата сообщающийся по текучей среде с выходом для пермеата вторичной газоразделительной мембраны и рециркуляционным каналом, при этом источниками отходящего газа являются охлаждающие башни для оптических волокон, а быстрый газ представляет собой гелий.

Краткое описание чертежей

Для лучшего понимания сути и задач настоящего изобретения, необходимо сослаться на следующее далее подробное описание, приводимое в сочетании с прилагаемыми чертежами, на которых одинаковые элементы имеют одинаковые или аналогичные ссылочные позиции, и на которых:

Фиг.1 представляет собой схему одного из вариантов осуществления способа и системы для извлечения представляющего интерес газа из процесса, производящего расходы в широком диапазоне.

Фиг.2 представляет собой схему другого варианта осуществления способа и системы для извлечения представляющего интерес газа из процесса, производящего расходы в широком диапазоне.

Фиг.3 представляет собой схему другого варианта осуществления способа и системы для извлечения представляющего интерес газа-гелия из процесса, производящего расходы в широком диапазоне.

Фиг.4 представляет собой схему одного из вариантов осуществления способа и системы для извлечения гелия в процессе производства оптических волокон.

Фиг.5 представляет собой схему другого варианта осуществления способа и системы для извлечения гелия в процессе производства оптических волокон.

Фиг.6 представляет собой схему другого варианта осуществления способа и системы для извлечения гелия в процессе производства оптических волокон.

Описание предпочтительных вариантов осуществления изобретения

Настоящий способ и система предусматривают наличие одной или двух последовательных стадий мембранного разделения газа с использованием частичной рециркуляции потока пермеата, что обеспечивает достижения достаточно высокой степени чистоты быстрого газа, представляющего интерес, при достаточно высокой степени его извлечения в процессе получения широко изменяющихся потоков газовой смеси, содержащей быстрый газ и один или более медленный газ.

Специалистам в области мембранного разделения газов ясно, что существует множество сочетаний газовых смесей и газоразделительных мембран, способных разделять газовую смесь на поток пермеата, содержащий быстрый газ, и остаточный поток, содержащий один или более медленный газ. Специалистам понятно, что раскрываемые способ и система могут быть применены к любому из таких сочетаний. Конкретные примеры сочетаний быстрого газа и медленного газа, помимо прочего, включают: H2 и Ne, H2 и CO2, H2 и CH4, H2 и N2, H2 и O2, H2 и O2/N2, H2 и воздух, CO2 и N2, CO2 и O2, CO2 и N2/O2, CO2 и воздух, CO2 и CH4, Ne и N2, Ne и O2, Ne и N2/O2, Ne и воздух, He и N2, He и O2, He и N2/O2, He и воздух.

Газовая смесь, содержащая быстрый и медленный газы поступает из процесса, который производит эту газовую смесь с переменным расходом. Хотя специалистам в области мембранного разделения газов ясно, что существует множество типов таких процессов, конкретные примеры таких процессов, помимо прочего, включат процессы производства оптических волокон с использованием охлаждения гелием во множестве охлаждающих башен и процессы с использованием охлаждения гелием во множестве вакуумных печей.

Вне зависимости от конкретного процесса, в котором образуется данная газовая смесь, эта газовая смесь, содержащая быстрый и медленный газы, принимаемая из одного или более источника газовой смеси (такого как охлаждающие башни или вакуумные печи), представляет собой поток исходного газа, подлежащий обработке одной или более газоразделительной мембраной. В настоящем способе и системе используется постоянная площадь мембраны. Это означает, что, когда расход исходного газа уменьшается или увеличивается, общую площадь поверхности мембраны не увеличивают и не уменьшают. Настоящие способ и система позволяют достичь и поддерживать или превысить степень чистоты полезного продукта (например, >99+%) и поддерживать или превысить степень извлечения полезного продукта (например, >90%), при широком диапазоне изменения от 0 до 87,5%. Неожиданно хорошая гибкость достигается при помощи частичной рециркуляции потока пермеата.

Настоящие способ и система особенно хорошо подходят для случая множества охлаждающих башен или плазменных печей, каждая из которых не обязательно работает все время. Например, в период максимума производства оптических волокон или работы печей, могут быть задействованы все охлаждающие башни (например, 6) или все печи. С другой стороны, в период минимума производства, могут работать не все охлаждающие башни (например, 1) или печи.

Далее, со ссылкой на фиг.1-3, приведено описание первой группы из трех вариантов осуществления изобретения.

Как показано на фиг.1, система 100 включает исходный поток FS, содержащий быстрый и медленный газы и имеет переменный расход, который собирается из множества источников (не показаны) смеси быстрого и медленного газов. За некоторое время его расход может изменяться вплоть до соотношения 8:1, где 8 означает максимальный расход, а 1 означает минимальный расход. Это соответствует диапазону изменения 87,5%. Исходный поток FS может иметь атмосферное, повышенное или пониженное давление в зависимости от предшествующей технологической операции.

Исходный поток FS направляют на вход компрессора С, где происходит его сжатие, примерно, до рабочего давления газоразделительной мембраны GSM1. На мембране GSM1 происходит отделение представляющего интерес быстрого газа (такого как гелий), который преимущественно проходит сквозь мембрану. Образующийся поток пермеата PERM1 обогащен быстрым газом и обеднен медленными газами (такими как присутствующие в воздухе газы кислород и азот). Не являющаяся пермеатом часть газовой смеси покидает мембрану GSM1 как остаточный поток RES1.

Специалистам в данной области техники ясно, что относительный размер мембраны GSM1 (или относительные размеры мембран GSM1, GSM2 в вариантах осуществления изобретения, поясняемых со ссылкой на фиг.2-3 и 5-6) могут быть рассчитаны на основании величины общей площади поверхности мембраны GSM1 (или общей площади поверхности мембран GSM1, GSM2 в вариантах осуществления изобретения, поясняемых со ссылкой на фиг.2-3 и 5-6), которая пропорциональна ожидаемому максимальному расходу исходного потока FS. Другими словами, расход исходного потока FS, поступающего, когда все источники смеси быстрого и медленного газов (такие как охлаждающие башни или гелиевые печи) работают на полной мощности, определяет используемый размер мембраны GSM1 (или размер мембран GSM1, GSM2). Специалистам в области газоразделения ясно, что на основании состава исходного потока FS (следовательно, быстрого и медленного газов) может быть подобран надлежащий тип материала, из которого изготовлена мембрана GSM1 (и, в случае систем 200, 300, мембрана GSM2).

Поток пермеата PERM1 разделяют на два потока. Один поток соединяют с исходным потоком FS и возвращают в компрессор С.Другой поток направляют через регулирующий клапан CVb, получая поток продукта PS. Небольшую часть потока продукта PS отводят либо непрерывно, либо через определенные промежутки времени в анализатор А и измеряют концентрацию представляющего интерес быстрого газа (или эквивалентный параметр, соответствующий концентрации представляющего интерес газа, такой как теплопроводность). При нормальном функционировании, поток продукта PS характеризуется степенью чистоты, надлежащей для продукта (например, более 99%). Сигнал, отражающий измеренную степень чистоты, анализатором А подается на программируемое логическое устройство управления PLC.

Как показано на фиг.2, система 200 отличается от системы 100 тем, что в ней имеется вторая газоразделительная мембрана GSM2, размещенная последовательно дальше по ходу потока после газоразделительной мембраны GSM1. Остаточный поток RES1 направляют на вход второй мембраны GSM2. Остаточный поток RES2 второй мембраны GSM2 направляют на выход через регулирующий клапан CVa. Как и ранее, часть потока пермеата PERM1 направляют через регулирующий клапан CVb и отводят как поток продукта PS, тогда как другую часть соединяют с исходным потоком FS и направляют на сжатие в компрессор С. Весь поток пермеата PERM2 второй газоразделительной мембраны GSM2 также соединяют с исходным потоком FS и указанной частью потока пермеата PERM1 первой стадии. Следует отметить, что расстояние между точками прохождения двух потоков пермеата PERM1, PERM2 относительно регулирующего клапана CVb и компрессора С должно быть достаточно большим. Это позволяет направлять весь поток пермеата PERM2 в компрессор С, а не в сторону регулирующего клапана CVb.

Последовательное расположение в системе 200 имеет преимущество, заключающееся в большей степени извлечения быстрого газа по сравнению с единственной стадией мембранного газоразделения. Следует отметить, что может быть предусмотрено более двух стадий мембранного газоразделения. Если используют три последовательные газоразделительные мембраны, остаточный поток GSM2 направляют на третью газоразделительную мембрану, а не на выпуск, поток пермеата третьей газоразделительной мембраны объединяют с аналогичными потоками первой и второй газоразделительных мембран GSM1, GSM2. Данная концепция может быть распространена на дополнительные стадии, тогда все от второго до последнего остаточные потоки направляют на вход последней стадии, и все кроме первого PERM1 потоки пермеата рециркулируют в компрессор С. Предельное число стадий определяется, главным образом, производительностью компрессора С, осуществляющего сжатие объединенных потоков пермеата и их подачу на вход первой газоразделительной мембраны GSM1 при достаточно высоком давлении.

Как лучше всего показано на фиг.3, система 300 аналогична системе 100 за исключением того, что в ней имеется две газоразделительных мембраны GSM1, GSM2. Исходный поток FS подают на вход второй мембраны GSM2, через которую предпочтительно проникает представляющий интерес быстрый газ (такой как гелий) по сравнению с медленным газом (газами) (такими как компоненты воздуха кислород и азот). Остаточный поток RES2 второй мембраны GSM2 выпускают регулируемым образом при помощи регулирующего клапана CVc, тогда как поток пермеата PERM2 объединяют с частью потока пермеата PERM1 первой мембраны GSM1 и направляют в компрессор С.Управление регулирующим клапаном CVc может осуществлять устройство управления PLC с целью достижения заданной степени чистоты и степени извлечения быстрого газа.

Использование двухстадийного мембранного газоразделения в системе 300 позволяет достичь более высокой степени чистоты потока продукта PS и уменьшить размер компрессора С. В этом случае также повышается степень извлечения быстрого газа, так как эффективность извлечения на газоразделительной мембране GSM1 увеличивается вследствие более высокой концентрации быстрого газа, получаемой благодаря использованию потока пермеата PERM2 второй газоразделительной мембраны GSM2 в качестве исходного потока FS.

Для каждого из вариантов осуществления изобретения, поясняемых фиг.1-3, справедливо, что данные способ и система предусматривают несколь