Квантовые точки, способы получения квантовых точек и способы использования квантовых точек

Иллюстрации

Показать все

Изобретение относится к нанотехнологии. Способ получения квантовой точки включает следующие стадии:

a) смешивание амфифильного полимера, растворенного в некоординирующемся растворителе, с первым предшественником для получения карбоксилатного предшественника,

b) смешивание карбоксилатного предшественника со вторым предшественником для получения ядра квантовой точки,

c) смешивание ядра квантовой точки с предшественником, выбранным из группы, состоящей из: третьего предшественника, четвертого предшественника и их комбинации, для получения покрытия квантовой точки на ядре квантовой точки с образованием квантовой точки, где квантовая точка включает слой амфифильного полимера, размещенный на поверхности квантовой точки. Изобретение обеспечивает лучший контроль кинетики роста, возможность конструирования ширины запрещенной зоны и получение большого диапазона для испускания. 5 н. и 20 з.п. ф-лы, 6 ил.

Реферат

Перекрестная ссылка на родственную заявку

Данная заявка заявляет приоритет предварительной заявки США, озаглавленной «QUANTUM DOTS, METHODS OF MAKING QUANTUM DOTS, AND METHODS OF USING QUANTUM DOTS», имеющей регистрационный номер 61/093801 и поданной 3 сентября 2008 года, которая посредством ссылки во всей своей полноте включается в настоящий документ.

Заявление в отношении федеральной поддержки исследования или разработки

Данное изобретение сделано при правительственной поддержке под номером гранта: GM072069, выданного в Национальном институте здоровья (НИЗ). Правительство имеет определенные права на изобретение.

Уровень техники

Полупроводниковые квантовые точки (КТ) представляют собой частицы нанометрового размера, обладающие уникальными оптическими и электронными свойствами, и в настоящее время составляют предмет интенсивных исследований для широкого диапазона областей применения, таких как преобразование солнечной энергии и молекулярная и клеточная визуализация. Значительного прогресса удалось добиться в химическом синтезе высококристаллических и монодисперсных КТ, в особенности при использовании металлоорганических и хелатированных предшественников кадмия, некоординирующихся растворителей и неорганических пассивирующих оболочек. Однако получающиеся в результате нанокристаллы зачастую являются гидрофобными и для множества важных областей применения должны быть инкапсулированы и солюбилизированы после синтеза. В качестве альтернативных подходов к получению растворимых в воде КТ применяли водные методики синтеза с использованием в качестве стабилизаторов небольших тиолсодержащих молекул или полимеров, имеющих карбокислотные функциональные группы. Но данные способы не приводят к получению КТ, демонстрирующих яркость флуоресценции или монодисперсность размеров, чего зачастую добиваются при использовании высокотемпературных органических методик.

Краткое раскрытие изобретения

Варианты осуществления настоящего описания изобретения предлагают: способы получения квантовой точки, квантовые точки и тому подобное. Варианты осуществления способа получения квантовой точки, помимо прочего, включают: перемешивание амфифильного полимера, растворенного в некоординирующемся растворителе, с первым предшественником для получения карбоксилатного предшественника; перемешивание карбоксилатного предшественника со вторым предшественником для получения ядра квантовой точки; перемешивание ядра квантовой точки с предшественником, выбираемым из группы, состоящей из: третьего предшественника, четвертого предшественника и их комбинации, для получения покрытия квантовой точки на ядре квантовой точки с образованием квантовой точки, где квантовая точка включает слой амфифильного полимера, размещенный на поверхности квантовой точки. Варианты осуществления настоящего описания изобретения включают квантовые точки, полученные по данному способу.

Варианты осуществления способов получения квантовой точки, помимо прочего, включают: перемешивание амфифильного полимера, растворенного в ПЭГ, с CdO для получения карбоксилатного предшественника; перемешивание карбоксилатного предшественника с предшественником теллура для получения ядра из CdTe; перемешивание ядра квантовой точки из CdTe с предшественником селена для получения покрытия из CdSe на ядре из CdTe с образованием квантовой точки из CdTe/CdSe, где квантовая точка из CdTe/CdSe включает слой амфифильного полимера, размещенный на поверхности квантовой точки из CdTe/CdSe. Варианты осуществления настоящего описания изобретения включают квантовые точки, полученные по данному способу.

Варианты осуществления квантовой точки, помимо прочего, включают: покрытие из CdSe на ядре из CdTe с образованием квантовой точки из CdTe/CdSe, где квантовая точка из CdTe/CdSe включает слой амфифильного полимера, размещенный на поверхности квантовой точки из CdTe/CdSe.

Краткое описание чертежей

Множество аспектов описания изобретения могут быть лучше поняты при обращении к следующим далее чертежам. Компоненты на чертежах необязательно представлены в масштабе, вместо этого упор делается на ясности иллюстрации принципов настоящего описания изобретения. Кроме того, на чертежах подобные номера позиций обозначают соответствующие детали на всех нескольких видах.

Фиг.1А представляет собой схематическую структуру амфифильного полидентатного лиганда с несколькими хелатированными ионами кадмия. Фиг.1В представляет собой диаграмму, демонстрирующую связывание полидентатного лиганда с поверхностью КТ. Получающиеся в результате нанокристаллы самопроизвольно инкапсулируются и солюбилизируются вторым слоем того же самого полидентатного полимера при воздействии воды.

Фиг.2А-2С представляют собой преобразованные в цифровую форму изображения испускания флуоресценции и электронно-микроскопических структурных свойств КТ с ядром из CdTe, полученных при использовании полидентатных полимерных лигандов по однореакторной методике. Фиг.2А представляет собой полученную в шкале серого цвета фотографию для серии монодисперсных КТ из CdTe, демонстрирующих яркую флуоресценцию в диапазоне от зеленого до красного света (от 515 нм до 655 нм) при освещении УФ-лампой. Фиг.2В представляет собой нормированные спектры испускания краевой флуоресценции для КТ из CdTe при полной ширине на половине максимума (ПШПМ) 35-50 нм (квантовый выход KB ~30%). Фиг.2В демонстрирует представительные спектры испускания для КТ различных размеров (в диапазоне от синего до бордового). По мере роста частиц испускание смещается в красную область, что в результате приводит к сдвигу в спектрах. Фиг.2С представляет собой сделанную по методу просвечивающей электронной микроскопии фотографию ядер из CdTe (испускание = 655 нм), демонстрирующую наличие однородных, почти сферических частиц (средний диаметр = 4,2 нм, среднеквадратическое отклонение ~10%).

Фиг.3А-3В иллюстрируют КТ из CdTe/CdSe со структурой ядро-оболочка типа II, синтезированные в одном реакторе. Фиг.3А представляет собой преобразованное в цифровую форму изображение нормированных спектров испускания флуоресценции, демонстрирующее переход от ядер из CdTe к КТ из CdTe/CdSe со структурой ядро-оболочка, испускающих излучение в ближней инфракрасной области. Фиг.3А соответствует спектрам испускания частиц по мере роста пассивирующей оболочки, Кривая для красного цвета представляет одно только ядро (в данном случае из CdTe) в отсутствие какой-либо оболочки. По мере роста оболочки спектр испускания смещается в красную область (в направлении кривой для черного цвета). Фиг.3 В представляет собой график, демонстрирующий оптическое поглощение, иллюстрирующее смещение в красную область и, в конечном счете, исчезновение первого пика экситона по мере роста оболочки из CdSe на ядре из CdTe, что типично для КТ типа П. Фиг.3 В соответствует спектрам поглощения частиц по мере роста пассивирующей оболочки. Кривая для красного цвета соответствует одному только ядру (в данном случае из CdTe) в отсутствие какой-либо оболочки. По мере роста оболочки пик поглощения смещается в красную область. Кроме того, поскольку данный материал оболочки в результате приводит к получению КТ типа II, спектры поглощения не должны утрачивать свой пик (как это продемонстрировано в случае кривой для черного цвета), что доказывает успешность роста оболочки.

Фиг.4А-4В иллюстрируют уникальные характеристики роста в методике синтеза полимера. Фиг.4А иллюстрирует зависимость длины волны флуоресценции и полной ширины на половине максимума (ПШПМ) от времени и концентрации полимера, демонстрируя уменьшение скорости роста наночастиц при увеличении концентрации полимерного предшественника (противоположный эффект наблюдался в случае одновалентных предшественников). Как иллюстрирует фиг.4В, получение в реакционной колбе, содержащей оба предшественника, а после этого быстрое увеличение температуры в результате приводят к зародышеобразованию наночастиц без необходимости проведения стадии впрыска, которая необходима для синтеза при использовании одновалентных предшественников. Фиг.4В представляет спектры испускания для реакционной смеси, где все материалы добавляли в одну емкость при низких температурах и температуру увеличивали для индуцирования зародышеобразования (вместо получения предшественников раздельно и добавления одного к другому при высоких температурах). Кривые демонстрируют постепенное изменение внешнего вида характеристического испускания для КТ, что демонстрирует успешность синтеза КТ при использовании данного способа.

Фиг.5А-5В иллюстрируют кинетику реакции синтеза ядра из CdTe. Фиг.5А иллюстрирует эволюцию во времени для спектров поглощения ядер из CdTe, синтезированных при использовании методики амфифильного полидентатного лиганда. Фиг.5В иллюстрирует кинетику реакции для полидентатных лигандов в сопоставлении с тем, что имеет место для традиционных монодентатных лигандов.

Фиг.6 представляет собой гистограмму размеров для ядер из CdTe. КТ с ядром из CdTe синтезировали при использовании полимерной методики. Сделанную по методу просвечивающей электронной микроскопии фотографию получали и анализировали для определения распределения частиц по размерам (средний диаметр = 4,2 нм, среднеквадратическое отклонение ~10%).

Подробное раскрытие изобретения

Перед более подробным раскрытием настоящего описания изобретения необходимо понять то, что данное описание изобретения не ограничивается раскрытыми конкретными вариантами осуществления, поскольку таковые, само собой разумеется, могут варьироваться. Также необходимо понимать, что терминология, использующаяся в настоящем документе, предназначена только лишь для целей описания конкретных вариантов осуществления и не предполагает какого-либо ограничения, поскольку объем настоящего описания изобретения будет ограничиваться только прилагаемой формулой изобретения.

В случае приведения диапазона значений необходимо понимать, что в данное описание изобретения включается каждое промежуточное значение с точностью до десятой доли единицы от нижнего предела (если только контекст не будет ясно диктовать другого) между верхним и нижним пределами данного диапазона и любым другим указанным или промежуточным значением в данном указанном диапазоне. Верхний и нижний пределы данных меньших диапазонов могут быть независимо включены в данные меньшие диапазоны и также включаются в данное описание изобретения в предположении возможности наличия любого конкретного исключенного предела в указанном диапазоне. В случае включения в указанный диапазон одного или обоих пределов в описание изобретения также включаются и диапазоны, исключающие любой из двух или оба из данных включенных пределов.

Если только не будет определено другого, то все технические и научные термины, использующиеся в настоящем документе, имеют то же самое значение, что и обычно понимаемое специалистом в соответствующей области техники, к которой относится данное описание изобретения. Несмотря на возможность использования в практике или при испытаниях настоящего описания изобретения также и любых способов и материалов, подобных или эквивалентных тем, которые описываются в настоящем документе, теперь будут описаны предпочтительные способы и материалы.

Все публикации и патенты, процитированные в данном описании изобретения, посредством ссылки включаются в настоящий документ, как если бы каждые индивидуальные публикация или патент были бы конкретно и индивидуально указаны включенными посредством ссылки и включались бы посредством ссылки в настоящий документ для раскрытия и описания способов и/или материалов, в связи с которыми публикации процитированы. Цитирование любой публикации относится к ее описанию на дату, предшествующую дате подачи настоящей заявки и не должно восприниматься в качестве допущения того, что настоящее описание изобретения не дает права на противопоставление настоящего изобретения такой публикации в связи с предшествующим описанием. Кроме того, даты представленной публикации могли бы отличаться от дат фактической публикации, которые могут потребовать независимого подтверждения.

Как должно быть очевидным для специалистов в соответствующей области техники после прочтения данного описания изобретения, каждый из индивидуальных вариантов осуществления, описанных и проиллюстрированных в настоящем документе, включает дискретные компоненты и признаки, которые легко могут быть отделены от признаков любых других нескольких вариантов осуществления или объединены с ними без отклонения от объема или сущности настоящего описания изобретения. Любой процитированный способ может быть реализован в порядке процитированных действий или в любом другом порядке, который является логически возможным.

Варианты осуществления настоящего описания изобретения будут использовать, если не будет указано другого, методики химии, синтетической органической химии, биохимии, биологии, молекулярной биологии и тому подобного, которые соответствуют знаниям специалиста в соответствующей области техники. Такие методики полностью разъясняются в литературе.

Следующие далее примеры представлены для того, чтобы предложить специалистам в соответствующей области техники полное описание и раскрытие того, как реализовать способы и использовать композиции и соединения, описанные и заявленные в настоящем документе. Предпринимались усилия по обеспечению точности в отношении чисел (например, количеств, температуры и тому подобного), но необходимо учитывать и наличие определенных погрешностей и отклонений. Если только не будет указано другого, то части являются массовыми частями, температура представлена в °С, а давление является атмосферным или близким к нему. Стандартные температура и давление определяются как 20°С и 1 атмосфера.

Перед подробным раскрытием вариантов осуществления настоящего описания изобретения необходимо понять, что если только не будет указано другого, то настоящее описание изобретение не ограничится конкретными материалами, реагентами, реакционно-способными материалами, производственными способами и тому подобным, поскольку таковые могут варьироваться. Также необходимо понимать, что терминология, использующаяся в настоящем документе, предназначена только для целей описания конкретных вариантов осуществления и не предполагает быть ограничивающей. В настоящем описании изобретения также допускается и возможность проведения стадий в отличной последовательности тогда, когда это будет логически возможным.

Необходимо отметить, что в соответствии с использованием в описании изобретения и прилагаемой формуле изобретения формы единственного числа «один», «некий» и «данный» включают партнеров во множественном числе, если только контекст ясно не будет диктовать другого. Таким образом, например, ссылка на «носитель» включает множество носителей. В данном описании изобретения и в формуле изобретения, которая следует далее, ссылка будет делаться на несколько терминов, которые должны быть определены как имеющие следующие далее значения, если только противоположное намерение не будет очевидным.

Определения

При описании и заявлении раскрытого объекта будет использована следующая далее терминология в соответствии с приведенными ниже определениями.

Термин «квантовая точка» (КТ) в соответствии с использованием в настоящем документе обозначает полупроводниковые нанокристаллы или искусственные атомы, которые представляют собой полупроводниковые кристаллы, которые содержат любое количество электронов в диапазоне от 100 до 1000 и попадают в диапазон приблизительно от около 2-10 нм. Некоторые КТ могут иметь в диаметре приблизительно 1-40 нм. КТ характеризуются высокими квантовыми выходами, что делает их в особенности подходящими для использования в оптических областях применения. КТ представляют собой флуорофоры, которые флуоресцируют благодаря образованию экситонов, которые могут восприниматься как возбужденное состояние традиционных флуорофоров, но имеют намного более продолжительные времена жизни, доходящие вплоть до 200 наносекунд. Данное свойство обеспечивает получение КТ при низком уровне фотоотбеливания. Уровень энергии КТ можно контролировать в результате изменения размера и формы КТ и глубины потенциальной ямы КТ. Одним из оптических признаков небольших экситонных КТ является окрашивание, которое определяется размером точки. Чем большей будет точка, тем более красной или более смещенной к красному краю спектра будет флуоресценции. Чем меньшей будет точка, тем более синей или более смещенной к синему краю будет она. Ширина запрещенной зоны, которая определяет энергию и, таким образом, окраску света флуоресценции, обратно пропорциональна квадрату размера КТ. Более крупные КТ имеют больше уровней энергии, которые ближе расположены друг к другу, что, таким образом, позволяет КТ поглощать фотоны, имеющие меньшую энергию, например, более близкие к красному краю спектра. Поэтому вследствие зависимости частоты испускания точки от ширины запрещенной зоны у точки можно контролировать испускаемую длину волны при предельной точности.

Термин «алифатическая группа» относится к насыщенной или ненасыщенной линейной или разветвленной углеводородной группе и включает, например, алкильную, алкенильную и алкинильную группы.

Термины «алк» или «алкил» относятся к углеводородным группам с прямой или разветвленной цепью, содержащим от 1 до 12 атомов углерода, предпочтительно от 1 до 8 атомов углерода, таким как метил, этил, н-пропил, изопропил, н-бутил, изобутил, трет-бутил, пентил, гексил, гептил, н-октил, додецил, октадецил, амил, 2-этилгексил и тому подобное. Термин «замещенный алкил» относится к алкильным группам, замещенным одной или несколькими группами, предпочтительно выбираемыми из групп арила, замещенного арила, гетероцикло, замещенного гетероцикло, карбоцикло, замещенного карбоцикло, галогена, гидрокси, защищенного гидрокси, алкокси (например, от C1 до С7) (необязательно замещенного), ацила (например, от C1 до С7), арилокси (например, от C1 до С7) (необязательно замещенного), алкилового сложного эфира (необязательно замещенного), арилового сложного эфира (необязательно замещенного), алканоила (необязательно замещенного), ароила (необязательно замещенного), карбокси, защищенного карбокси, циано, нитро, амино, замещенного амино, (монозамещенного) амино, (дизамещенного) амино, защищенного амино, амидо, лактама, мочевины, уретана, сульфонила и тому подобного.

Термин «алкенил» относится к углеводородным группам с прямой или разветвленной цепью, содержащим от 2 до 12 атомов углерода, предпочтительно от 2 до 4 атомов углерода, и, по меньшей мере, одну двойную связь углерод-углерод (либо цис, либо транс), таким как этенил. Термин «замещенный алкенил» относится к алкенильным группам, замещенным одной или несколькими группами, предпочтительно выбираемыми из групп арила, замещенного арила, гетероцикло, замещенного гетероцикло, карбоцикло, замещенного карбоцикло, галогена, гидрокси, алкокси (необязательно замещенного), арилокси (необязательно замещенного), алкилового сложного эфира (необязательно замещенного), арилового сложного эфира (необязательно замещенного), алканоила (необязательно замещенного), ароила (необязательно замещенного), циано, нитро, амино, замещенного амино, амидо, лактама, мочевины, уретана, сульфонила и тому подобного.

Термин «алкинил» относится к углеводородным группам с прямой или разветвленной цепью, содержащим от 2 до 12 атомов углерода, предпочтительно от 2 до 4 атомов углерода, и, по меньшей мере, одну тройную связь углерод-углерод, таким как этинил. Термин «замещенный алкинил» относится к алкинильным группам, замещенным одной или несколькими группами, предпочтительно выбираемыми из групп арила, замещенного арила, гетероцикло, замещенного гетероцикло, карбоцикло, замещенного карбоцикло, галогена, гидрокси, алкокси (необязательно замещенного), арилокси (необязательно замещенного), алкилового сложного эфира (необязательно замещенного), арилового сложного эфира (необязательно замещенного), алканоила (необязательно замещенного), ароила (необязательно замещенного), циано, нитро, амино, замещенного амино, амидо, лактама, мочевины, уретана, сульфонила и тому подобного.

Использование фразы «биомолекула» предполагает включение дезоксирибонуклеиновой кислоты (ДНК), рибонуклеиновой кислоты (РНК), нуклеотидов, олигонуклеотидов, нуклеозидов, полинуклеотидов, белков, пептидов, полипептидов, селенопротеинов, антител, антигенов, белковых комплексов, аптамеров, гаптенов, их комбинаций и тому подобного.

Использование терминов «биопрепарат» или «биомишень» предполагает включение биомолекул (например, дезоксирибонуклеиновой кислоты (ДНК), рибонуклеиновой кислоты (РНК), нуклеотидов, олигонуклеотидов, нуклеозидов, полинуклеотидов, белков, пептидов, полипептидов, селенопротеинов, антител, антигенов, белковых комплексов, аптамеров, гаптенов, их комбинаций) и тому подобного. В частности, биопрепарат или биомишень могут включать нижеследующее, но не ограничиваются только этим: вещества, встречающиеся в природе, такие как полипептиды, полинуклеотиды, липиды, жирные кислоты, гликопротеины, углеводы, жирные кислоты, жирные сложные эфиры, макромолекулярные полипептидные комплексы, витамины, кофакторы, цельные клетки, эукариотные клетки, прокариотные клетки, мицеллы, микроорганизмы, такие как вирусы, бактерии, простейшие, археи, грибы, водоросли, споры, апикомплексан, трематоды, нематоды, микоплазма или их комбинации. В дополнение к этому биомишень может включать нативные интактные клетки, вирусы, бактерию и тому подобное.

Использование термина «сродство» может включать биологические взаимодействия и/или химические взаимодействия. Биологические взаимодействия могут включать нижеследующее, но не ограничиваются только этим: связывание или гибридизацию для одной или нескольких биологических функциональных групп, расположенных на первых биомолекуле или биомишени и вторых биомолекуле или биомишени. В данном отношении первая (или вторая) биомолекула может включать одну или несколько биологических функциональных групп, которые селективно взаимодействуют с одной или несколькими биологическими функциональными группами второй (или первой) биомолекулы. Химическое взаимодействие может включать нижеследующее, но не ограничивается только этим: связывание для одной или нескольких функциональных групп (например, органических и/или неорганических функциональных групп), расположенных на биомолекулах.

«Лечение» или «терапевтическое лечение» заболевания (или состояния или расстройства) включают предотвращение возникновения заболевания у животного, которое может быть предрасположено к заболеванию, но все еще не демонстрирует и не проявляет симптомов заболевания, (профилактическое лечение), подавление заболевания (замедление или купирование его развития), достижение ослабления симптомов или побочных эффектов при заболевании (в том числе паллиативное лечение) и облегчение хода заболевания (стимулирование ремиссии заболевания). В отношении рака данные термины также обозначают увеличение средней продолжительности жизни лица, страдающего от рака, или ослабление одного или нескольких симптомов заболевания.

В соответствии с использованием в настоящем документе термины «реципиент» или «организм» включают людей, млекопитающих (например, кошек, собак, лошадей и тому подобное), живые клетки и другие живые организмы. Живой организм может быть таким простым, как, например, одна эукариотная клетка, или таким сложным, как млекопитающее. Обычные реципиенты, для которых могут быть реализованы варианты осуществления настоящего описания изобретения, будут представлять собой млекопитающих, в частности, приматов, в особенности людей. В областях применения для ветеринарии подходящим будет широкий диапазон пациентов, например домашний скот, такой как крупный рогатый скот, овцы, козы, коровы, свиньи и тому подобное; домашняя птица, такая как курицы, утки, гуси, индюки и тому подобное; и домашние животные, в частности, комнатные животные, такие как собаки и кошки. В областях применения для диагностики или исследований подходящими пациентами будет широкий диапазон млекопитающих, включая грызунов (например, мышей, крыс, хомяков), кроликов, приматов и свиней, таких как инбредные свиньи, и тому подобное. В дополнение к этому в областях применения в лабораторных условиях, таких как области применения для диагностики и исследований в лабораторных условиях, подходящими для использования будут биологические жидкости и клеточные образцы вышеупомянутых пациентов, такие как образцы крови, мочи или ткани млекопитающих (в частности, приматов, таких как человек) или образцы крови, мочи или ткани животных, упомянутых для областей применения для ветеринарии. В некоторых областях применения система включает образец и реципиента. Термин «живой реципиент» относится к указанным выше реципиенту или организмам, которые являются живыми, а не мертвыми. Термин «живой реципиент» относится к целым реципиенту или организму, а не просто к части (например, печени или другому органу), удаленной из живого реципиента.

Термин «образец» может обозначать образец ткани, клеточный образец, образец жидкости и тому подобное. Образец может быть получен из реципиента. Образец ткани может включать волос (в том числе корни), буккальные мазки, кровь, слюну, сперму, мышцу или фрагмент любых внутренних органов. Жидкость может представлять собой нижеследующее, но не ограничивается только этим: моча, кровь, асцит, плевральная жидкость, спинномозговая жидкость и тому подобное. Ткань организма может включать нижеследующее, но не ограничивается только этим: ткань кожи, мышцы, эндометрия, матки и шеи. В настоящем описании изобретения источник образца не является критичным моментом.

Термин «обнаружимый» относится к возможности обнаруживать сигнал поверх фонового сигнала.

Термин «обнаружимый сигнал» относится к сигналу, производимому квантовыми точками. Обнаружимый сигнал является обнаружимым и отличимым от других фоновых сигналов, которые могут быть генерированы реципиентом. Другими словами, существует измеримая и статистически значимая разница (например, статистически значимая разница является достаточной разницей для проведения различия между акустически обнаружимым сигналом и фоном, такой как разница между обнаружимым сигналом и фоном, равная приблизительно 0,1%, 1%, 3%, 5%, 10%, 15%, 20%, 25%, 30% или 40% и более). Для определения относительной интенсивности акустически обнаружимого сигнала и/или фона могут быть использованы стандарты и/или калибровочные кривые.

Обсуждение

В соответствии с целью (целями) настоящего описания изобретения, осуществленного и широко описанного в настоящем документе, варианты осуществления настоящего описания изобретения в одном аспекте относятся к квантовым точкам, способам получения квантовых точек, способам использования квантовых точек и тому подобному. В частности, варианты осуществления настоящего описания изобретения включают получение квантовых точек при использовании стратегии «все в одном» в отношении синтеза, инкапсулирования и солюбилизации квантовых точек, в то же время получая квантовые точки, имеющие обнаружимые сигналы. Квантовые точки могут быть использованы во многих сферах, таких как нижеследующие, но не ограничивающиеся только этими: визуализация (в лабораторных условиях и в естественных условиях), разработка биосенсоров, биомечение, исследования экспрессии генов, исследования белков, медицинская диагностика, диагностические библиотек, микроструйные системы, средства доставки, литография и формирование рельефа и тому подобное.

Варианты настоящего раскрытия предлагают «однореакторную» методику (например, квантовые точки могут быть получены в одной реакционной емкости) получения растворимых в воде квантовых точек со структурой «ядро-оболочка». Варианты настоящего раскрытия включают использование амфифильных полидентатных лигандов и некоординирующихся растворителей. Использование амфифильных полидентатных лигандов и некоординирующихся растворителей является выгодным, по меньшей мере, по следующим далее причинам: повышенная растворимость частиц, улучшенный контроль кинетики роста частиц и/или возможность получения сверхмалых квантовых точек. Варианты настоящего раскрытия предлагают способ роста «по месту» для неорганической пассивирующей оболочки квантовой точки на ядре квантовой точки. В дополнение к этому варианты настоящего раскрытия могут использовать избыток амфифильного полимера, который делает возможным непосредственный перенос квантовых точек в несколько растворителей, таких как вода, ацетон, диметилформамид (ДМФА), диметилсульфоксид (ДМСО), метанол, этанол, пропанол, бутанол, хлороформ, дихлорметан (ДХМ), тетрагидрофуран (ТГФ), толуол и любая их комбинация. В примерах описываются дополнительные подробности.

В общем случае варианты осуществления настоящего описания изобретения предлагают способы получения квантовых точек. Способ включает перемешивание амфифильного полимера, растворенного в некоординирующемся растворителе, с первым предшественником для получения карбоксилатного предшественника. В одном варианте осуществления температура может находиться в диапазоне приблизительно от 25°С до 300°С, а значение рН зависит от растворителя (например, для ПЭГ оно ориентировочно является нейтральным; для гидрофобных растворителей значение рН является кислым (ниже 7) для сохранения карбокислотных групп протонированными по причинам растворимости).

Затем карбоксилатный предшественник перемешивают со вторым предшественником для получения ядра квантовой точки. В одном варианте осуществления температура и значение рН являются подобными тем, которые описывались выше. В одном варианте осуществления добавление второго предшественника включает быстрое впрыскивание (нагнетание) при высоких температурах (например, в диапазоне приблизительно от 200°С до 350°С).

После этого ядро квантовой точки перемешивают с предшественником (например, третьим предшественником, четвертым предшественником или их комбинацией) для получения покрытия квантовой точки на ядре квантовой точки с образованием квантовой точки. Квантовая точка включает слой амфифильного полимера, размещенный на поверхности квантовой точки. В одном варианте осуществления температура находится в диапазоне приблизительно от 150°С до 350°С. Дополнительные подробности в отношении вариантов осуществления квантовых точек и способов получения квантовых точек настоящего описания изобретения описываются в примерах.

Перемешивание описывавшихся выше компонентов может быть проведено в одной реакционной емкости. В дополнение к этому, покрытие квантовой точки и слой амфифильного полимера могут быть получены «по месту». Температуру и среду реакции можно контролировать при использовании известных способов и систем. Конкретные примеры описываются в разделе с примерами. В одном варианте осуществления стадии перемешивания могли бы быть проведены в раздельных реакционных емкостях, но реакцию выгодно проводить в одной реакционной емкости. Материалы предшественников, амфифильный полимер и/или некоординирующийся растворитель могут быть предварительно получены в раздельных реакционных емкостях перед размещением в реакционной емкости для получения квантовых точек настоящего описания изобретения. В альтернативном варианте компоненты (например, карбоксилатный предшественник) могли бы быть добавлены в реакционную емкость, в которой получают материалы предшественников, амфифильный полимер и/или некоординирующийся растворитель. Хотя каждая стадия реакции и не протекает в одной и той же реакционной емкости, каждая стадия реакции может быть проведена в одной реакционной емкости.

В одном варианте осуществления амфифильным полимером может быть амфифильный полидентатный полимер. В одном варианте осуществления амфифильным полимером может быть полимер, содержащий как гидрофобные, так и гидрофильные части, имеющие функциональную группу (например, карбокислотные функциональные группы или фосфоновые функциональные группы), способную координироваться с атомами квантовой точки. Амифифильный полидентатный полимер имеет алифатические цепи и карбокислотные функциональные группы. В одном варианте осуществления алифатические цепи могут включать цепи, содержащие приблизительно от 2 до 20, приблизительно от 6 до 16 или приблизительно от 8 до 14 атомов углерода. В одном варианте осуществления цепи могут иметь идентичную длину или включать цепи переменной длины. В одном варианте осуществления алифатические цепи могут включать цепь, содержащую 12 атомов углерода. В одном варианте осуществления амфифильный полидентатный полимер может включать приблизительно от 3 до сотен (например, от 100 до 500 и более), приблизительно от 5 до 100 или приблизительно от 8 до 24 карбокислотных функциональных групп (или фосфоновых групп в еще одном варианте осуществления). Амфифильный полидентатный полимер может иметь молекулярную массу в диапазоне приблизительно от 500 до 100000, приблизительно от 2000 до 20000 или приблизительно от 2500 до 7500. В одном варианте осуществления амфифильный полидентатный полимер может включать один или нескольких представителей из следующих далее: полиакриловая кислота-додециламин, полиакриловая кислота-октиламин, чередующийся сополимер поли(малеиновый ангидрид-1-октадецен), чередующийся сополимер поли(малеиновый ангидрид-1-тетрадецен), их комбинации и тому подобное.

Термин «некоординирующийся растворитель» обозначает тот растворитель, который не или по существу не координируется и не взаимодействует с поверхностью кристаллической наночастицы. В одном варианте осуществления некоординирующийся растворитель может включать высококипящие растворители, не имеющие функциональных групп, которые взаимодействуют с квантовой точкой. В одном варианте осуществления для однореакторной методики переноса в воду необходимы смешиваемые с водой растворители. В еще одном варианте осуществления для переноса частиц в другие растворители, такие как те, которые перечислялись выше, могут быть использованы гидрофобные растворители. В одном варианте осуществления некоординирующийся растворитель может включать полиэтиленгликоль, октадекан, октадецен, гексадекан, гексадецен и любую их комбинацию. В одном варианте осуществления полиэтиленгликоль имеет низкую молекулярную массу в диапазоне приблизительно от 150 до десятков тысяч, приблизительно от 200 до 1500 или приблизительно от 250 до 1000 а.е.м.

Ядро и покрытие квантовой точки могут быть получены из трех, четырех или пяти и более предшественников. В одном варианте осуществлении, использующем три предшественника, одному из двух предшественников для получения ядра квантовой точки позволяют полностью исчерпаться для того, чтобы после этого другой из предшественников мог бы быть перемешан с третьим предшественником для получения покрытия квантовой точки. В еще одном варианте осуществления используют четыре предшественника. Двум предшественникам, использующимся для получения ядра квантовой точки, позволяют полностью исчерпаться и добавляют два дополнительных предшественника для получения покрытия квантовой точки. По причинам ясности следующий далее пример иллюстрирует использование трех предшественников. Однако для получения квантовой точки могли бы быть использованы четыре и более предшественника.

В одном варианте осуществления первый предшественник, второй предшественник и третий предшественник представляют собой компоненты, использующиеся для получения ядра и покрытия квантовой точки. Первый предшественник, второй предшественник и третий предшественник могут представлять собой металлы, металлоиды или халькогениды, некоторые из которых раскрываются в настоящем описании изобретения при обсуждении квантовых точек. Первый предшественник, в