Зубцы эвольвентной шестерни для дозатора текучей среды

Иллюстрации

Показать все

Изобретение относится к дозирующей технике, используется при создании дозаторов для текучей среды и направлено на улучшение показателей их работы, например на уменьшение износа зубцов шестерен и их шума при работе, что обеспечивается за счет того, что комплект шестерен содержит первую и вторую шестерни, идентичные друг другу и выполненные с возможностью взаимодействия при постоянном расстоянии между центрами, так что первая и вторая шестерни зацепляются при всех угловых положениях, и каждая шестерня из комплекта овальных шестерен содержит втулку, содержащую овальное тело, имеющее большую ось и малую ось, проходящие через центр втулки, и профиль стенки для ножек зубцов, который очерчивает большую и малую ось, а также множество зубцов шестерни, отходящих от профиля стенки для ножек зубцов, причем каждый из зубцов шестерни имеет две контактные поверхности с круговыми эвольвентными изогнутыми профилями, круговые эвольвентные изогнутые профили каждого зубца на первой шестерне генерируются от основной окружности, имеющей радиус Rb1, выведенной из модифицированной эллиптической начальной линии зубца, имеющей радиус R1 начальной линии при угловом положении Θ от центра, причем модифицированная эллиптическая начальная линия зубца описывается формулой полярных координат, раскрытой в формуле изобретения. 5 н. и 13 з.п. ф-лы, 6 ил.

Реферат

Настоящее изобретение относится к овальным шестерням для дозаторов текучей среды и, более конкретно, к геометрической форме зубца овальных шестерен. Ручные устройства часто используются для выдачи отмеренных количеств текучей среды из объемных емкостей. Например, на станциях технического обслуживания автомобилей часто используют ручные дозаторы для выдачи небольших количеств смазочного масла из больших бочек в автомобильные двигатели. Такие ручные дозаторы и другие подобные устройства для раздачи текучей среды обычно включают в себя объемный измерительный механизм, который измеряет объемный расход текучей среды, проходящей через раздаточное устройство. Обычные объемные измерительные механизмы включают в себя ряд находящихся во взаимном зацеплении или модифицированных эллиптических овальных шестерен, между которыми протекает сжатая текучая среда, вызывая вращение шестерен. Шестерни обычно соединяются с электронной системой управления, которая подсчитывает количество оборотов с тем, чтобы определить объемный расход текучей среды. Шестерни установлены на оси таким образом, что расстояние между центрами шестерен фиксируется. Зубцы шестерен вводятся таким образом в зацепление вдоль сегментов кривых шагов зацепления, имеющих различную кривизну, что приводит к сложности поверхности раздела зубцов шестерен. Рабочие характеристики раздаточного устройства, однако, связаны с эффективностью поверхности раздела зубцов шестерен между шестерен. Например, точность, с которой измерительный механизм может определять расход, зависит от способности поверхности раздела зубцов герметизировать и предотвращать протечку текучей среды между зубцами, что не способствует вращению шестерен. Кроме того, поверхность раздела между зубцами влияет на долговечность шестерен, величину шума, производимого шестернями и величину вибрации, производимой шестернями; все это зависит от способности зубцов шестерен плавно катиться относительно друг друга. Таким образом, конструкция зубца шестерни важна для получения эффективных измерительных устройств и для точной выдачи текучей среды.

Обычные круглые цилиндрические прямозубые шестерни часто используют зубцы, имеющие поверхности зубца эвольвентной шестерни, которые имеют тенденцию к качению относительно друг друга при вращении шестерни вместо скольжения и соударения друг о друга. Эвольвенты, как общеизвестно, могут быть описаны как путь, по которому перемещается конец нерастяжимой нити при его разматывании с изогнутой поверхности, такой как овал или круг. Базовый профиль шестерни обычно используется как изогнутая поверхность для формирования профиля зубца эвольвентной шестерни. Таким образом, круглые цилиндрические прямозубые шестерни имеют круглые базовые изогнутые профили, что отображается в круглых эвольвентных профилях зубцов. В круглых шестернях эвольвентные поверхности являются одинаковыми на каждом зубце и радиус начальной линии шестерни является одинаковым для каждого зубца. Таким образом, зубцы эвольвентной шестерни легко получаются для круглых шестерен, таких как те, которые производятся на обычных зубофрезерных станках и тому подобном. Типичный процесс нарезания зубцов включает в себя вращение червячной фрезы, цилиндрического режущего инструмента, имеющего спиральные режущие зубцы, против вращающейся заготовки шестерни. Из-за меняющегося угла атаки между овальными шестернями является непрактичным использовать типичный процесс нарезания зубцов для получения зубцов эвольвентных шестерен для овальных шестерен. Например, заготовку овальной шестерни потребуется перемещать перпендикулярно по направлению к стойке для обработки червячной фрезой через интервалы, соответствующие изменению радиуса овала. Даже при возможности перемещения заготовки шестерни зубцы шестерни будут иметь тенденцию к подрезанию из-за эллиптической начальной линии зубца. Разработаны различные шестерни, имеющие модифицированную форму зубца и/или профиль шага для получения плавного взаимодействия овальных шестерен, которые изготавливаются с большей легкостью.

Прежние конструкции шестерен аппроксимировали геометрическую форму зубца и начальную линию зубца для получения плавно взаимодействующих шестерен. В патенте США № 231939 описана модифицированная эллиптическая шестерня, в которой начальная линия зубца ближе к центру шестерни возле малой оси для формирования многогранной шестерни. Профили зубцов шестерни аппроксимируют путем разделения начальной линии зубца на сегменты и получения последовательности небольших дуг, пересекающих начальную линию зубца для получения плавной формы качения, которая не имеет эвольвентного профиля. В последующих конструкциях размеры зубца шестерни менялись для достижения фактических эллиптических эвольвентных профилей зубца и для облегчения их изготовления на зубофрезерных станках. Например, в патенте США № 2842977 описана эллиптическая шестерня, имеющая зубцы шестерни с поверхностями, которые являются эвольвентными при эллиптической начальной линии зубца, которая может быть произведена на зубофрезерном станке. Однако для того, чтобы избежать необходимости перемещения заготовки перпендикулярно по направлению к стойке для обработки червячной фрезой, размер зубцов шестерни возрастает от большой оси по направлению к малой оси, требуя таким образом специально сконструированную червячную фрезу. Кроме того, эллиптические шестерни не подходят для использования в дозаторах текучей среды, поскольку центры между вращающимися эллиптическими шестернями не могут быть зафиксированы. В других конструкциях и начальная линия зубца, и геометрическая форма зубца модифицированы для улучшения взаимодействия между зубцами шестерен. В патенте США № 2897765 производятся шестерни, имеющие модифицированную начальную линию зубца, в которых начальная линия зубца ближе к центру шестерни возле большой и малой осей по сравнению с истинным эллипсом для снятия давления при зацеплении. Зубцы шестерни являются, однако, более широкими и высокими возле большой оси, чем возле малой оси с целью увеличения прочности зубцов и уменьшения количества зубцов.

По мере совершенствования техники появляются более продуманные профили зубцов и начальные линии зубца шестерни для получения эллиптических эвольвентных зубцов. Например, в патенте США № 4036073 описана эллиптическая шестерня, в которой зубцы шестерни имеют меняющиеся углы давления инструмента, так что шестерня может быть получена на зубофрезерном станке, который перемещает заготовку шестерни вдоль двух осей относительно стойки для обработки червячной фрезой. Однако в дополнение к потребности в технически совершенном зубофрезерном станке зубцы на большой и малой осях и рядом с ними имеют более широкие кромки для того, чтобы избежать подреза. В патенте США № 5545871 описана модифицированная эллиптическая шестерня, в которой начальная линия зубца является выпуклой на участках кривой между большой и малой осями относительно истинно эллиптической шестерни. С использованием компьютерной системы проектирования используется процесс моделирования фрезерования для получения эллиптических эвольвентных зубцов на основании варианта меньшего масштаба модифицированной эввольвентной начальной линии зубца.

В завершение появляются другие конструкции шестерен, которые избегают использования эвольвентных зубцов при попытках добиться улучшенных показателей работы шестерни. В патенте США № 6048186 производят шестерни, имеющие модифицированную эвольвентную начальную линию зубца, причем начальная линия зубца ближе к центру шестерни возле большой и малой осей по сравнению с истинным эллипсом. Зубцы шестерни имеют поверхность с эвольвентной формой, обращенную к малой оси для того, чтобы предотвратить возникновение проблем, связанных с захватом и для того, чтобы предотвратить выход шестерен из зацепления. Кроме того, другие конструкции предполагают полное исключение использования зубцов эвольвентных шестерен. В патенте США № 6644947 не предусматривается использование зубцов эвольвентных шестерен и описана овальная шестерня, в которой зубцы шестерни имеют рисунок "волнового зубца". Вершины зубцов очерчиваются дугой, имеющей первый радиус, а ножки (основания) зубцов формируются дугой, имеющей второй радиус. Эта конструкция дает плоские поверхности зубца шестерни, что уменьшает скольжение, но они не являются ни эллиптически, ни циркулярно эвольвентными.

Представленные конструкции шестерен иллюстрируют важность поверхности раздела зубца шестерни для того, чтобы избежать проблем, связанных с показателями работы дозаторов текучей среды, таких как подрезание ножки зубца, задир на лицевой поверхности зубца, сопротивление вращению, вызванное захватом текучей среды между зубцами, просачивание текучей среды между находящимися в зацеплении зубцами и тому подобное. Такие конструкции, однако, обычно представляют собой компромисс между одной или больше из рабочих характеристик поверхности раздела зубцов шестерен и параметром изготовления. Например, не являющиеся эвольвентными зубцы шестерен могут оказаться более легкими в изготовлении, но ведут к относительному различию угловых скоростей между зубцами шестерен, что вызывает скольжение и стук, ведущие к износу зубцов и шуму. Поэтому существует потребность в улучшении конструкции зубцов шестерен для овальных шестерен, которые используются в дозаторах для текучей среды.

Краткое описание

Настоящее изобретение относится к комплекту овальных шестерен, предназначенных для использования в расходомере. Комплект шестерен содержит первую и вторую шестерни, идентичные друг другу и приспособленные для взаимодействия при постоянном расстоянии между центрами, так что первая и вторая шестерни находятся в зацеплении во всех угловых положениях. Каждая шестерня из комплекта овальных шестерен содержит втулку и множество зубцов шестерни. Втулка содержит овальное тело, имеющее большую ось и малую ось, проходящие через центр втулки, а профиль стенки для ножек зубцов очерчивает большую и малую ось. От профиля стенки для ножек зубцов отходит множество зубцов шестерни. Каждый из зубцов шестерни имеет две контактные поверхности с круговыми эвольвентными изогнутыми профилями.

Краткое описание чертежей

На фиг.1 показан перспективный вид ручного раздаточного устройства для текучей среды, в котором используется овальные шестерни, имеющие зубцы эвольвентных шестерен согласно настоящему изобретению;

на фиг.2 показан вид сзади с разделением на детали ручного раздаточного устройства для текучей среды с фиг.1, демонстрирующий механизм дозирования с использованием шестерен согласно настоящему изобретению;

на фиг.3 показан вид спереди с разделением на детали ручного раздаточного устройства для текучей среды с фиг.1, демонстрирующий механизм дозирования с использованием шестерен согласно настоящему изобретению;

на фиг.4 показан вид в поперечном разрезе ручного раздаточного устройства для текучей среды, в котором механизм расходомера включает в себя овальные шестерни с эвольвентными зубцами согласно настоящему изобретению;

на фиг.5 показан вид сверху овальных шестерен, имеющих зубцы эвольвентных шестерен, размещенные в коробке редуктора механизма расходомера с фиг.4.

Подробное описание

На фиг.1 показан перспективный вид ручного раздаточного устройства 10 для текучей среды, в котором овальные шестерни с зубцами эвольвентной шестерни согласно настоящему изобретению используются в механизме расходомера.

Раздаточное устройство 10 включает в себя платформу 12, крышку 14, соединитель 16 для текучей среды под высоким давлением, раздаточную трубу 18, спусковой рычаг 20, интерфейс пользователя 22 и дисплей 24. Раздаточное устройство 10 позволяет выдавать текучую среду, хранящуюся в емкости большого объема, в меньших объемах и обычным образом. Например, в одном варианте реализации раздаточное устройство 10 содержит дозатор, применяемый в смазочных цехах для выдачи небольших количеств смазочного масла из бочки в двигатель транспортного средства. Соединитель 16 присоединяется к емкости большого объема через шланг для подачи текучей среды (не показан), в котором давление создают с помощью, например, пневмонасоса. Длина шланга позволяет устройству 10 с удобством достигать мест, в которые неудобно продвигать емкость большого объема. Раздаточная труба 18 приспособлена для легкого ее размещения в отверстии емкости небольшого объема, такой как картер двигателя, в который требуется выдать отмеренное количество текучей среды. Спусковой рычаг 20 смещается оператором для того, чтобы открыть клапан на платформе 12 и выдать текучую среду из емкости большого объема в емкость объема по раздаточной трубе 18. Интерфейс пользователя 22 и дисплей 24, которые соединяются с электронной системой под крышкой 14, позволяют оператору следить за количеством выданной текучей среды, обрабатывать наряд-заказы собирать данные фактурирования и запасов, сообщаться с центральной системой управления и выполнять другие подобные функции.

Дозатор текучей среды содержит объемное измерительное устройство, которое пересекает текучую среду, текущую через устройство 10, для определения объемного расхода текучей среды. В частности, дозатор текучей среды содержит пару находящихся во взаимном зацеплении овальных шестерен, которые вращаются относительно друг друга под давлением текучей среды. Шестерни взаимодействуют друг с другом вдоль зубцов эвольвентной шестерни согласно настоящему изобретению для того, чтобы, среди прочего, воспрепятствовать протечке текучей среды через овальные шестерни и облегчить плавность работы дозатора текучей среды.

На фиг.2 и 3 показаны с разделением на детали виды раздаточного устройства 10 с фиг.1. На фиг.2 показан вид сзади устройства 10, в котором показаны клапан 26, расходомер 28 и механизм 30 освобождения спуска. На фиг.3 показан вид спереди устройства 10, в котором показаны крышка 14, расходомер 28, механизм 30 освобождения спуска, аккумулятор 31 и соленоид 32. Соединитель 16 с текучей средой, который включает в себя вращающийся замок 33, фильтр 34 и насадку для шланга 35, соединяется с рукояткой 36 платформы 12. В частности, внешняя резьба на замке 33 соединяется с внутренней резьбой в канале для текучей среды под высоким давлением 39 внутри рукоятки 36. Рукоятка 36 включает в себя спусковую скобу 37, которая включает в себя выступы 38А и 38В и предназначена для того, чтобы предотвратить случайное приведение в действие спуска 20 и клапана 26. Клапан 26, который включает в себя картридж 40, шток 42 и пружину 44, помещается внутри платформы 12 для прерывания потока между проходом 39 и трубой 18. Расходомер 28 включает в себя шестерни 46, крышку 48 и крепежные элементы 49. Шестерни 46 помещаются внутри коробки редуктора 50 для взаимодействия с текучей средой, текущей между соединителем 16 и клапаном 26. Коробка редуктора 50 герметично закрыта крышкой 48, которая крепится крепежными элементами 49. Механизм 30 освобождения спуска, который включает в себя тягу 51 переключения, пружину 52, манжету 53 и опоры 54, помещается внутри канала 55, в нижней части которого тяга 51 переключения соединяется со спусковым рычагом 20. Спусковой рычаг 20 соединяется с тягой 51 переключения посредством спускового штифта 56, образующего шарнирное соединение, которое закрыто внутри платформы 12 защитным элементом 57. Защитный элемент 57 включает в себя хрупкие язычки 58, которые, будучи установлены, должны быть сломаны для удаления защитного элемента 57 с платформы 12. От штифта 56 спусковой рычаг 20 проходит через платформу 12 между рукояткой 36 и спусковой скобой 37, все время находясь во взаимодействии со штоком 42. Раздаточная труба 18, которая включает в себя сопло 60 и соединитель 61, соединяется с каналом для текучей среды под низким давлением 62 внутри платформы 12. В частности, внешняя резьба на соединителе 61 соединяется с внутренней резьбой внутри канала для текучей среды под низким давлением 62.

Спусковой рычаг 20 приводит в действие сохраняющий герметизацию клапан 26, чтобы позволить выдавать текучую среду при различном диапазоне расхода; чем дальше смещается спусковой рычаг 20, тем больше текучей среды выдается через трубу 18. Спусковой рычаг 20 может удерживаться во включенном положении, так что клапан 26 остается открытым с использованием спускового предохранителя 63 и пружины 64, которые соединяются со спусковым рычагом штифтом 65. Спусковой предохранитель 63 взаимодействует с храповой пластиной 66, которая соединяется со спусковым рычагом штифтом 56. Размеры клапана 26 устройства 10 подобраны таким образом, чтобы обеспечить большой объемный расход текучей среды, такой, приблизительно, как 14 галлон/мин [приблизительно 883,6 кубических сантиметров/сек] или больше, чего обычно достигают путем использования высокого давления текучей среды. Высокое давление текучей среды позволяет раздаточному устройству 10 более быстро выдавать текучую среду для экономии времени, и более легко выдавать текучую среду с большой вязкостью. В сочетании с измерительной электронной системой механизм 30 освобождения спуска предотвращает избыточный расход путем блокировки спускового рычага 20 после выдачи заданного количества текучей среды, и предотвращает неразрешенную выдачу путем сохранения блокировки спускового рычага 20 до получения нового рабочего приказа. Кроме того, в сочетании с измерительной электронной системой расходомер 28 следит за расходом, при котором текучая среда течет через клапан 26, с тем, чтобы обеспечить точное отмеривание текучей среды путем приведения в действие спускового рычага 20. Шестерни 46 расходомера 28 включают в себя зубцы эвольвентных шестерен согласно настоящему изобретению, что уменьшает просачивание и обеспечивает более равномерный поток текучей среды через расходомер 28 при широком диапазоне расходов при выдаче. Таким образом, раздаточное устройство 10 для текучей среды координирует использование отмеренного распределения и механизма контроля выдачи с целью уменьшить нецелесообразный расход текучей среды и иные причины уменьшения запасов.

На фиг.4 показан вид в поперечном разрезе раздаточного устройства текучей среды 10, выполненном по линии 5-5 на фиг.1, в котором шестерни 46 расходомера 28 помещаются в коробке редуктора 50 внутри платформы 12. Раздаточное устройство 10 для текучей среды включает в себя платформу 12, крышку 14, соединитель 16 для текучей среды, раздаточную трубу 18, спусковой рычаг 20, интерфейс пользователя 22, дисплей 24, сохраняющий герметизацию клапан 26, расходомер 28, механизм 30 освобождения спуска и электронную систему 68. Клапан 26 включает в себя картридж 40, шток 42 и пружину 44. Расходомер 28 включает в себя шестерни 46 и крышку 48. Механизм 30 освобождения спуска включает в себя соленоид 32, тягу 51 переключения, отпускную пружину 52, манжету 53, опоры 54, спусковой штифт 56, штифт фиксатора 70, кожух 72 соленоида, шейку 54 и штифтовой канал 76.

Платформа 12 включает в себя рукоятку 36, которая включает в себя проход для текучей среды под высоким давлением 39 и раздаточную часть 86, которая включает в себя проход 62 для текучей среды под низким давлением (который показан пунктиром на фиг.4 и виден позади раздаточной части 80 на фиг.3). Канал для текучей среды под высоким давлением 39 сообщается с каналом для текучей среды под низким давлением 62 через клапан 26 для пропуска текучей среды из соединителя 16 к раздаточной трубе 18. Канал для текучей среды под высоким давлением 39 проходит через середину платформы 12 в рукоятке 36 и пересекает клапан 26. Канал для текучей среды под низким давлением 62 идет тангенциально от клапана 26 через канал 55 к раздаточной трубе 18 параллельно каналу для текучей среды под высоким давлением 39. Соединитель 16 для текучей среды соединяется с верхним концом канала для текучей среды 39 через резьбовое зацепление. Шестерни 46 расходомера 28 располагаются внутри коробки редуктора 50, помещенной внутри средней части канала 39. Коробка редуктора 50 накрыта и герметизирована крышкой 48. Сохраняющий герметизацию клапан 26 и механизм 30 освобождения спуска размещаются в каналах 82 и 55 соответственно, идущих внутрь платформы 12. Канал клапана 82 идет приблизительно в поперечном направлении в платформу 12 для того, чтобы приблизительно перпендикулярно пересекать канал для текучей среды под высоким давлением 39. Верхняя часть канала 82 соединяется с нижним концом канала 39, а нижняя часть канала 82 соединяется с верхним концом канала 62. Спусковой канал 55 проходит в платформу 12 со смещением приблизительно на пять градусов от вертикали относительно канала для текучей среды 39. Спусковой канал 55 не пересекает канал для текучей среды под высоким давлением 39 или канал для текучей среды под низким давлением 62. Верхняя часть спускового канала 55 содержит расточку с резьбой для формирования гнезда 84 для помещения соленоида 32. Средняя часть спускового канала 55 имеет размеры, позволяющие вводить в нее со скольжением отпускную пружину 52 и манжету 53. Нижняя часть спускового канала 55 имеет размеры, позволяющие вводить в нее со скольжением тягу 51 переключения. Соединитель 61 соединяется с нижним концом канала 62 для того, чтобы пропускать текучую среду от устройства 10 через раздаточную трубу 18.

Клапан 26 помещают в канал 82 для регулирования потока между каналом 39 и каналом 62. С пружиной 44, вставленной в шток 42, и штоком 42, вставленным в картридж 40, внешняя резьба на картридже 40 ввинчивается в канал 82 внутри платформы 12. Вставленная таким образом пружина 44 взаимодействует с глухим концом канала 82 внутри платформы 12 и сжимается для смещения штока 42 в направлении картриджа 40. Картридж 40 включает в себя край 86, который взаимодействует с краем штока 42 для того, чтобы предотвратить прохождение штока 42 через картридж 40. Исполнительная часть 88 штока 42 идет от канала 82 через картридж 40 для взаимодействия со спусковым рычагом 20. Дополнительное описание раздаточного клапана 26 можно найти в упомянутой выше находящейся на совместном рассмотрении заявке, озаглавленной: "Self-retaining valve for fluid metering device" ("Сохраняющий уплотнение клапан для дозатора текучей среды") и включенной сюда в качестве ссылки.

Механизм 30 освобождения спуска включает в себя соленоид 32, тягу 51 переключения, пружину 52, манжету 53, опору 54, штифт фиксатора 70, кожух 72 соленоида, шейку 74 и штифтовый канал 76, и приспособлен для блокирования спускового рычага 20 после прохождения через дозатор 28 порогового количества текучей среды. Соленоид 32 установлен поверх платформы 12 так, что штифт фиксатора 70 проходит в спусковой канал 55 для взаимодействия с тягой 51 переключения. Шейка 74 корпуса соленоида 72 ввинчена в спусковой канал 55 так, что корпус соленоида 72 выступает из платформы 12 и штифтовой канал 76 выравнивается со спускным каналом 55. Штифт фиксатора 70 выходит из штифтового канала 76 для разъемного зацепления с манжетой 53 тяги 51 переключения. Тяга 51 переключения проходит через канал 55 для соединения со штифтом фиксатора 70 на первом конце и со спусковым рычагом 20 на втором конце. В частности, опоры 54 внутри каналов 90 манжеты 53 взаимодействуют со штифтом фиксатора 70 на первом конце и штифт 56 проходит сквозь тягу 51 переключения и спусковой рычаг 20 на втором конце. Спусковой рычаг 20 идет в общем в сторону от штифта 56 для взаимодействия с клапаном 26. Спусковой предохранитель 63 соединяется со спусковым рычагом 20 штифтом 65, а храповая пластина 66 соединяется со спусковым рычагом 20 штифтом 56. Механизм 30 освобождения спуска избирательно соединяет спусковой рычаг 20 с платформой 12 для получения фиксированной поворотной точки для приведения в действие спускового рычага 20. Дальнейшее описание механизма 30 освобождения спуска можно найти в упомянутой находящейся одновременно на рассмотрении заявке, озаглавленной "Trigger releaser mechanism for fluid metering device" (Механизм освобождения спуска дозатора текучей среды), включенной сюда в качестве ссылки.

Измеритель 28 помещается в канале 39 между соединителем 16 для текучей среды и раздаточным клапаном 26. Измеритель 28 в основном содержит ряд объемных шестерен 46, которые приводятся во вращение потоком сжатой текучей среды, идущим от соединителя 16 внутри коробки редуктора 50. Каждая шестерня 46 включает в себя электрод или магнит 92, положение которого может определять электронная система 94, помещенная внутри крышки 48, для того, чтобы определить скорость вращения шестерни 46. Крышка 48 соединяется с электронной системой 68, так что скорость вращения шестерен 46 может быть преобразована в объемный расход текучей среды, проходящей через канал 39 для текучей среды под высоким давлением. Дальнейшее описание расходомера 28 приведено со ссылкой на фиг.5.

На фиг.5 показан вид сверху на овальные шестерни 46, имеющие зубцы 95 эвольвентных шестерен, и размещенные в коробке редуктора 50 расходомера. Коробка редуктора 50 представляет собой в целом овальную камеру, выполненную на платформе 12 между участками канала 39 для текучей среды под высоким давлением. Коробка редуктора 50 охвачена стенкой 96, которая включает в себя каналы 98 для помещения крепежных элементов 49 для закрепления крышки 48 (фиг.2). Шестерни 46А и 46В содержат идентичные тела 99А и 99В втулок овальной формы, имеющих соответствующие центральные оси 100А и 100В, через которые проходят большая и малая оси каждой шестерни. Зубцы 95 шестерен проходят от тел втулок 99А и 99В радиально от центральных осей 100А и 100В, и магниты 92 идут через тела втулок 99А и 99В параллельно центральным осям 100А и 100В. Шестерня 46А и шестерня 46В установлены внутри коробки редуктора 50 на их соответствующие центральные оси 100А и 100В. Таким образом, шестерни 46А и 46В получают возможность свободного вращения вокруг центральных осей 100А и 100В соответственно внутри коробки редуктора 50, и расстояние CD между центральными осями 100А и 100В является неизменным. Ширина коробки редуктора 50 (как показано на фиг.5) приблизительно равна длине большой оси шестерен 46А и 46В. Высота коробки редуктора 50 (как показано на фиг.5) приблизительно равна расстоянию CD плюс длина большой оси.

Шестерни 46А и 46В ориентированы таким образом, что большие оси шестерен (так же как малые оси шестерен) будут перпендикулярны друг к другу, когда одна из больших осей перпендикулярна к каналу 39. Кроме того, когда большие оси параллельны друг другу и малые оси параллельны друг другу, каждая из больших и малых осей будет наклонной по отношению к каналу 39. При такой ориентации шестерни 46А и 46В остаются в постоянном контакте, когда шестерни вращаются вокруг их соответствующих центральных осей, образуя входной карман 102А, выходной карман 102В и переходный карман 102С при их вращении и взаимодействии со стенкой 96. Когда шестерни 46А и 46В вращаются внутри коробки редуктора 50, зубцы 95 шестерни возле больших осей плотно скользят по дугообразным участками стенки 96. Кроме того, зубцы 95 шестерен шестерни 46А, взаимодействующие с зубцами 95 шестерен шестерни 46В, обеспечивают плотное прилегание, не допускающее протечки текучей среды между шестернями 46А и 46В.

Открывание и закрывание клапана 26 (фиг.4) вызывает перепад давления на шестернях 46А и 46В так, чтоб текучая среда протекает через коробку редуктора 50. Текучая среда под высоким давлением из соединителя 16 для текучей среды (фиг.1) поступает во входной карман 102А коробки редуктора 50 с верхней части канала 39 (крайняя правая сторона фиг.5). Текучая среда под относительно более низком давлением покидает выходной канал 102В коробки редуктора 50 из нижней части канала 39 (крайняя левая сторона на фиг.5). Поток текучей среды под высоким давлением вызывает вращение против часовой стрелки шестерни 46А и вращение по часовой стрелке шестерни 46В (как показано стрелками на фиг.5) благодаря равновесию сил давления текучей среды на шестерни 46А и 46В. В частности, для ориентации, показанной на фиг.5, давление текучей среды во входном кармане 102А, воздействующее на шестерню 46В, которая ориентирована с большой осью, перпендикулярной к направлению потока текучей среды под высоком давлении, создает приблизительно нейтральный баланс сил возле центральной оси 100В, поскольку шестерня 46В открыта воздействию текучей среды под высоким давлением вдоль ее большой оси. Однако давление текучей среды, воздействующее на шестерню 46А, которая ориентирована со своей большой осью, параллельной направлению потока текучей среды под высоким давлением, создает момент, направленный против часовой стрелки относительно центральной оси 100А, поскольку шестерня 46А открыта воздействию текучей среды под высоким давлением вдоль только половины ее большой оси. За счет зацепления с зубцами 95 шестерни шестерня 46В вращается по часовой стрелке. Так, текучая среда в выходном кармане 102В проталкивается по нижнему участку канала 39 в направлении раздаточной трубы 18 (фиг.4), переходный карман 102С открывается и становится выходным карманом 102В так, чтобы опорожняться в нижний участок канала 39, и текучая среда, находящаяся в кармане 102А, толкает шестерню 46В вокруг центральной оси 100В, так что текучая среда во входном кармане 102А становится захваченной в новом переходном кармане между шестерней 46В и стенкой 96. Поскольку шестерни 46А и 46В продолжают вращаться, текучая среда под высоким давлением продолжает продвигаться через коробку редуктора 50 путем перемещения от входного кармана 102А к переходному карману между стенкой 96 и любой из шестерен 46А или 46В, и оттуда к выходному карману 102В.

Вращение шестерен 46А и 46В вокруг центральных осей 100А и 100В вызывает вращение магнитов 92 по орбите вокруг центральных осей 100А и 100В. Верхние поверхности шестерен 46А и 46B находятся приблизительно на одном уровне с верхней поверхностью стенки 96. При этом крышка 48 ложится на стенку 96 в тесной близости с телами втулки 99А и 99В и магнитами 92. Электронная система 94 (фиг.4) встроена в крышку 48 и включает в себя бесконтактный сенсорный элемент, такой как язычковый переключатель или датчик на эффекте Холла, который может обнаруживать присутствие магнитов 92. В частности, пара магнитов 92, расположенных на каждом теле втулки 99А и 99В, ориентирована с магнитными полюсами каждого магнита, обращенными в противоположных направлениях. При этом между каждой парой магнитов образуется магнитное поле, которое проходит через электронную систему 94 при вращении шестерен 46А и 46В. Сенсорный элемент может регистрировать колебания магнитного поля и выдает показание, находящееся в связи со скоростью вращения каждой шестерни 46А и 46В. В других вариантах реализации используются другие виды бесконтактных сенсорных систем, известных в технике. Электронная система 94 соединена с электронной системой 22 (фиг.4) и включает в себя программное обеспечение и компоненты, способные преобразовать показание электронной системы 94 в сигнал, пригодный для показа на дисплее 24 (фиг.1). Например, электронная система 22 откалибрована таким образом, чтобы определять, какой поток проходит через коробку редуктора 50 при каждом обороте шестерен 46А и 46В, и показывать на дисплее 24 сигнал соответствующего объемного расхода.

Калибровка расходомера 28 зависит от способности зубцов 95 шестерни оптимально входит в зацепление, так чтобы почти вся текучая среда, протекающая через коробку редуктора 50, способствовала вращению шестерен 46А и 46В вместо прохождения между указанными шестернями 46А и 46В. Зубцы 95 эвольвентных шестерен согласно настоящему изобретении образуют поверхность раздела между зубцами шестерен 46А и 46В, что облегчает вращение шестерен 46А и 46В. Зубцы 95 эвольвентных шестерен выведены из начальной линии зубца, выбранной для получения шестерен 46А и 46В. Начальная линия зубца на каждой из шестерен 46А и 46В определяется как кривая, вдоль которой зубцы 95 шестерни на шестерне 46А соприкасаются с зубцами 95 шестерни на шестерне 46В, и представляет собой кривую вдоль которой шестерни 46А и 46В должны катиться вдоль друг друга в случае, если бы они были простыми овалами без зубцов. Шестерня 46А имеет радиус R1 от центральной оси 100А до полюса зацепления, где встречаются начальные линии зубца. Аналогичным образом шестерня 46В имеет радиус R2 от центральной оси 100А до полюса зацепления, где встречаются начальные линии зубца. Минимальной является длина вдоль малых осей, а максимальной - длина вдоль больших осей. Расстояние CD всегда равно сумме R1 и R2 и, таким образом, начальные линии зубца для шестерен 46А и 46В являются идентичными.

CD=R1+R2 Формула [1]

Шестерни 46А и 46В взаимодействуют вдоль участка CD на полюсе зацепления, пересечении начальных линий зубца для каждой шестерни на R1 и R2. При этом большая ось шестерни 46А всегда взаимодействует с шестерней 46В на малой оси шестерни 46В. Таким образом, угловые скорости шестерни 46А и шестерни 46В изменяются, когда каждая шестерня непрерывно замедляется и ускоряется для приспособления к скорости другой шестерни. Разность скоростей шестерен ведет к тому, что быстрее движущаяся шестерня толкает медленнее движущуюся шестерню, отбирая энергию потока текучей среды через измеритель 28. Плотное прилегание шестерни 46А и шестерни 46В, что часто бывает связано с наличием зубцов не-эвольвентной шестерни, вызывает большее сопротивление вращению шестерен 46А и 46В, что ведет к большему перепаду давления в коробке резистора. Трудности при вращении шестерен 46А и 46В ведут к большему рассеиванию энергии, в то время как текучая среда пытается вращать шестерни. Сопротивление шестерен вращению посредством потока текучей среды ведет к прорывам, когда текучая среда находит другие пути через коробку редуктора 50, такие как между шестернями 46А и 46В и поверх них. Кроме того, прорыв в расходомере меняется, когда объемный расход через расходомер возрастает или уменьшается.

Зубцы 95 эвольвентных шестерен согласно настоящему изобретению ведут к более плавному вращению шестерен 46А и 46В, лучшему качению между сопряженных зубцов 95 шестерен, и большей пригодности к изготовлению шестерен 46А и 46В при широком диапазоне расходов текучей среды, и улучшают долговечность шестерен. Например, зубцы 95 эвольвентной шестерни в шестерне 46А остаются нетронутыми их соответствующими сопряженными зубцами шестерен в шестерне 46В вне зависимости от углового положения шестерен, предотвращая таким образом прохождение текучей среды между шестернями. Кроме того, зубцы 95 эвольвентной шестерни плавно катятся по сопряженным с ними зубцам, что уменьшает энергию текучей среды, требующуюся для вращения шестерен и предотвращает прорывы текучей среды.

На фиг.6 показана схема, иллюстрирующая способ проектирования овальных шестерен 46А и 46В, имеющих зубцы 95 эвольвентной шестерни согласно настоящему изобретению. На фиг.6 показана шестерня 46А, размещенная с соответствующими кривыми, использованными для получения эвольвентных профилей зубцов 95. Шестерня 46А включает в себя тело втулки 99А, которое окружает центральную ось 100А. Зубцы 95А, 95В, 95С и 95D шестерни помещаются вокруг тела втулки 99А и отходят радиально от центральной оси 100А. Каждый зубец шестерни имеет изготовленный на заказ эвольвентный профиль, определяемый его положением вдоль кривой начальной линии зубца РР. Например, зубец 95С отходит радиально от центральной оси 100А вдоль радиуса начальной линии R1 под углом Θ к большой оси. Радиус R1 начальной линии определяется от начальной линии зубца, выбранной для шестерни 46А. В одном варианте реализации настоящего изобретения кривая шага зубцов РР шестерни 46А определяется следующей формулой:

R 1 ( Θ ) = S [ 1 − ( E ) 2 ] 1 − ( E ) cos ( 2 Θ ) Формула [2]

S и Е являются постоянными, представляющими масштаб и эксцентричность, соответственно, профиль начальной линии PP зубца (профиль делительной линии PP) и выбраны на основании требований конструкции. Так, каждая точка вдоль профиля начальной линии РР зубца имеет полярные координаты (R1, Θ), описанные Формулой [2]. Такая кривая рассматривается более подробно в книге, озаглавленной "Gear Geometry and Applied Theory" (2-е издание) ("Геометрическая форм