Электрогидравлический рулевой привод

Изобретение относится к авиационной технике и касается электрогидравлических силовых приводов для управления летательными аппаратами. Электрогидравлический рулевой привод содержит электрогидравлический усилитель, гидроцилиндр, поршень и втулки цилиндра с пакетами уплотнений, полый шток с установленным внутри него ложным штоком и блок датчиков обратной связи. Блок датчиков установлен внутри ложного штока и электрически соединен с электрогидравлическим усилителем. Ложный шток выполнен с резьбовым хвостовиком с центральным отверстием, через которое выведены электрожгуты (провода) датчиков обратной связи, и зафиксирован в осевом направлении фланцевой гайкой. Внутри фланцевой гайки расположена винтовая пружина, опирающаяся на внутренний торец гайки и на торец ложного штока. Фланец гайки зафиксирован в корпусе накладкой. Предварительное поджатие пружины превышает величину, соответствующую усилию трения по уплотнениям ложного штока. Рабочий ход пружины превышает диапазон регулировки положения блока датчиков обратной связи. Достигается повышение надежности, возможность осевого перемещения блока датчиков обратной связи для регулировки совмещения «нуля» блока датчиков со средним положением выходного звена привода. 1 з.п. ф-лы, 1 ил.

Реферат

Предлагаемое изобретение относится к авиационной технике, в частности к электрогидравлическим силовым приводам, и может быть использовано для управления летательными аппаратами.

Известны электрогидравлические рулевые приводы (далее по тексту привод), где в качестве исполнительного силового механизма используется двухкамерный гидроцилиндр с ложным штоком, который установлен внутри полого штока и жестко закреплен в корпусе гидроцилиндра (патенты RU 2210681(13) C2, RU 2253763(13) С).

К недостаткам данных приводов можно отнести следующее. Поскольку конструктивно ложный шток расположен внутри полого штока и контактирует с ним во время его движения, а с другой стороны ложный шток жестко закреплен в корпусе гидроцилиндра, необходимо точно выполнять требования по взаимному расположению рабочих поверхностей деталей гидроцилиндра, а также увеличивать зазоры по уплотняющим поверхностям ложного и полого штоков. Это приводит к повышению трудоемкости конструкции и, следовательно, к ее удорожанию, кроме того, возникают проблемы с герметичностью по месту контакта ложного и полого штоков в процессе эксплуатации из-за увеличения зазоров.

Наиболее близким к заявленному изобретению можно отнести привод, гидроцилиндр которого оснащен ложным штоком, установленным на сферическом подпятнике с возможностью качательного движения, и поджат пакетом пружин, расположенным по периметру бурта ложного штока. Внутри ложного штока установлен блок датчиков обратной связи по ходу выходного звена привода.

Известны достоинства данной конструкции. Ложный шток в точке крепления имеет возможность качательного и радиального перемещений, компенсирующих радиальное перемещение полого штока, которое может быть вызвано как поперечными нагрузками, возникающими при работе привода под нагрузкой, так и возможными погрешностями изготовления деталей гидроцилиндра. Такая конструкция практически исключает возможность заклинивания подвижных деталей гидроцилиндра.

К недостаткам следует отнести чрезмерную сложность и нетехнологичность (наличие сферического подшипника и шайбы, большое количество (до 12 штук) пружин), что снижает надежность конструкции, повышает трудоемкость. Отсутствует возможность осевого перемещения блока датчиков обратной связи для регулировки совмещения «нуля» блока датчиков со средним положением выходного звена привода.

Цель предлагаемого изобретения - устранение указанных недостатков. Эта задача решается в электрогидравлическом рулевом приводе, гидроцилиндр которого содержит, в том числе, корпус, полый шток с установленным внутри него ложным штоком, блок датчиков обратной связи, установленный внутри ложного штока, при этом ложный шток выполнен с резьбовым хвостовиком с центральным отверстием, через которое выведены электрожгуты (провода) датчиков обратной связи, и зафиксирован в осевом направлении фланцевой гайкой с расположенной внутри нее винтовой пружиной, опирающейся на внутренний торец гайки и на торец ложного штока, фланец гайки зафиксирован в корпусе накладкой, а предварительное поджатие пружины превышает величину, соответствующую усилию трения по уплотнениям ложного штока, при этом рабочий ход пружины превышает диапазон регулировки положения блока датчиков обратной связи.

Привод состоит, в том числе, из корпуса гидроцилиндра 1, в отверстии которого установлен с возможностью осевого перемещения полый шток 2 с опорной втулкой 3, в полости которого размещен ложный шток 4, другой конец которого установлен с зазором в отверстии 5 корпуса 1 и фиксируется в нем своим резьбовым хвостовиком 6 при помощи фланцевой гайки 7 и накладки 8, в полости, образованной фланцевой гайкой 7 и ложным штоком 4, размещена пружина 9, внутри ложного штока 4 устанавливается блок датчиков обратной связи 10, жгут 11 которого проходит через отверстие резьбового хвостовика 6. Полый шток 2 и втулка 12 цилиндра снабжены втулками 3 (буксами), выполненными из антифрикционного материала и расположенными перед уплотнениями в расточках полого штока 4 и втулки 12 цилиндра с радиальным зазором, который компенсирует погрешности расположения полого и ложного штоков.

Сущность предлагаемого изобретения поясняется чертежом.

Привод работает следующим образом.

В процессе регулировки привода совмещение «нуля» блока датчиков обратной связи 10 со средним положением выходного звена привода производится вращением фланцевой гайки 7 относительно резьбового хвостовика 6 ложного штока 4, что приводит к перемещению в осевом направлении ложного штока 4, а вместе с ним и блока датчиков обратной связи 10.

В процессе работы (перемещение полого штока 2 под действием давления рабочей жидкости) ложный шток опирается на опорную втулку (буксу) 3, выполненную из антифрикционного материала, погрешности расположения рабочих поверхностей деталей гидроцилиндра компенсируются радиальными зазорами по поверхностям ложного штока 4 и опорной втулки (буксы) 3, ложного штока 4 и отверстия 5 в корпусе 1, а также зазорами по резьбе хвостовика 6 ложного штока 4 и фланцевой гайки 7. Пружина 9 опирается одним концом в торец ложного штока 4, а другим - в дно фланцевой гайки 7 и рассчитана таким образом, что в поджатом состоянии ее усилие превышает величину усилия трения по уплотнениям полого штока 2 и ложного штока 4, предотвращая перемещение ложного штока 4 в осевом направлении в зазорах резьбы хвостовика 6.

Таким образом достигается возможность регулировки блока датчиков обратной связи и упрощается возможность «разгрузки» ложного штока, т.е. крепление его в корпусе с возможностью радиального перемещения в пределах зазора отверстия корпуса.

1. Электрогидравлический рулевой привод, содержащий электрогидравлический усилитель, гидроцилиндр, поршень и втулки цилиндра с пакетами уплотнений, полый шток с установленным внутри него ложным штоком и блок датчиков обратной связи, установленный внутри ложного штока и электрически соединенный с электрогидравлическим усилителем, отличающийся тем, что ложный шток выполнен с резьбовым хвостовиком с центральным отверстием, через которое выведены электрожгуты (провода) датчиков обратной связи, и зафиксирован в осевом направлении фланцевой гайкой с расположенной внутри нее винтовой пружиной, опирающейся на внутренний торец гайки и на торец ложного штока, фланец гайки зафиксирован в корпусе накладкой, а предварительное поджатие пружины превышает величину, соответствующую усилию трения по уплотнениям ложного штока, при этом рабочий ход пружины превышает диапазон регулировки положения блока датчиков обратной связи.

2. Привод по п.1, отличающийся тем, что полый шток и втулки цилиндра помимо пакета уплотнений снабжены опорными втулками (буксами), выполненными из антифрикционного материала и расположенными перед уплотнениями в расточке поршня полого штока и во втулках цилиндра с радиальным зазором, который компенсирует возможную несоосность расположения полого и ложного штока.