Кристаллическая форма и тозилат соединения тетрациклина, кристаллическая форма указанного тозилата и ее полиморфная модификация, способ получения тозилата соединения тетрациклина, полиморфная модификация, полученная указанным способом, и фармацевтические композиции на основе вышеуказанных кристаллической формы и полиморфной модификации

Иллюстрации

Показать все

Изобретение относится к тозилату соединения тетрациклина, охватываемого формулой 1, его полиморфным формам, способу их получения и фармацевтическим композициям на их основе.

Соединения могут найти применение для лечения состояний, чувствительных к тетрациклину, таких как бактериальные инфекции и т.п. 5 н. и 28 з.п. ф-лы, 10 табл., 10 ил., 10 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к кристаллическим формам, включая соли и полиморфные модификации соединений, полезных при лечении чувствительных к соединениям тетрациклина состояний. В частности настоящее изобретение относится к кристаллическим формам (4S,4AS,5AR,12AS)-4-7-бис(диметиламино)-9{[(2,2-диметилпропил)амино]метил}-3,10,12,12А-тетрагидрокси-1,11-диокси-1,4,4А,5,5А,6,11,12А-октагидротетрацен-2-карбоксамид(9-(2,2-диметил-пропил-аминометил)-миноциклина).

Уровень техники

Развитие антибиотиков тетрациклина было прямым результатом систематического скрининга анализов почвы, собранных во многих частях мира для доказательства наличия микроорганизмов, способных к производству бактерицидных и/или бактериостатических соединений. Первое из этих новых соединений было представлено в 1948 г с названием хлортетрациклин. Два года спустя, обнаружили окситетрациклин. Установление химической структуры этих соединений подтвердило их похожесть и дало аналитическое основание для получения третьего члена этой группы в 1952 г - тетрациклина. Новое семейство соединений тетрациклина, без присоединенной к кольцу метиловой группы, представленной в более ранних соединениях тетрациклина, было получено в 1957 г и стало общедоступным в 1967 г; к 1972 г начал использоваться миноциклин.

В последнее время усилия исследователей сосредоточились на разработке новых антибиотиков - соединений тетрациклина, эффективных при различных терапевтических условиях и путях введения. Также были исследованы новые аналоги тетрациклина, которые, как могло оказаться, обладали равной или большей эффективностью, чем первоначально представленные соединения тетрациклина. Примеры раскрыты в патентах США с номерами 2,980,584; 2,990,331; 3,062,717; 3,165,531; 3,454,697; 3,557,280; 3,674,859; 3,957,980; 4,018,889; 4,024,272 и 4,126,680. Эти патенты являются репрезентативными для ряда фармацевтически активного тетрациклина и соединений - аналогов тетрациклина.

Исторически, вскоре после их открытия и внедрения, было найдено, что тетрациклины являются очень эффективными фармакологическими средствами против риккетсий; грамположительных и грамотрицательных бактерий и надежным средством против венерической лимфогранулемы, конъюнктивита с включениями и орнитоза. Таким образом, тетрациклины стали известными как антибиотики "широкого спектра". С последующим установлением их in vitro антимикробной активности, эффективности в экспериментальных инфекциях и фармакологических свойств, тетрациклины как класс быстро стали широко используемыми в терапевтических целях. Однако, это широко распространение использования тетрациклинов и для серьезных и для незначительных заболеваний и нарушений непосредственно привело к появлению устойчивости к этим антибиотикам даже среди очень восприимчивых видов бактерий, как симбиотических, так и патогенных (например, пневмококки и сальмонелла). Увеличение количества устойчивых к тетрациклину организмов привело к общему снижению использования тетрациклинов и соединений - аналогов тетрациклина в качестве выбираемых антибиотиков.

У каждого фармацевтического соединения есть оптимальная терапевтическая концентрация в крови и смертельная концентрация. Биодоступность соединения определяет количество дозировки в составе лекарственного средства, необходимом для получения идеального уровня в крови. Если лекарственное средство может кристаллизоваться как две или больше полиморфных модификаций (полиморфов), отличающихся по биодоступности, оптимальная доза будет зависеть от полиморфной модификации, присутствующей в композиции. Некоторые лекарства обладают небольшой разницей между терапевтическими и смертельными концентрациями. Хлорамфеникол-3-пальмитат, например, является антибиотиком широкого спектра действия, который может кристаллизоваться, по крайней мере, в три полиморфные модификации и одну аморфную форму. Наиболее устойчивая модификация, А, доступна в продаже. Различие в биоактивности между этим полиморфом и другой модификацией, В, является смертельным фактором, таким образом, создавая возможность фатальных передозировок соединения если невольно назначается как модификация В из-за изменений во время обработки и/или хранения. Поэтому, регулирующие агентства, такие как Управление по контролю за продуктами и лекарствами Соединенных Штатов, начали помещать трудно контролируемые группы в полиморфное содержание активного компонента в твердых формах дозировки. В общем, для препаратов, которые существуют в полиморфных модификациях, если что-нибудь кроме чистого, термодинамически предпочтительного полиморфа должно быть продано, регулирующее агентство может потребовать контроля каждой партии. Таким образом, становится важным и по медицинским и по коммерческим причинам произвести и продать чистое лекарственное средство в его наиболее термодинамически устойчивой полиморфной модификации, по существу не содержащей других кинетически предпочтительных полиморфов.

Например, формы соли соединений, и полиморфные модификации свободного соединения или соли, как известно в фармацевтической области изменяют, например, растворимость, скорость растворения, биодоступность, химическую и физическую стабильность, текучесть, способность к манипулирвоанию и сжимаемость соединения, так же как и безопасность и эффективность фармацевтических продуктов, основанных на данном соединении (см., например, Knapman, Modern Drug Discovery, 2000, 3(2): 53).

Соответственно, идентификация модификации соли или свободного основания соединения с оптимальными физическими и химическими свойствами улучшат развитие соединений тетрациклина как фармацевтических препаратов. Самые полезные из таких физических и химических свойств включают легкую и воспроизводимую подготовку, кристаллизацию, негигроскопичность, водную растворимость, стабильность к видимому и ультрафиолетовому излучению, низкий процент разложения под ускоренными условиями стабильности температуры и влажности, низкому проценту изомеризации между изомерными формами и безопасность для продолжительного введения людям.

Раскрытие изобретения

В одном воплощении изобретение относится, по крайней мере частично, к устойчивой твердой форме, такой как кристаллическая форма, аминоалкильного соединения тетрациклина, охватываемого формулой 1 (далее Соединение 1):

В другом воплощении изобретение относится, по крайней мере частично, к соли Соединения 1 и соляной кислоты. В другом воплощении изобретение относится, по крайней мере частично, к тозилату (р-толуолсульфонату) Соединения 1. В другом воплощении изобретение относится, по крайней мере частично, к мезилату Соединения 1.

В другом воплощении изобретение относится, по крайней мере частично, к устойчивой кристаллической форме Соединения 1.

В другом воплощении изобретение относится, по крайней мере частично, к устойчивой кристаллической форме соли Соединения 1. Например, устойчивая кристаллическая форма соли является устойчивой кристаллической формой тозилата, солянокислой соли или мезилата Соединения 1.

В другом воплощении изобретение относится, по крайней мере частично, к полиморфной модификации Соединения 1.

В другом воплощении изобретение относится, по крайней мере частично, к полиморфной модификации соли Соединения 1.

Например, изобретение относится к полиморфной модификации тозилата Соединения 1. Изобретение относится, в частности к 1-ой полиморфной модификации Соединения 1. Изобретение относится, в частности ко 2-ой полиморфной модификации Соединения 1. Изобретение относится, в частности к 3-ей полиморфной модификации Соединения 1.

Например, 1-ая полиморфная модификация тозилата Соединения 1 обладает пиками дифракции рентгеновских лучей на порошке при приблизительно 8,06, 13,02, и 18,83 °2θ при использовании Cu Кα излучения. В некоторых воплощениях изобретения 1-ая полиморфная модификация тозилата Соединения 1 обладает пиками дифракции рентгеновских лучей на порошке при приблизительно 8,06, 11,41, 13,02, 18,83, 20,54 и 24,53 °2θ при использовании Cu Кα излучения. В некоторых воплощениях изобретения 1-ая полиморфная модификация тозилата Соединения 1 обладает пиками дифракции рентгеновских лучей на порошке при приблизительно 5,60, 8,06, 8,57, 11,41, 13,02, 15,58, 18,83, 20,54 и 24,53 °2θ при использовании Cu Кα излучения.

Например, 1-ая полиморфная модификация тозилата Соединения 1 устойчива при температуре в диапазоне от приблизительно 0°С до приблизительно 70°С. В некоторых воплощениях 1-ая полиморфная модификация тозилата Соединения 1 является устойчивой при температуре в диапазоне от приблизительно 5°С до приблизительно 50°С. В некоторых воплощениях 1-ая полиморфная модификация тозилата Соединения 1 является устойчивой при температуре в диапазоне от приблизительно 20°С до приблизительно 30°С.

1-ая полиморфная модификация тозилата Соединения 1 может быть получена с помощью кристаллизации тозилата указанного Соединения 1 из изопропанола.

Например, 2-ая полиморфная модификация тозилата Соединения 1 обладает пиками дифракции рентгеновских лучей на порошке при приблизительно 7,82, 11,88, 16,12 и 21,46 °2θ при использовании Cu Кα излучения.

Например, 3-я полиморфная модификация тозилата Соединения 1 обладает пиками дифракции рентгеновских лучей на порошке при приблизительно 5,11, 8,89, 10,34, 11,76 и 15,60 °2θ при использовании Cu Кα излучения.

В еще одном воплощении изобретение включает фармацевтические композиции, содержащие кристаллическую форму Соединения 1 и фармацевтически приемлемый разбавитель, инертный наполнитель или носитель.

Например, фармацевтическая композиция соединений по изобретению включает композицию, содержащую полиморфную форму Соединения 1 и фармацевтически приемлемый разбавитель, инертный наполнитель или носитель.

В другом воплощении фармацевтическая композиция соединений по изобретению включает соль Соединения 1 и фармацевтически приемлемый разбавитель, инертный наполнитель или носитель. Например, соль может быть солянокислой солью, тозилатом или мезилатом.

В одном воплощении фармацевтическая композиция соединений по изобретению включает полиморфную форму соли Соединения 1 и фармацевтически приемлемый разбавитель, инертный наполнитель или носитель. Например, полиморфная модификация может быть полиморфной модификацией тозилата, солянокислой соли или мезилата Соединения 1.

В некоторых воплощениях фармацевтическая композиция включает полиморфную модификацию Соединения 1 или его соли в чистом виде.

В другом воплощении фармацевтическая композиция изобретения включает полиморфную модификацию тозилата Соединения 1 и фармацевтически приемлемый разбавитель, инертный наполнитель или носитель. Например, полиморфная модификация может быть 1-ой модификацией, 2-ой модификацией или 3-ей полиморфной модификацией тозилата Соединения 1.

В некоторых воплощениях фармацевтическая композиция включает полиморфы тозилата, солянокислой соли или мезилата Соединения 1 в чистой форме.

В другом аспекте изобретения соль Соединения 1 более устойчива, чем свободное основание Соединения 1.

В другом воплощении изобретение включает способ получения устойчивой кристаллической формы Соединения 1.

В другом воплощении изобретение включает способ получения устойчивой кристаллической формы соли Соединения 1. Например, устойчивой кристаллической формой может быть кристаллический тозилат, солянокислая соль или мезилат Соединения 1.

В другом воплощении изобретение включает способ получения полиморфной модификации соли Соединения 1. Например, полиморфной модификацией может быть полиморфная модификация тозилата, солянокислой соли или мезилата Соединения 1.

В другом воплощении изобретение включает способ получения полиморфной модификации тозилата Соединения 1. Например, полиморфная модификация может быть 1-ой модификацией, 2-ой модификацией или 3-ей полиморфной модификацией тозилата Соединения 1.

В одном воплощении изобретение включает способ для изготовления 1-ой полиморфной модификации тозилата Соединения 1, в котором способ включает: объединение Соединения 1 с растворителем для того, чтобы получить суспензию и добавление р-толуолсульфоновой кислоты. Например, растворитель может быть спиртовым растворителем, таким как изопропанол. Р-толуолсульфоновая кислота добавляется в количестве от 25 до 75 мас.% относительно количества указанного Соединения 1, например, от 25 до 50 мас.%, от 30 до 40 мас.% или 33 мас.% относительно количества указанного Соединения 1. Например, р-толуолсульфоновая кислота используется в форме моногидрата р-толуолсульфоновой кислоты.

Например, суспензия нагревается до добавления р-толуолсульфоновой кислоты.

Например, суспензия перемешивается после добавления р-толуолсульфоновой кислоты. Например, перемешивание проводится при температуре в диапазоне от 20 до 25°С. Например, перемешивание проводится в течение 10-24 часов.

Например, суспензия высушивается. Например, содержание воды в супернатанте указанной суспензии находится в диапазоне от 0,2 до 1,0 мг/мл, или в диапазоне от 0,4 до 0,8 мг/мл.

В еще одном воплощении изобретение включает способ изготовления 1-ой полиморфной модификации тозилата Соединения 1, в котором способ включает: изготовление раствора Соединения 1 в растворителе или комбинации растворителей; и добавление раствора р-толуолсульфоновой кислоты в растворителе или комбинации растворителей.

Например, растворителем может быть спиртовой растворитель, такой как метанол, этанол или изопропанол. Например, комбинация растворителей включает спиртовой растворитель. Например, комбинация растворителей дополнительно включает второй спиртовой растворитель. Например, комбинация растворителей включает этанол и изопропанол. Например, комбинация растворителей дополнительно включает антирастворитель, такой как кетон, эфир или сложный эфир. Например, эфир является, но не ограничен, метил-трет-бутиловым эфиром. Например, комбинация растворителей включает спиртовой растворитель и антирастворитель. Например, комбинация растворителей включает метанол и метил-трет-бутиловый эфир.

Например, р-толуолсульфоновая кислота используется в количестве от 25 до 75 мас.%, от 30 до 50 мас.%, от 35 до 45 мас.%, или 40 мас.% относительно количества указанного Соединения 1. Например, р-толуолсульфоновая кислота используется в форме моногидрата р-толуолсульфоновой кислоты.

Например, раствор получают при температуре в диапазоне от 0 до 60°С, при температуре в диапазоне от 15 до 45°С или при температуре в диапазоне от 20 до 25°С.

Например, раствор нагревается после получения. Например, раствор поддерживают при температуре в диапазоне от 20 до 50°С, или приблизительно при 45°С.

Например, способ дополнительно включает добавление затравочного кристалла монотозилата Соединения 1 для получения суспензии. Суспензия может перемешиваться в течение от 10 до 24 часов или в течение приблизительно 22 часов. Суспензия может перемешиваться при температуре в диапазоне от 15 до 45°С или приблизительно при 20°С. Суспензия может быть высушена. Например, содержание воды в суспензии находится в диапазоне от 1 до 10 мас.%, или в диапазоне от 2 до 6 мас.% или приблизительно 3 мас.%.

В другом воплощении изобретение включает способ получения 1-ой полиморфной модификации тозилата Соединения 1, который включает: растворение свободного основания Соединения 1 в первом растворителе или комбинации растворителей, чтобы сформировать первый раствор, растворение р-толуолсульфоновой кислоты во втором растворителе или комбинации растворителей, чтобы сформировать второй раствор и объединение указанных первого и второго растворов с формированием третьего раствора.

В одном воплощении первый и второй растворитель или комбинация растворителей могут быть одинаковыми или различными. В другом воплощении растворитель может быть спиртовым растворителем, таким как метанол, этанол или изопропанол. В другом воплощении комбинация растворителей представляет собой комбинацию двух спиртовых растворителей, включая, но не ограничиваясь этанолом и изопропанолом. В предпочтительном воплощении объемное соотношение этанола и изопропанола составляет 2 к 1. В еще одном воплощении комбинация растворителей представляет собой комбинацию, которая включает, но не ограничена, спиртовой растворитель и антирастворитель (например, кетон, эфир, сложный эфир, и т.д.). Например, комбинация растворителей представляет собой комбинацию, которая включает, но не ограничена, метанол и метил-трет-бутиловый эфир. В предпочтительном воплощении объемное соотношение метанола и метил-трет-бутилового эфира составляет 1 к 1,2.

В другом воплощении способ дополнительно включает добавление 1-ой полиморфной модификации тозилата Соединения 1 к третьему раствору с формированием четвертого раствора. Например, 1-ая полиморфная модификация тозилата является затравочным кристаллом. В некоторых воплощениях четвертый раствор формирует суспензию после перемешивания. Суспензия может быть отмыта с растворителем или комбинацией растворителей, которые могут быть одинаковыми или отличаться от первого растворителя или комбинации растворителя, или второго растворителя или комбинации растворителей. Суспензия может быть высушена.

В другом воплощении изобретение относится к чистой композиции, включающей Соединение 1, причем композиция является чистой на приблизительно 90÷100 мас.%, предпочтительно 95÷100 мас.%, более предпочтительно 98÷100 мас.% или 99÷100 мас.%; например, примеси присутствуют в количестве менее чем приблизительно 10 мас.%, менее чем приблизительно 5 мас.%, менее чем приблизительно 2 мас.% или менее чем приблизительно 1 мас.%. Такие примеси включают, например, продукты разложения, окисленные продукты, эпимеры, растворители и/или другие нежелательные примеси.

В еще одном воплощении изобретение включает способ лечения тетрациклин чувствительных состояний у субъекта введением субъекту эффективного количества кристаллической формы Соединения 1. Например, субъект является человеком.

В еще одном воплощении изобретение включает способ лечения тетрациклин чувствительного состояния у субъекта введением субъекту эффективного количества устойчивой соли Соединения 1. Например, устойчивая соль представляет собой тозилат, солянокислую соль или мезилат Соединения 1.

В еще одном воплощении изобретение включает способ лечения тетрациклин чувствительного состояния у субъекта введением субъекту эффективного количества полиморфной модификации Соединения 1.

В еще одном воплощении изобретение включает способ лечения тетрациклин чувствительного состояния у субъекта введением субъекту эффективного количества полиморфной модификации соли Соединения 1. Например, полиморфная модификация может быть полиморфной модификацией тозилата, солянокислой соли или мезилата Соединения 1.

В еще одном воплощении изобретение включает способ лечения тетрациклин чувствительного состояние у субъекта введением субъекту эффективного количества полиморфной модификации тозилата Соединения 1. Например, полиморфная модификация тозилата может быть 1-ой модификацией, 2-ой модификацией или 3-ей полиморфной модификацией тозилата Соединения 1.

Например, тетрациклин чувствительное состояние является бактериальной инфекцией. Бактериальная инфекция может быть связана с грамположительными или грамотрицательными бактериями. В некоторых воплощениях бактериальная инфекция связана с Е.coli, S.aureus или Е.faecalis.

В некоторых воплощениях бактериальная инфекция устойчива к другим антибиотикам тетрациклина, включающим, не ограничивая, тетрациклин, миноциклин, доксициклин, санциклин, хлортетрациклин, демеклоциклин, окситетрациклин, хелокардин (антибиотик М319), ролитетрациклин, лимециклин, метациклин, эпициклин, кломоциклин, пипациклин, мепициклин, меглуциклин, гуамциклин, пенимоциклин и этамоциклин.

Соединения-антибиотики тетрациклинового ряда, как известно, обладают низкой стабильностью в твердой фазе в форме свободного основания. Одно из таких некристаллических соединений - аналогов тетрациклина, (4S,4AS,5AR,12AS)-4-7-бис(диметиламино)-9-{[(2,2-диметилпропил)амино]метил}-3,10,12,12А-тетрагидрокси-1,11-диоксо-I,4,4А,5,5А,6,II,12А-октагидротетрацен-2-карбоксамид (Соединение 1; MW=556,66, MF=C29H40N4O7), обладает низкой стабильностью в твердой фазе при воздействии воздуха, света и/или влажности.

В частности, Соединение 1 является желтым аморфным твердым веществом, которое нестабильно при температурах выше 0°С и при воздействии воздуха. Соединение 1 должно храниться при температурах ниже 0°С с минимальным воздействием воздуха, света и влажности на твердую фазу. Вне этих ограничительных условий воздействия Соединение 1 разлагается с выделением продуктов разложения, включающих продукты разложения на воздухе 2, 3 и 4, так же как 4-эпиизомера 5.

До настоящего изобретения не были известны никакие устойчивые кристаллические формы или устойчивые кислые кристаллические соли Соединения 1.

Настоящее изобретение относится к кристаллической форме Соединения 1, солям Соединения 1, полиморфным модификациям Соединения 1 или полиморфным модификациям солей Соединения 1; фармацевтическим композициям, включающим кристаллические формы, соли, полиморфные модификации или полиморфные модификации солей Соединения 1; способам получения кристаллических форм, солей, полиморфных модификаций или полиморфных модификаций солей Соединения 1; а также к способам их использования для лечения чувствительных к тетрациклину состояний.

1. Твердые Формы Соединений

Соединение 1 является соединением тетрациклина. Термин "соединение тетрациклина" включает множество соединений с подобной тетрациклину кольцевой структурой. Примеры соединений тетрациклина включают: тетрациклин, хлортетрациклин, окситетрациклин, демеклоциклин, метациклин, санциклин, доксициклин и миноциклин.

Свободное основание и определенные фармацевтически приемлемые соли Соединения 1 описаны в американской заявке номер 10/786,881, соответствующей американской публикации номер 2005/0026876 AI. В данных документах нет никакого раскрытия или предположения кристаллических форм Соединения 1, или что любая из описанных форм солей превосходит другие, как определено списком свойств, описанных выше.

Таким образом, настоящее изобретение относится к потребности в улучшенных соединениях тетрациклина и потребности в улучшенных формах твердой фазы соединений тетрациклина для производства и биодоступности.

Форма твердого состояния соединения тетрациклина, Соединения 1, может быть кристаллической формой. Кристаллическая форма соединения может быть свободным основанием. Могут быть получены кристаллические формы различных солей свободного основания. Примеры кислот, которые могут использоваться для преобразования свободного основания в соль включают, но не ограничены, HCl, р-толуолсульфоновая кислота, трифторуксусная кислота, метилсульфоновая кислота, бензолсульфоновая кислота и уксусная кислота.

Нейтральные формы соединений могут быть восстановлены контактированием соли с основанием или кислотой и выделением родительского соединения обычным образом. Родительская форма соединения может отличаться от различных солевых форм определенными физическими свойствами, такими как растворимость в полярных растворителях.

Как описано в настоящем изобретении, был разработан способ, которым могут быть получены различные кристаллические формы Соединения 1. Более конкретно, изобретатели показали, что полученная кристаллическая форма главным образом зависит от природы растворителя, используемого в способе. В рамках данного изобретения термин "кристаллическая форма" относится или к полиморфной модификации или к неаморфной форме, без различия. "Полиморфная модификация" относится к упорядоченной структуре, включающей только молекулы растворенного вещества и имеющей характерные кристаллические особенности.

Термины "полиморфы" и "полиморфные модификации" и связанные с ними термины в рамках настоящего изобретения относятся к кристаллическим формам одной и той же молекулы, и у различных полиморфов могут быть различные физические свойства такие как, например, температура плавления, теплота плавления, растворимость, нормы растворения и/или колебательные спектры в результате упаковки или конформации молекул в кристаллической решетке. Различия в физических свойствах, показанные полиморфными модификациями, изменяют фармацевтические параметры, такие как устойчивость при хранении, сжимаемость и плотность (важные в формировании и производстве продукта) и норма растворения (важный фактор для биодоступности). Различия в стабильности могут быть результатом изменений в химической реакционноспособности (например, различном окислении, так, что дозированная форма обесцвечивается более быстро в случае когда состоит из одного полиморфа чем в случае, когда состоит из другого полиморфа) или механических свойствах (например, таблетки разрушаются на хранении, поскольку кинетически предпочтительный полиморф преобразовывается в термодинамически более устойчивый полиморф) или и того и другого (например, таблетки одного полиморфа являются более склонными к распаду при высокой влажности). В результате различий растворимости/растворения, в крайних случаях, некоторые полиморфные превращения могут закончиться нехваткой потенции или, наоборот, наличием токсичности. Кроме того, физические свойства кристаллов могут иметь большое значение в процессе получения, например, один полиморф более склонен к формированию сольватов или может быть более сложным для фильтрования и отмывания от содержащихся примесей (то есть, форма и распределение частиц по размерам могут быть различными у разных полиморфных модификаций).

Полиморфные модификации молекулы могут быть получены многими способами известными в уровне техники. Такие способы включают, но не ограничены, перекристаллизацию расплава, охлаждение расплава, перекристаллизация растворителя, десольватация, быстрое испарение, быстрое охлаждение, медленное охлаждение, диффузия паров и сублимация.

Методики для характеристики полиморфов включают, но не ограничены, дифференциальную сканирующую калориметрию (DSC), дифракцию рентгеновских лучей на порошке (XRPD), рентгеновскую дифрактометрию монокристаллов, вибрационную спектроскопию, например, IR. и рамановская спектроскопия, ЯМР твердой фазы, оптическую микроскопию с нагреванием, сканирующую электронную микроскопию (SEM), электронную кристаллографию и количественный анализ, анализ размера частиц (PSA), анализ площади поверхности, исследования растворимости и исследования растворения.

Термин, "сольват", в рамках настоящего изобретения, относится к кристаллической форме вещества, которая содержит растворитель. Термин "гидрат" относится к сольвату в котором растворителем является вода.

Десольватированный сольват это кристаллическая форма вещества, которая может быть получена только удалением растворителя из сольвата.

Термин, "аморфная форма", в рамках настоящего изобретения, относится к некристаллической форме вещества.

В рамках настоящего изобретения, термин "чистый" означает чистоту соединения приблизительно 90÷100 мас.%, предпочтительно 95÷100 мас.%, более предпочтительно 98÷100 мас.% или 99÷100 мас.%; например, примеси присутствуют в количестве меньше чем приблизительно 10 мас.%, меньше чем приблизительно 5 мас.%, меньше чем приблизительно 2 мас.% или меньше чем приблизительно 1 мас.%. Такие примеси включают, например, продукты разложения, продукты окисления, эпимеры, растворители и/или другие нежелательные примеси.

В рамках настоящего изобретения соединение "устойчиво", когда существенное количество продуктов разложения не наблюдается при постоянных условиях влажности, воздействия света и температурах выше чем 0°С в течение четырех недель. Соединение, как полагают, неустойчиво в определенных условиях, когда появляются примеси разложения или процент существующих примесей начинает расти. Увеличение разложения как функция от времени важно в определении стабильности соединения.

Все диапазоны, сформулированные в рамках настоящего изобретения, предназначены для того, чтобы охватить указанные результаты диапазона так же как всех включенных значений и диапазонов, включая не конкретно сформулированные.

Настоящее изобретение относится к кристаллическим формам, солям и полиморфным модификациям Соединения 1, композициям, включающим кристаллические формы, соли и полиморфные модификации по отдельности или в комбинации с другими активными ингредиентами, способам получения кристаллических форм, солей и полиморфных модификаций и способам их использования в модуляции тетрациклин-чувствительных состояний. Не намереваясь быть связанными любой специфической теорией действия, устойчивость при хранении, сжимаемость, плотность или свойства растворения кристаллических форм, солей и полиморфных модификаций являются полезными для производства, технологии изготовления и биодоступности соединений тетрациклина.

Предпочтительные соли и полиморфные модификации изобретения характеризуются физическими свойствами, например, стабильностью, растворимостью, гигроскопичностью и нормой растворения, подходящими для клинических и терапевтических дозированных форм. Предпочтительные полиморфные модификации настоящего изобретения - те, которые характеризуются физическими свойствами, например, морфологией кристаллов, сжимаемостью и твердостью, подходящими для производства твердых дозированных форм. Такие свойства могут быть определены, используя такие методы, как дифракция рентгеновских лучей, микроскопия, IR спектроскопия, термический анализ и анализ гигроскопичности, как описано в настоящем изобретении и известно в уровне техники.

1.1 Соли Соединения 1

В одном воплощении настоящее изобретение обеспечивает кристаллические формы частично фармацевтически приемлемых солей Соединения 1. Данное воплощение настоящего изобретения обеспечивает кристаллические формы солянокислых солей, мезилата и тозилата Соединения 1:

Каждая соль по настоящему изобретению может быть получена обработкой Соединения 1. Соединение 1 может быть синтезировано или получено любым способом, очевидным для специалиста на основании уровня техники. В предпочтительных воплощениях Соединение 1 получено согласно способам, описанным подробно в примерах ниже. См., например, публикацию США номер 2005/0026876 AI, содержание которой включено в настоящее описание ссылкой во всей полноте.

Альтернативно, Соединение 1 может быть получено выделением специфической соли Соединения 1 и преобразованием такой соли Соединения 1 в нейтральную форму посредством обработки подходящим основанием. Например, Соединение 1 может быть получено выделением гидрохлорида Соединения 1, фильтрацией и последующим преобразованием указанной соли в нейтральную форму обработкой одноосновным углекислым натрием в этилацетате или другим подходящим основанием.

Соединение 1, полученное любым способом, может контактировать с подходящей кислотой, как концентрированной (то есть, свободной от примесей или разбавления), так и в подходящем инертном растворителе или растворителях, для получения солей по изобретению. Например, Соединение 1 может вступать в реакцию с р-толуолсульфоновой кислотой для получения модификации тозилата настоящего изобретения.

Исследования стабильности проводились на свободном основании Соединения 1 и аморфной соли дигидрохлорида Соединения 1. Данная соль была получена растворением Соединения 1 в водном растворе, доведением рН раствора до 4,2 и последующей лиофилизацией. Свободное основание разлагалось меньше чем через один месяц при 40°С, и приблизительно через три месяца при 4°С. Напротив, дигидрохлорид Соединения 1 была устойчива в течение 6 месяцев при 40°С, и в течение двух лет при комнатной температуре (25°С).

Как раскрыто подробно в примерах ниже, тозилат Соединения 1 и его полиморфные модификации показывают желательные свойства.

1.2 Полиморфные модификации Соединения 1

Настоящее изобретение раскрывает также полиморфные модификации Соединения 1. В некоторых воплощениях полиморфные модификации изобретения представляют собой полиморфные модификации тозилата Соединения 1.

Каждая полиморфная модификация настоящего изобретения может быть получена превращением Соединения 1. Твердое Соединение 1 может быть растворено и затем кристаллизовано из смесей растворителей, описанных ниже, с целью получения полиморфных модификаций по настоящему изобретению. В определенных воплощениях изобретения тозилат Соединения 1 может быть растворен и затем кристаллизован из смесей растворителей, описанных ниже, с целью получения определенных полиморфных модификаций по настоящему изобретению. В некоторых воплощениях изобретения может быть растворено свободное основание Соединения 1, и затем добавлена кислота с целью получения кристаллической соли Соединения 1.

В одном воплощении настоящее изобретение раскрывает полиморфные модификации тозилата Соединения 1.

В дополнительном воплощении изобретение обеспечивает полиморфную модификацию 1 тозилата Соединения 1, имеющего структуру дифракции рентгеновских лучей, подобную показанной на Фиг.8, характеристики структуры дифракции показаны в Таблице 1. Например, специфическая полиморфная модификация 1 по изобретению обладает пиками дифракции рентгеновских лучей на порошке при 5,60, 8,06, 8,57, 11,41, 13,02, 15,58, 18,83, 20,54 и 24,53 °2θ, при использовании Cu Кα излучения. Например, специфическая полиморфная модификация 1 по изобретению обладает пиками дифракции рентгеновских лучей на порошке при 8,06, 11,41, 13,02, 18,83, 20,54 и 24,53 °2θ, при использовании Cu Кα излучения. Например, специфическая полиморфная модификация 1 по изобретению обладает пиками дифракции рентгеновских лучей на порошке при 8,06, 13,02, 18,83 и 24,53 °2θ. Например, специфическая полиморфная модификация 1 по изобретению обладает основными пиками дифракции рентгеновских лучей на порошке при 8,06 и 18,83 °2θ.

Таблица 1
Угол (2-тета °) d значение (Ангстрем) Интенсивность (Единиц) Интенсивность (%)
5,60 15,78 347 15,9
8,06 10,97 2184 100,0
8,57 10,30 581 26,6
9,80 9,01 308 14,1
10,89 8,12 233 10,7
11,41 7,75 667 30,5
13,02 6,79 626 28,7
13,78 6,42 261 12,0
14,92 5,93 252 11,5
15,58 5,68 346 15,8
16,10 5,50 262 12,0
17,07 5,19 345 15,8
Угол (2-тета °) d значение (Ангстрем) Интенсивность (Единиц) Интенсивность (%)
18,83 4,71 979 44,8
20,54 4,32 838 38,4
21,83 4,07 489 22,4
23,00 3,86 395 18,1
24,53 3,63 661 30,3
25,10 3,55 341 15,6
27,82 3,20 404 18,5
28,48 3,13 357 16,3
30,26 2,95 302 13,8
34,82 2,57 236 10,8
36,19 2,48 254 11,6
37,54 2,39 247 11,3
40,49 2,23 368 16,8

В другом воплощении настоящее изобретение обеспечивает модификацию 2 тозилата Соединения 1. В одном воплощении полиморфная модификация 2 тозилата Соединения 1 имеет структуру дифракции рентгеновских лучей, подобную показанной на Фиг.9, характеристики структуры дифракции показаны в Таблице 2. Например, специфическая полиморфная модификация 2 по изобретению обладает пиками дифракции рентгеновских лучей на порошке