Установка для водогазового воздействия на нефтяной пласт

Изобретение относится к нефтяной промышленности и может быть использовано для утилизации попутного нефтяного газа путем его закачки в нефтяной пласт вместе с водой системы поддержания пластового давления. Обеспечивает повышение эффективности нагнетания газожидкостной смеси. Сущность изобретения: установка включает центробежный насос для перекачки рабочей жидкости без газа, приемные линии для газа и жидкости, две емкости со всасывающими и нагнетательными клапанами, расположенными в верхней части, линиями отбора и нагнетания жидкости, расположенными в нижних частях и сообщенными с выкидом и приемом насоса через симметрично расположенные высоконапорные и низконапорные краны. Согласно изобретению на входной линии для воды параллельно основному центробежному насосу размещен дополнительный насос, напорная сторона которого сообщена с рабочим соплом жидкостно-газового эжектора, приемная камера которого соединена с газовой линией, а выкид - с верхними частями емкостей. На линии входа жидкости в эжектор последовательно расположены регулирующий клапан и дроссель. Запорный орган регулирующего клапана гидравлически сообщен с выкидом эжектора и входом в дроссель. 1 ил.

Реферат

Установка относится к нефтяной промышленности и может быть использована для утилизации попутного нефтяного газа путем его закачки в нефтяной пласт вместе с водой системы поддержания пластового давления (ППД).

Для закачки водогазовой смеси в пласт известны бустерные насосы, представляющие собой поршневые насосы с дополнительными камерами, позволяющими всасывать и нагнетать газовую фазу создаваемым «жидким» поршнем /1, 2/. Бустерные насосы имеют малую производительность и низкий коэффициент полезного действия, отличаются высокой энерго и металлоемкостью.

Наиболее близкой к предлагаемому решению является установка для перекачивания газожидкостной смеси /3/. Она включает в себя две емкости для попеременного перекачивания из них рабочей жидкости насосом и создания таким образом «жидкого» поршня в них. При снижении уровня «жидкого» поршня в одной из емкостей происходит всасывание в освободившийся объем газожидкостной смеси. В этот же период рабочая жидкость заполняет другую емкость и вытесняет собой ранее заполнившую газожидкостную смесь в напорную линию. По достижении определенного уровня рабочей жидкости в емкости происходит переключение потоков и перекачка рабочей жидкости в другую емкость, из которой начинается цикл вытеснения газожидкостной смеси в напорную линию. Сам перекачивающий насос работает, т.о., в непрерывном режиме, постоянно перекачивая жидкость, не содержащую газовую фазу. В этой связи в качестве перекачивающего органа может быть использован центробежный насос, который при попадании в жидкость газа срывает свою работу. Устройство позволяет перекачивать не только газожидкостную смесь, но и газ. Недостатком устройства является низкая эффективность нагнетания газожидкостной смеси или газа при малых давлениях их входа в емкости. При низких давлениях на входе и высоких давлениях в напорной линии возникают значительные потери хода «жидкого» поршня в емкостях из-за необходимости сжатия газовой фазы от низкой до высокой величины давления. С ростом давления на входе в емкости потери хода «жидкого» поршня уменьшаются и эффективность работы устройства возрастает.

Целью предлагаемого изобретения является повышение эффективности нагнетания газжидкостной смеси путем увеличения давления газа на входе в емкости установки.

Поставленная цель достигается тем, что в известном устройстве, включающем центробежный насос для перекачки рабочей жидкости без газа, приемные линии для газа и жидкости, две емкости со всасывающими и нагнетательными клапанами, расположенными в верхней части, линиями отбора и нагнетания жидкости, расположенными в нижних частях и сообщенными с выкидом и приемом насоса через симметрично расположенные высоконапорные и низконапорные краны, на входной линии для воды параллельно основному центробежному насосу размещен дополнительный насос, напорная сторона которого сообщена с рабочим соплом жидкостно-газового эжектора, приемная камера которого соединена с газовой линией, а выкид - с верхними частями емкостей, на линии входа жидкости в эжектор последовательно расположены регулирующий клапан и дроссель, причем запорный орган регулирующего клапана гидравлически сообщен с выкидом эжектора и входом в дроссель.

На фиг. показана схема предлагаемого устройства. Оно включает линии 1 и 2 для поступления воды и газа, входные краны 3 и 4, манометры 5 и 6, счетчики расходов воды и газа 7 и 8, обратные клапаны 9 и 10. На линии приема воды 1 установлены насосы 11 и 12 с напорными задвижками 13 и 14. Выкид насоса 12 через параллельно расположенные трехходовые краны (распределители золотникового типа) 15 и 16 сообщен с нижними частями емкостей 17 и 18. Вторые входы трехходовых кранов 15 и 16 через дроссель 19 сообщены с приемной линией 1 для воды, т.е. с приемами насосов 11 и 12.

В нижних частях емкостей 17 и 18 установлены датчики 20 и 21 нижнего положения уровня воды в емкостях 17 и 18. Выкидная линия насоса 11 сообщена с рабочим соплом жидкостно-газового эжектора 22 через последовательно расположенные регулирующий клапан 23 и дроссель 24. Приемная камера эжектора 22 через обратный клапан 10 сообщена с линией 2 поступления газа, а выкид эжектора через обратные клапаны 25 и 26 сообщен с верхними частями емкостей 17 и 18. Верхние части емкостей 17 и 18 также через обратные клапаны сообщены с напорной линией 29 закачки водогазовой смеси в нефтяной пласт. На этой же линии установлен манометр 30 контроля давления закачки. На напорной линии емкостей установлен манометр 31 контроля давления.

Работа установки состоит в следующем. На фиг. показан цикл нагнетания газа, а затем и воды в систему ППД из емкости 17. В этом цикле вода из нижней части емкости 18 через трехходовой кран 16, дроссель 19 поступает на прием насоса 12 и закачивается в нижнюю часть емкости 17 через трехходовой кран 15 для вытеснения газа через обратный клапан 27 в напорную линию системы ППД. Одновременно из линии поступления воды 1 насосом 11 будет отбираться некоторое количество воды и подаваться в эжектор 22 через клапан 23 и дроссель 24. Количество подаваемой в эжектор устанавливается соответствующим положением запорного органа дросселя 24. Вода, попадая в сопло эжектора, всасывает газ из линии 2 и нагнетает его через обратный клапан 26 в емкость 18. Таким образом осуществляется повышение давления поступающего в емкость газа.

В период закачки газа может изменяться давление в емкости 18. При изменении перепада давления, действующего на запорный орган клапана 23, происходит изменение его положения, а так же расхода воды через него. К примеру при возрастании давления на выкиде эжектора происходит дополнительное открытие проходного сечения клапана 23, позволяющее увеличить расход воды через эжектор 22. В противном случае расход воды через клапан 23 снижается.

После того как уровень воды в емкости 18 снизится до минимальной величины датчик уровня 21 передает сигнал на подключение трехходовых кранов 16 и 15. При этом вода из емкости 17 через другой проходной канал трехходового крана 15 и дроссель 19 будет поступать на прием насоса 12 и далее через переключенный канал крана 16 будет нагнетаться в емкость 18. В этот период водогазовая смесь из эжектора 22 будет нагнетаться уже в емкость 17 через обратный клапан 25.

Достигнув верхнего уровня в емкости 18, вода будет продолжать нагнетаться в напорную линию системы ППД через обратный клапан 28. Период закачки воды в систему ППД из емкости 18 после того, как газовая фаза вытиснится из нее, определяется количеством воды, поступающей в линию 1. Установка на приемной линии насоса 12 дросселя 19 позволяет поднимать давление нагнетания газа в емкостях 17 и 18 до заданной величины, при которой потеря хода «жидкого» поршня на сжатие газа для его вытеснения в напорную линию ППД будет оптимальной из технико-экономических соображений. Таким образом, давление до дросселя 19 будет значительно больше давления на приеме насосов 11 и 12. После того как уровень воды в емкости 17 достигнет минимально возможного положения, датчик уровня 20 подает сигнал на переключение трехходовых кранов 15 и 16 и начнется перекачка воды в обратном направлении из емкости 18 в емкость 17 и т.д.

Переключение эжектора 22 на закачку водогазовой смеси в емкости 17 или 18 происходит автоматически при переключении кранов 15 или 16, т.е. сразу как только начнется откачка воды из одной из емкостей.

Подача насоса 11 с помощью дросселя 24, геометрические параметры жидкостно-газового эжектора, а также подача насоса 12 определяются исходя из поступающих на установку объемов воды и газа.

Установка может эксплуатироваться, таким образом, как в режиме компрессора, так и в режиме насоса.

В первом случае первоначально производится заполнение водой одной из емкостей 17 или 18. При прекращении поступления воды в линию 1 насосы 11 и 12 будут окачивать воду из одной емкости в другую, и нагнетать в систему ППД только газовую фазу с предварительным ее сжатием в эжекторе 22.

Технико-экономическим преимуществом предлагаемой установки является возможность предварительного сжатия газовой фазы перед его нагнетанием «жидким» поршнем в высоконапорную сеть, уменьшения объемов емкостей и повышение эффективности перекачки.

Источники информации

1. Способ нагнетания газожидкостной смеси поршневым насосом и устройство для его осуществления. А.с. СССР, №714044 (авторы: И.В. Белей, Ю.В. Лопатин, С.П. Олейник). Заявл. 14.07.76. Опубл. 05.02.80. БИ №5.

2. Гидрокомпрессионный бустерный насос. Патент РФ №2266429 (авторы: О.И. Белей, С.Ю. Лопатин, О.С. Олейник) Заявл. 14.07.2004. Опубл. 20.12.2005

3. Насос для перекачивания газожидкостной смеси. А.с. СССР, №1590687 (авторы: В.Г. Кармышев, М.Д. Валеев, Р.З. Ахмадишин и др.). Заявл. 04.10.88. Опубл. 07.09.90. БИ №33.

Установка для водогазового воздействия на нефтяной пласт, включающая центробежный насос для перекачки рабочей жидкости без газа, приемные линии для газа и жидкости, две емкости со всасывающими и нагнетательными клапанами, расположенными в верхней части, линиями отбора и нагнетания жидкости, расположенными в нижних частях и сообщенными с выкидом и приемом насоса через симметрично расположенные высоконапорные и низконапорные краны, отличающаяся тем, что, с целью повышения эффективности нагнетания газожидкостной смеси путем увеличения давления газа на входе в емкости установки, на входной линии для воды параллельно основному центробежному насосу размещен дополнительный насос, напорная сторона которого сообщена с рабочим соплом жидкостно-газового эжектора, приемная камера которого соединена с газовой линией, а выкид - с верхними частями емкостей, на линии входа жидкости в эжектор последовательно расположены регулирующий клапан и дроссель, причем запорный орган регулирующего клапана гидравлически сообщен с выкидом эжектора и входом в дроссель.