Устройство базовой станции беспроводной связи, и устройство мобильной станции беспроводной связи, и способ выделения канала управления

Иллюстрации

Показать все

Изобретение относится к устройству базовой станции радиосвязи, устройству мобильной станции радиосвязи, способу декодирования канала управления и способу выделения канала управления. Технический результат заключается в обеспечении сокращения кратности декодирования вслепую, осуществляемого мобильной станцией, без увеличения служебной нагрузки за счет информации извещения. Устройство мобильной станции содержит блок приема, выполненный с возможностью приема канала управления, который передается от базовой станции по одному или множеству элементов канала управления (CCE), имеющих последовательный номер (номера) CCE, и блок декодирования, выполненный с возможностью декодирования принятого канала управления в пространстве поиска, которое определяется вероятными каналами управления, подлежащими попытке декодирования; причем пространство поиска состоит из заданного множества CCE, которое начинается на заданном номере CCE в соответствии с количеством CCE, по которым передается канал управления, и ресурс восходящей линии связи, используемый для передачи ответного сигнала, связан с номером ССЕ из ССЕ, по которым передается канал управления. 4 н. и 24 з.п. ф-лы, 19 ил.

Реферат

Область техники

Настоящее изобретение относится к устройству базовой станции радиосвязи, устройству мобильной станции радиосвязи и способу выделения канала управления.

Уровень техники

При осуществлении мобильной связи, ARQ (автоматический запрос повторной передачи) применяется к данным нисходящей линии связи от устройства базовой станции радиосвязи (далее кратко именуемого “базовой станцией”) к устройствам мобильной станции радиосвязи (далее кратко именуемым “мобильными станциями”). Таким образом, мобильные станции передают обратно, на базовую станцию, ответные сигналы, представляющие результаты обнаружения ошибок данных нисходящей линии связи. Мобильные станции осуществляют CRC (проверку циклического избыточного кода) данных нисходящей линии связи, и, в случае CRC=OK (т.е. если ошибок не обнаружено), передают обратно на базовую станцию ACK (квитирование), или, в случае CRC=NG (т.е. в случае обнаружения ошибки), передают обратно NACK (отрицательное квитирование), в качестве ответного сигнала. Эти ответные сигналы передаются на базовую станцию с использованием каналов управления восходящей линии связи, например, PUCCH (физических каналов управления восходящей линии).

Кроме того, базовая станция передает мобильным станциям информацию управления для сообщения результатов выделения ресурсов для данных нисходящей линии связи и данных восходящей линии связи. Эта информация управления передается на мобильные станции с использованием каналов управления нисходящей линии связи, например, PDCCH (физических каналов управления нисходящей линии связи). Каждый PDCCH занимает один или множество CCE (элементов канала управления). Базовая станция генерирует PDCCH для каждой мобильной станции, выделяет CCE, которые должны быть заняты PDCCH, согласно количеству CCE, необходимому для информации управления, сопоставляет информацию управления с физическими ресурсами, связанными с выделенными CCE, и передает результаты.

Например, чтобы обеспечить желаемое качество приема, MCS (схему модуляции и кодирования) с низким уровнем MCS нужно установить для мобильной станции, которая находится вблизи границы соты, где качество канала низко. Таким образом, базовая станция передает PDCCH, который занимает большее количество CCE (например, восемь CCE). Напротив, даже если MCS с высоким уровнем MCS установлена для мобильной станции, которая находится вблизи центра соты, где качество канала высоко, можно обеспечить желаемое качество приема. Таким образом, базовая станция передает PDCCH, который занимает меньшее количество CCE (например, один CCE). Здесь количество CCE, занятых одним PDCCH, называется “размером агрегации CCE”.

Кроме того, базовая станция выделяет множество мобильных станций одному подкадру и, таким образом, одновременно передает множество PDCCH. В этом случае, базовая станция передает информацию управления, включающую в себя биты CRC, скремблированные ID номерами мобильной станции назначения, что позволяет идентифицировать мобильную станцию назначения каждого PDCCH. Кроме того, мобильные станции декодируют CCE, которым могут быть сопоставлены PDCCH, и осуществляют обнаружение CRC после дескремблирования битов CRC ID номерами мобильной станции этих мобильных станций. Таким образом, мобильные станции обнаруживают PDCCH для этих мобильных станций путем осуществления декодирования вслепую множества PDCCH, включенных в принятый сигнал.

Однако при наличии большего полного количества CCE кратность декодирования вслепую, осуществляемого мобильной станцией, возрастает. Таким образом, в целях сокращения кратности декодирования вслепую, осуществляемого мобильной станцией, исследован способ ограничения CCE, предназначенных для декодирования вслепую, для каждой мобильной станции (см. Непатентный документ 1). Согласно этому способу, множество мобильных станций объединяется в группы, и поля CCE, которые являются CCE, предназначенными для декодирования вслепую, ограничиваются для каждой группы. Таким образом, мобильная станция каждой группы должна осуществлять декодирование вслепую только поля CCE, выделенного этой мобильной станции, что позволяет сокращать кратность декодирования вслепую. Здесь, поле CCE, предназначенное для декодирования вслепую мобильной станцией, называется “пространством поиска”.

Кроме того, чтобы эффективно использовать ресурсы связи нисходящей линии связи без сигнализации для извещения PUCCH для передачи ответных сигналов, от базовой станции на мобильные станции для передачи ответных сигналов, проводятся исследования для установления взаимно-однозначной связи между CCE и PUCCH (см. Непатентный документ 2). Согласно этой связи, каждая мобильная станция может принимать решение, какой PUCCH использовать для передачи ответного сигнала от мобильной станции, от CCE, связанного с физическим ресурсом, с которым сопоставлена информация управления для этой мобильной станции. Таким образом, каждая мобильная станция сопоставляет ответный сигнал от этой мобильной станции с физическим ресурсом, на основании CCE, связанного с физическим ресурсом, с которым сопоставлена информация управления для этой мобильной станции.

Непатентный документ 1: протокол встречи 3GPP RAN WG1, R1-073996, “Search Space definition: Reduced PDCCH blind detection for split PDCCH search space”, Motorola

Непатентный документ 2: протокол встречи 3GPP RAN WG1, R1-073620, “Clarification of Implicit Resource Allocation of Uplink ACK/NACK Signal”, Panasonic

Сущность изобретения

Задачи, решаемые изобретением

Однако если множество мобильных станций объединяется в группы и пространства поиска установлены для каждой группы, базовая станция должна сообщать каждой мобильной станции информацию пространства поиска, указывающую пространство поиска каждой мобильной станции. Таким образом, согласно уровню техники, служебная нагрузка возрастает за счет информации извещения.

Поэтому задачей настоящего изобретения является обеспечение устройства базовой станции радиосвязи, устройства мобильной станции радиосвязи и способа выделения канала управления для сокращения кратности декодирования вслепую, осуществляемого мобильной станцией, без увеличения служебной нагрузки за счет информации извещения.

Средства решения задачи

Устройство базовой станции радиосвязи применяет конфигурацию, имеющую: блок выделения, который выделяет канал управления, который занимает один или множество элементов канала управления, конкретному полю элемента канала управления в соответствии с количеством элементов канала управления, занятых каналом управления, из множества полей элемента канала управления; и блок передачи, который передает канал управления, выделенный конкретному полю элемента канала управления.

Положительный эффект изобретения

Согласно настоящему изобретению, можно сокращать кратность декодирования вслепую, осуществляемого мобильной станцией, без увеличения служебной нагрузки за счет информации извещения.

Краткое описание чертежей

Фиг.1 - блок-схема конфигурации базовой станции согласно варианту осуществления 1 настоящего изобретения.

Фиг.2 - блок-схема конфигурации мобильной станции согласно варианту осуществления 1 настоящего изобретения.

Фиг.3 - информация пространства поиска согласно варианту осуществления 1 настоящего изобретения.

Фиг.4 - пространства поиска согласно варианту осуществления 1 настоящего изобретения.

Фиг.5 - пример выделения CCE согласно варианту осуществления 1 настоящего изобретения.

Фиг.6 - информация пространства поиска согласно варианту осуществления 1 настоящего изобретения (в случае, когда размер соты велик).

Фиг.7 - пространства поиска согласно варианту осуществления 1 настоящего изобретения (в случае, когда размер соты велик).

Фиг.8 - пространства поиска согласно варианту осуществления 2 настоящего изобретения.

Фиг.9 - пространства поиска согласно варианту осуществления 3 настоящего изобретения (согласно способу выделения 1).

Фиг.10 - пространства поиска согласно варианту осуществления 3 настоящего изобретения (согласно способу выделения 2).

Фиг.11 - пространства поиска согласно варианту осуществления 4 настоящего изобретения (CFI=3).

Фиг.12 - пространства поиска согласно варианту осуществления 4 настоящего изобретения (CFI=2).

Фиг.13 - пространства поиска согласно варианту осуществления 4 настоящего изобретения (CFI=1).

Фиг.14 - приоритетный порядок, относящийся к использованию физических ресурсов, связанных с PUCCH согласно варианту осуществления 5 настоящего изобретения.

Фиг.15 - ресурсы PUCCH согласно варианту осуществления 5 настоящего изобретения (CFI=3).

Фиг.16 - ресурсы PUCCH согласно варианту осуществления 5 настоящего изобретения (CFI=2).

Фиг.17 - ресурсы PUCCH согласно варианту осуществления 5 настоящего изобретения (CFI=1).

Фиг.18 - другие пространства поиска (пример 1).

Фиг.19 - другие пространства поиска (фиг.2).

Предпочтительные варианты осуществления

Варианты осуществления настоящего изобретения будут подробно объяснены ниже со ссылкой на прилагаемые чертежи. В нижеследующем объяснении, предположим, что полное количество CCE, выделенных PDCCH, равно 32, от CCE #0 до CCE #31, и размер агрегации CCE для PDCCH равен 1, 2, 4 или 8. Кроме того, если один PDCCH занимает множество CCE, множество CCE, занятых PDCCH, являются последовательной.

Кроме того, в нижеследующем объяснении будет объяснен случай, когда при первом расширении PUCCH используются последовательности ZAC (нулевой автокорреляции) и при втором расширении используются кодовые последовательности поблочного расширения, которые используются при расширении в единицах LB (длинных блоков). Однако при первом расширении также возможно использовать последовательности, которые могут отличаться друг от друга значениями циклического сдвига, отличные от последовательностей ZAC. Например, при первом расширении также возможно использовать последовательности GCL (обобщенные чирпообразные последовательности), последовательности CAZAC (постоянной амплитуды, нулевой автокорреляции), последовательности ZC (Задова-Чу) или использовать PN-последовательности, например, M-последовательности и последовательности ортогональных кодов Голда. Кроме того, при втором расширении, в качестве кодовых последовательностей поблочного расширения, можно использовать любые последовательности, которые можно рассматривать как ортогональные последовательности или, по существу, ортогональные последовательности. Например, при втором расширении, можно использовать последовательности Уолша или последовательности Фурье в качестве кодовых последовательностей поблочного расширения.

Кроме того, в нижеследующем объяснении, предположим, что номера CCE и номера PUCCH связаны. Таким образом, номер PUCCH выводится из номера CCE, используемого для PDCCH для использования для выделения данных восходящей линии связи.

(Вариант осуществления 1)

На фиг.1 показана конфигурация базовой станции 100 согласно данному варианту осуществления, и на фиг.2 показана конфигурация мобильной станции 200 согласно данному варианту осуществления.

Здесь, во избежание сложного объяснения, на фиг.1 показаны компоненты, связанные с передачей данных нисходящей линии связи, и компоненты, связанные с приемом ответных сигналов восходящей линии связи на данные нисходящей линии связи, которые напрямую относятся к настоящему изобретению, и иллюстрация и объяснение компонентов, связанных с приемом данных восходящей линии связи, будут опущены. Аналогично, на фиг.2 показаны компоненты, связанные с приемом данных нисходящей линии связи, и компоненты, связанные с передачей ответных сигналов восходящей линии связи на данные нисходящей линии связи, которые напрямую относятся к настоящему изобретению, и иллюстрация и объяснение компонентов, связанных с передачей данных восходящей линии связи, будут опущены.

На базовой станции 100, показанной на фиг.1, блок кодирования 101 принимает в качестве входа информацию пространства поиска, указывающую определение пространства поиска, которое определяется, например, размером соты и окружением базовой станции. Кроме того, блок кодирования 101 кодирует информацию пространства поиска, принятую в качестве входа, и выводит результат на блок модуляции 102. Затем, блок модуляции 102 модулирует кодированную информацию пространства поиска, принятую в качестве входа от блока кодирования 101, и выводит результат на блок сопоставления 108.

Блоки кодирования и модуляции 103-1-103-K принимают в качестве входа информацию выделения ресурсов для данных восходящей линии связи или данных нисходящей линии связи, предназначенных для мобильных станций. Здесь, каждая информация выделения выделяется PDCCH с размером агрегации CCE, необходимым для передачи этой информации выделения. Кроме того, предусмотрено, что блоки кодирования и модуляции 103-1-103-K осуществляют связь, максимум, с K мобильными станциями #1-#K. В блоках кодирования и модуляции 103-1-103-K, каждый блок кодирования 11 кодирует информацию выделения, принятую в качестве входа и выделенную PDCCH, и выводит результаты на блоки модуляции 12. Затем, каждый блок модуляции 12 модулирует кодированную информацию выделения, принятую в качестве входа от блоков кодирования 11, и выводит результаты на блок 104 выделения CCE.

Блок 104 выделения CCE выделяет информацию выделения, принятую в качестве входа от блоков модуляции 103-1-103-K, одному или множеству CCE на основании информации пространства поиска. В частности, блок 104 выделения CCE выделяет PDCCH конкретному пространству поиска, связанному с размером агрегации CCE этого PDCCH, из множества пространств поиска. Кроме того, блок 104 выделения CCE выводит информацию выделения, выделенную CCE, на блок сопоставления 108. Здесь, способ выделения CCE на блоке 104 выделения CCE будет описан ниже.

С другой стороны, блок кодирования 105 кодирует данные передачи (т.е. данные нисходящей линии связи), принятые в качестве входа, и выводит результат на блок 106 управления повторной передачей. Здесь, при наличии множества элементов данных передачи для множества мобильных станций, блок кодирования 105 кодирует каждый из множества элементов данных передачи для этих мобильных станций.

После начальной передачи блок 106 управления повторной передачей удерживает и выводит кодированные данные передачи каждой мобильной станции на блок модуляции 107. Здесь, блок 106 управления повторной передачей удерживает данные передачи, пока не будет принято ACK от каждой мобильной станции в качестве входа от блока принятия решения 117. Кроме того, если NACK от каждой мобильной станции не принято в качестве входа от блока принятия решения 117, т.е. после повторной передачи, блок 106 управления повторной передачей выводит данные передачи, связанные с этим NACK, на блок модуляции 107.

Блок модуляции 107 модулирует кодированные данные передачи, принятые в качестве входа от блока 106 управления повторной передачей, и выводит результат на блок сопоставления 108.

Блок сопоставления 108 сопоставляет информацию выделения ресурсам выделения нисходящей линии связи, связанным с выделенными CCE, среди ресурсов нисходящей линии связи, зарезервированных для PDCCH, сопоставляет информацию пространства поиска ресурсам нисходящей линии связи, зарезервированным для широковещательных каналов, и сопоставляет данные передачи ресурсам нисходящей линии связи, зарезервированным для данных передачи. Кроме того, блок сопоставления 108 выводит сигналы, которым сопоставлены эти каналы, на блок 109 ОБПФ (обратного быстрого преобразования Фурье).

Блок ОБПФ 109 генерирует символ OFDM путем осуществления ОБПФ для множества поднесущих, которым сопоставлены информация выделения, информация пространства поиска и данные передачи, и выводит результат на блок 110 присоединения CP (циклического префикса).

Блок 110 присоединения CP присоединяет тот же сигнал, что и сигнал в хвостовой части символа OFDM, к головной части этого символа OFDM в качестве CP.

Блок радиопередачи 111 осуществляет обработку передачи, например, Ц/А преобразование, усиление и преобразование с повышением частоты, на символе OFDM с CP, и передает результат с антенны 112 на мобильную станцию 200 (см. фиг.2).

С другой стороны, блок радиоприема 113 принимает символ SC-FDMA (множественного доступа с частотным разделением на одной несущей), передаваемый с каждой мобильной станции, через антенну 112, и осуществляет обработку приема, например, преобразование с понижением часты и А/Ц преобразование на этом символе SC-FDMA.

Блок 114 удаления CP удаляет CP, присоединенный к символу SC-FDMA, подвергнутому обработке приема.

Блок 115 снятия расширения снимает расширение ответного сигнала с помощью кодовой последовательности поблочного расширения, используемой при втором расширении на мобильной станции 200, и выводит ответный сигнал со снятым расширением на блок 116 корреляционной обработки.

Блок 116 корреляционной обработки находит значение корреляции между ответным сигналом со снятым расширением и последовательностью ZAC, которая используется при первом расширении на мобильной станции 200, и выводит значение корреляции на блок 117 принятия решения.

Блок 117 принятия решения обнаруживает ответные сигналы для каждой мобильной станции путем обнаружения корреляционных пиков в окнах обнаружения для каждой мобильной станции. Например, при обнаружении корреляционного пика в окне обнаружения #0 для мобильной станции #0, блок 117 принятия решения обнаруживает ответный сигнал от мобильной станции #0. Кроме того, блок 117 принятия решения принимает решение, является ли обнаруженный ответный сигнал сигналом ACK или NACK, путем обнаружения синхронизации с использованием корреляционного значения опорного сигнала, и выводит ACK или NACK на блок 106 управления повторной передачей для каждой мобильной станции.

С другой стороны, мобильная станция 200, показанная на фиг.2, принимает информацию пространства поиска, информацию выделения и данные нисходящей линии связи, передаваемые с базовой станции 100. Способы приема этих элементов информации будет объяснены ниже.

На мобильной станции 200, показанной на фиг.2, блок радиоприема 202 принимает символ OFDM, переданный с базовой станции 100 (см. фиг.1), через антенну 201, и осуществляет обработку приема, например, преобразование с понижением частоты и А/Ц преобразование на символе OFDM.

Блок 203 удаления CP удаляет CP, присоединенный к символу OFDM, подвергнутому обработке приема.

Блок 204 БПФ (быстрого преобразования Фурье) получает информацию выделения, данные нисходящей линии связи и широковещательную информацию, включающую в себя информацию пространства поиска, которые сопоставляются множеству поднесущих, путем осуществления БПФ символа OFDM, и выводит результаты на блок разделения 205.

Блок разделения 205 отделяет широковещательную информацию, сопоставленную ресурсам, заранее зарезервированным для широковещательных каналов, от сигналов, принятых в качестве входа от блока БПФ 204, и выводит широковещательную информацию на блок 206 декодирования широковещательной информации и информацию, отличную от широковещательной информации, на блок извлечения 207.

Блок 206 декодирования широковещательной информации декодирует широковещательную информацию, принятую в качестве входа от блока разделения 205, для получения информации пространства поиска, и выводит информацию пространства поиска на блок извлечения 207.

Предположим, что блок извлечения 207 и блок декодирования 209 заранее принимают информацию скорости кодирования, указывающую скорость кодирования информации выделения, т.е. информацию, указывающую размер агрегации CCE для PDCCH.

Кроме того, приняв информацию выделения, блок извлечения 207 извлекает информацию выделения из множества поднесущих согласно размеру агрегации CCE и информации пространства поиска, принятой в качестве входа, и выводит информацию выделения на блок демодуляции 208.

Блок демодуляции 208 демодулирует информацию выделения и выводит результат на блок декодирования 209.

Блок декодирования 209 декодирует информацию выделения согласно размеру агрегации CCE, принятому в качестве входа, и выводит результат на блок 210 принятия решения.

С другой стороны, приняв данные нисходящей линии связи, блок извлечения 207 извлекает данные нисходящей линии связи для данной мобильной станции из множества поднесущих, согласно результату выделения ресурсов, принятому в качестве входа от блока 210 принятия решения, и выводит данные нисходящей линии связи на блок демодуляции 212. Эти данные нисходящей линии связи демодулируются на блоке демодуляции 212, декодируются на блоке декодирования 213 и принимаются в качестве входа на блоке CRC 214.

Блок CRC 214 осуществляет обнаружение ошибок декодированных данных нисходящей линии связи с использованием CRC, генерирует ACK в случае CRC=OK (ошибок нет) или NACK в случае CRC=NG (ошибки есть), в качестве ответного сигнала, и выводит сгенерированный ответный сигнал на блок модуляции 215. Кроме того, в случае CRC=OK (ошибок нет), блок CRC 214 выводит декодированные данные нисходящей линии связи в качестве принятых данных.

Блок 210 принятия решения осуществляет обнаружение вслепую, направлять ли информацию выделения, принятую в качестве входа от блока декодирования 209, на данную мобильную станцию. В частности, в отношении информации выделения, принятой в качестве входа от блока декодирования 209, блок 210 принятия решения осуществляет обнаружение вслепую, направлять ли информацию выделения на данную мобильную станцию. Например, блок 210 принятия решения принимает решение, что, если CRC=OK (т.е. ошибки не найдены) в результате демаскирования битов CRC по ID номеру данной мобильной станции, информация выделения направляется на эту мобильную станцию. Кроме того, блок 210 принятия решения выводит информацию выделения, адресованную данной мобильной станции, т.е. результат выделения ресурсов данных нисходящей линии связи для этой мобильной станции, на блок извлечения 207.

Кроме того, блок 210 принятия решения принимает решение, какой PUCCH использовать для передачи ответного сигнала от данной мобильной станции, на основании номера CCE, связанного с поднесущей, которой сопоставлен PDCCH, причем информация выделения, адресованная этой мобильной станции, выделяется этому PDCCH. Кроме того, блок 210 принятия решения выводит результат принятия решения (т.е. номер PUCCH) на блок управления 209. Например, если CCE, связанный с поднесущей, которой сопоставлен PDCCH, предназначенный для данной мобильной станции, является CCE #0, то блок 210 принятия решения принимает решение, что PUCCH #0, связанный с CCE #0 является PUCCH для этой мобильной станции. Кроме того, например, если CCE связанные с поднесущими, которым сопоставлен PDCCH, предназначенный для данной мобильной станции, являются CCE #0-CCE #3, то блок принятия решения 210 принимает решение, что PUCCH #0, связанный с CCE #0, имеющим минимальный номер среди CCE #0-CCE #3, является PUCCH для этой мобильной станции.

На основании номера PUCCH, принятого в качестве входа от блока 210 принятия решения, блок управления 211 регулирует значение циклического сдвига последовательности ZAC, используемой при первом расширении на блоке расширения 216 и кодовой последовательности поблочного расширения, используемой при втором расширении на блоке расширения 219. Например, блок управления 211 выбирает последовательность ZAC со значением циклического сдвига, связанным с номером PUCCH, принятым в качестве входа от блока 210 принятия решения, из двенадцати последовательностей ZAC от ZAC #0 до ZAC #11, и устанавливает последовательность ZAC на блоке расширения 216, и выбирает кодовую последовательность поблочного расширения, связанную с номером PUCCH, принятым в качестве входа от блока 210 принятия решения, из трех кодовых последовательностей поблочного расширения от BW #0 до BW #2, и устанавливает кодовую последовательность поблочного расширения на блоке расширения 219. Таким образом, блок управления 211 выбирает один из множества ресурсов, задаваемых ZAC #0-ZAC #11 и BW #0-BW #2.

Блок модуляции 215 модулирует ответный сигнал, принятый в качестве входа от блока CRC 214 и выводит результат на блок расширения 216.

Блок расширения 216 осуществляет первое расширение ответного сигнала посредством последовательности ZAC, установленной на блоке управления 211, и выводит ответный сигнал, подвергнутый первому расширению, на блок ОБПФ 217. Таким образом, блок расширения 216 осуществляет первое расширение ответного сигнала с использованием последовательности ZAC со значением циклического сдвига, связанным с ресурсом, выбранным на блоке управления 211.

Блок ОБПФ 217 осуществляет ОБПФ ответного сигнала, подвергнутого первому расширению, и выводит ответный сигнал, подвергнутый ОБПФ, на блок 218 присоединения CP.

Блок 218 присоединения CP присоединяет тот же сигнал, что и сигнал в хвостовой части ответного сигнала, подвергнутого ОБПФ, к головной части этого ответного сигнала в качестве CP.

Блок расширения 219 осуществляет второе расширение ответного сигнала с CP с помощью кодовой последовательности поблочного расширения, установленной на блоке управления 211, и выводит ответный сигнал, подвергнутый второму расширению, на блок радиопередачи 220.

Блок радиопередачи 220 осуществляет обработку передачи, например, Ц/А преобразование, усиление и преобразование с повышением частоты, на ответном сигнале, подвергнутом второму расширению, и передает результат с антенны 201 на базовую станция 100 (см. фиг.1).

Далее будет подробно объяснен способ выделения CCE на блоке 104 выделения CCE.

Блок 104 выделения CCE выделяет PDCCH, предназначенные для мобильных станций, пространству поиска, связанному с размером агрегации CCE, этих PDCCH, которым выделена информация выделения для этих мобильных станций, из множества пространств поиска.

Здесь, согласно фиг.3, блок 104 выделения CCE принимает в качестве входа информацию пространства поиска, задающую номера CCE, представляющие начальные положения пространств поиска, и номера CCE, представляющие длины пространств поиска, для каждого размера агрегации CCE. Например, задается пространство поиска, связанное с размером агрегации CCE, равным 1, причем номер CCE, представляющий начальное положение, равен CCE #0, и количество CCE равно 10. Аналогично, задается пространство поиска, связанное с размером агрегации CCE, равным 2, причем номер CCE, представляющий начальное положение, равен CCE #4, и количество CCE равно 12. То же самое применимо к случаю, когда размер агрегации CCE равен 4 или 8.

Таким образом, согласно фиг.4, задается пространство поиска, образованное десятью CCE от CCE #0 до CCE #9, когда размер агрегации CCE равен 1, задается пространство поиска, образованное двенадцатью CCE от CCE #4 до CCE #15, когда размер агрегации CCE равен 2, задается пространство поиска, образованное шестнадцатью CCE от CCE #8 до CCE #23, когда размер агрегации CCE равен 3, и задается пространство поиска, образованное шестнадцатью CCE от CCE #16 до CCE #31, когда размер агрегации CCE равен 4.

Таким образом, согласно фиг.4, блок 104 выделения CCE может выделять максимум десять PDCCH с размером агрегации CCE, равным 1, пространству поиска от CCE #0 до CCE #9. Аналогично, блок 104 выделения CCE может выделять максимум шесть PDCCH с размером агрегации CCE, равным 2, пространству поиска от CCE #4 до CCE #15, выделять максимум четыре PDCCH с размером агрегации CCE, равным 4, пространству поиска от CCE #8 до CCE #23, и выделять максимум два PDCCH с размером агрегации CCE, равным 8, пространству поиска от CCE #16 до CCE #31.

В порядке примера, будет объяснен случай, когда блок 104 выделения CCE базовой станции 100 выделяет шесть PDCCH с размером агрегации CCE, равным 1, три PDCCH с размером агрегации CCE, равным 2, три PDCCH с размером агрегации CCE, равным 4, и один PDCCH с размером агрегации CCE, равным 8.

Сначала, согласно фиг.5, блок 104 выделения CCE выделяет шесть PDCCH (с размером агрегации CCE, равным 1) для CCE #0 - CCE #5 в пространстве поиска (CCE #0 - CCE #9), связанном с размером агрегации CCE, равным 1, показанным на фиг.4. Затем, согласно фиг.5, блок 104 выделения CCE выделяет три PDCCH (с размером агрегации CCE, равным 2) для CCE # 6 и #7, CCE #8 и #9 и CCE #10 и #11, для которых PDCCH с размером агрегации CCE, равным 1, не выделяются, в пространстве поиска (CCE #4-CCE #15), связанном с размером агрегации CCE, равным 2, показанным на фиг.4. Кроме того, согласно фиг.5, блок 104 выделения CCE выделяет три PDCCH (с размером агрегации CCE равным 4) для CCE # 12-#15, CCE #16-#19 и CCE #20-#23, для которых PDCCH с размерами агрегации CCE, равными 1 и 2, не выделяются, в пространстве поиска (CCE #8-CCE #23), связанном с размером агрегации CCE, равным 4, показанным на фиг.4. Кроме того, согласно фиг.5, блок 104 выделения CCE выделяет один PDCCH (с размером агрегации CCE равным 8) для CCE # 24-#31, для которых PDCCH с размерами агрегации CCE, равными 1, 2 и 4, не выделяются, в пространстве поиска (CCE #16-CCE #31), связанном с размером агрегации CCE, равным 8, показанным на фиг.4.

Мобильная станция 200 осуществляет над PDCCH демодуляцию, декодирование и обнаружение вслепую с использованием определения пространств поиска на основании размеров агрегации CCE. Таким образом, можно сокращать кратность обнаружения вслепую на блоке демодуляции 208, блоке декодирования 209 и блоке 210 принятия решения мобильной станции 200 (см. фиг.2). В частности, если обнаружение вслепую осуществляется исходя из того, что размер агрегации CCE равен 1, блок извлечения 207 выводит только сигналы, связанные с CCE #0-CCE #9 на блок демодуляции 208 из CCE #0-CCE #31, показанных на фиг.4. Таким образом, на блоке демодуляции 208, блоке декодирования 209 и блоке 210 принятия решения, когда размер агрегации CCE равен 1, цель обнаружения вслепую ограничена пространством поиска, поддерживающим CCE #0-CCE #9. Аналогично, если обнаружение вслепую осуществляется, когда размер агрегации CCE равен 2, блок извлечения 207 выводит только сигналы, связанные с CCE #4-CCE #15, на блок демодуляции 208 из CCE #0-CCE #31, показанных на фиг.4. То же самое применимо к случаю, когда размер агрегации CCE предполагается равным 4 или 8.

Таким образом, каждая мобильная станция осуществляет декодирование вслепую с использованием пространств поиска, связанных с размерами агрегации CCE. Таким образом, задавая одну информацию пространства поиска для каждой соты, мобильные станции могут осуществлять декодирование вслепую, если базовая станция не сообщает информацию пространства поиска этим мобильным станциям.

Здесь, для уменьшения ухудшения показателя частоты ошибки информации выделения, MCS для информации выделения, адресованной мобильным станциям, которые находятся вблизи границы соты, устанавливается более низкой. Таким образом, размер агрегации CCE для PDCCH для мобильных станций, которые находятся вблизи границы соты, возрастает. Например, из размеров агрегации CCE 1, 2, 4 и 8, размер агрегации CCE для мобильных станций, которые находятся вблизи границы соты, равен 4 или 8.

Кроме того, в соте с большим размером соты, доля мобильных станций, требующих передачи информации выделения с низкой установленной MCS, т.е. доля мобильных станций, для которых выделены PDCCH с большим размером агрегации CCE, возрастает. Другими словами, в соте с меньшим размером соты, доля мобильных станций, которые могут передавать информацию выделения с высокой установленной MCS, т.е. доля мобильных станций, для которых выделены PDCCH с меньшим размером агрегации CCE, возрастает.

Таким образом, базовая станция задает пространства поиска, которые изменяются в зависимости от размера соты. Таким образом, для большего размера соты, более широкое пространство поиска задается для большего размера агрегации CCE, и более узкое пространство поиска задается для меньшего размера агрегации CCE. Кроме того, для меньшего размера соты, более узкое пространство поиска задается для большего размера агрегации CCE, и более широкое пространство поиска задается для меньшего размера агрегации CCE.

Кроме того, блок 104 выделения CCE выделяет информацию управления конкретному пространству поиска из множества пространств поиска, заданных для каждой соты.

В порядке примера, на фиг.6 показан пример информации пространства поиска в соте с большим размером соты, чем у соты, в которой установлена информация пространства поиска, показанная на фиг.3. В частности, задается пространство поиска связанное с размером агрегации CCE, равным 1, причем номер CCE, представляющий начальное положение, равен CCE #0, и количество CCE равно 6. Аналогично, задается пространство поиска, связанное с размером агрегации CCE, равным 2, причем номер CCE, представляющий начальное положение, равен CCE #2, и количество CCE равно 8. То же самое применимо к случаю, когда размер агрегации CCE равен 4 или 8.

Таким образом, согласно фиг.7, блок 104 выделения CCE может выделять максимум шесть PDCCH с размером агрегации CCE, равным 1, пространству поиска от CCE #0 до CCE #5. Аналогично, блок 104 выделения CCE может выделять максимум четыре PDCCH с размером агрегации CCE, равным 2, пространству поиска от CCE #2 до CCE #9, выделять максимум пять PDCCH с размером агрегации CCE, равным 4, пространству поиска от CCE #4 до CCE #23, и выделять максимум три PDCCH с размером агрегации CCE, равным 8, пространству поиска от CCE #8 до CCE #31.

Здесь, если пространства поиска, показанные на фиг.7, сравниваются с пространствами поиска, показанными на фиг.4, при меньшем размере агрегации CCE, т.е. при размере агрегации CCE, равном 1 (или размере агрегации CCE, равном 2), количество выделенных PDCCH уменьшается от 10 (6) до 6 (4). Напротив, при большем размере агрегации CCE, т.е. при размере агрегации CCE, равном 4 (или размере агрегации CCE, равном 8), количество выделенных PDCCH возрастает от 4 (2) до 5 (3). Таким образом, на блок 104 выделения CCE, количество PDCCH с большим размером агрегации CCE возрастает для большего размера соты, что позволяет выделять больше PDCCH с большим размером агрегации CCE. Другими словами, на блоке 104 выделения CCE, количество PDCCH с меньшим размером агрегации CCE возрастает для меньшего размера соты, что позволяет выделять больше PDCCH с меньшим размером агрегации CCE.

Таким образом, согласно данному варианту осуществления, только пространства поиска, которые задаются для каждой соты, подлежат декодированию вслепую на мобильной станции, что позволяет сокращать кратность осуществления декодирования вслепую. Кроме того, мобильные станции указывают пространства поиска на основании информации пространства поиска, вещаемой для всех мобильных станций с базовой станции, благодаря чему новая информация извещения для каждой мобильной станции не требуется. Таким образом, согласно данному варианту осуществления, можно сокращать кратность декодирования вслепую, без увеличения служебной нагрузки за счет информации извещения.

Кроме того, согласно данному варианту осуществления, PDCCH выделяются пространству поиска, связанному с размером агрегации CCE. Таким образом, в множестве CCE, размер агрегации CCE используемых PDCCH ограничен. Таким образом, согласно данному варианту осуществления, связывая PUCCH только с CCE с минимальными номерами среди CCE, образующих используемые PDCCH, можно сокращать количество ресурсов, зарезервированных для PUCCH.

Кроме того, выше был описан случай согласно данному варианту осуществления, когда PDCCH со всеми размерами агрегации CCE могут передаваться на определенную мобильную станцию. Однако согласно настоящему изобретению, также можно определять размер агрегации CCE для каждой мобильной станции. Например, для мобильной станции, которая находится вблизи границы соты, качество канала низко, и, следовательно, отношение передачи с более низкой MCS возрастает. Таким образом, размер агрегации CCE на мобильной станции, которая находится вблизи границы соты, ограничен значениями 4 или 8. Кроме того, для мобильной станции, которая находится вблизи центра соты, качество канала высоко, и, таким образом, отношение передачи с более высокой MCS возрастает. Таким образом, размер агрегации CCE мобильной станции, которая находится вблизи центра соты, ограничен значениями 1 или 2. Таким образом, упрощается дополнительное указание пространства поиска, что позволяет дополнительно сокращать кратность декодирования вслепую, осуществляемого мобильной станцией.

Кроме того, хотя выше был описан случай согласно данному варианту осуществления, когда определение пространств поиска устанавливается на основании размера соты, согласно настоящему изобретению, также возможно устанавливать определения пространств поиска на основании, например, смещения распределения мобильных станций в соте.

(Вариант осуществления 2)

В пространствах поиска, показанных на фиг.4, согласно варианту осуществления 1, если используются нечетное количество PD