Текучие среды для предварительной обработки пласта, содержащие пероксиды, и способы, относящиеся к ним

Изобретение относится к добыче углеводородов из подземного пласта. Способ, включающий: получение очищающей текучей среды, содержащей пероксидобразующее соединение и текучую среду на водной основе; размещение очищающей текучей среды в подземном пласте; удаление загрязнителей, по меньшей мере, с части подземного пласта для формирования очищенного участка пласта; получение консолидирующего агента; размещение консолидирующего агента, по меньшей мере, на части очищенного участка пласта; и обеспечение условий для прилипания консолидирующего агента, по меньшей мере, к некоторому количеству неконсолидированных частиц на очищенном участке пласта. По другому варианту способ, включающий вышеуказанное, где очищенный участок включает, по меньшей мере, некоторое количество очищенных маршрутов движения потоков. Изобретение развито в зависимых пунктах формулы. Технический результат - улучшение размещения и эксплуатации качеств консолидирующих агентов. 2 н. и 19 з.п. ф-лы, 2 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к улучшению добычи углеводородов из подземного пласта. Более конкретно, изобретение относится к текучим средам для предварительной обработки пласта, содержащим пероксидобразующие соединения, а также способам их использования для улучшения размещения и эксплуатационных качеств консолидирующих агентов в подземных пластах.

Нефтегазоносные скважины часто расположены в подземных пластах, которые содержат неконсолидированные частицы (например, песок, гравий, расклинивающий наполнитель, тонкозернистые частицы и т.п.), которые могут мигрировать из подземного пласта с нефтью, газом, водой и/или другими текучими средами, добываемыми из скважин. Присутствие таких частиц в добываемых текучих средах нежелательно по той причине, что частицы могут оказывать абразивное действие на насосное и другое добывающее оборудование и/или снижать добычу желаемых текучих сред из скважины. Боле того, частицы, которые попали в ствол скважины в результате миграции (например, внутрь обсадной колонны и/или перфорационных каналов в обсаженном стволе скважины), в числе прочего, могут закупоривать участки ствола скважины, затрудняя добычу желаемых текучих сред из скважины. Подразумевается, что термин «неконсолидированные частицы» и производные от него в настоящем документе охватывают несвязанные частицы и частицы, соединенные с силой связи, недостаточной для противодействия усилиям, создаваемым при добыче текучих сред из пласта.

Неконсолидированные частицы в подземном пласте могут содержать, наряду с другими материалами, песок, гравий, тонкозернистые частицы и/или частицы расклинивающего наполнителя, например, частицы расклинивающего наполнителя, попадающие в подземный пласт в ходе операции разрыва или гравийной набивки. Подразумевается, что термины «неконсолидированные подземные пласты», «неконсолидированные участки подземного пласта» и производные от них в настоящем документе охватывают любые пласты, которые содержат неконсолидированные частицы в понимании упомянутого термина в настоящем документе.

Один из способов, используемых для управления частицами в неконсолидированных пластах, включает в себя объединение неконсолидированных частиц в стабильные проницаемые массы посредством применения консолидирующего агента (например, смолы или реагента для повышения клейкости) на участке подземного пласта. Применение таких смол или реагентов для повышения клейкости часто называют консолидирующей обработкой. Одной из проблем, с которой можно столкнуться при таких консолидирующих обработках, является неспособность смолы или реагента для повышения клейкости прилипать к поверхностям породы пласта. Упомянутая неспособность может быть обусловлена присутствием нефти, конденсатов или другой выбуренной породы (в собирательном значении называемых здесь «загрязнителями») на поверхностях породы.

В целях противодействия данной проблеме загрязнителей во многих случаях пласт можно предварительно обрабатывать взаимным растворителем до консолидирующей обработки в попытке удаления нефти и/или выбуренной породы и подготовки поверхности породы пласта с целью обеспечения прилипания смолы или реагента для повышения клейкости к его поверхности. Простые гликолевые эфиры представляют собой пример типа растворителя, который можно использовать в таких предварительных обработках. Использование таких растворителей является очень дорогостоящим вследствие того, что необходимы высокие концентрации растворителя для достижения какого-либо уменьшения содержания загрязнителей. Например, часто рекомендуют, чтобы растворы, содержащие от около 50% до около 100% растворителя, использовали в предварительных обработках относительно крупного масштаба. В дополнение к этому, многие из упомянутых растворителей сопряжены с проблемами токсичности и обращения с ними при выполнении операций.

Раскрытие изобретения

Настоящее изобретение относится к улучшению добычи углеводородов из подземного пласта. Более конкретно, изобретение относится к текучим средам для предварительной обработки пласта, содержащим пероксидобразующие соединения, и способам их использования для улучшения размещения и эксплуатации качеств консолидирующих агентов в подземных пластах.

В одном из вариантов осуществления настоящее изобретение относится к способу, включающему в себя: получение очищающей текучей среды, содержащей пероксидобразующее соединение и текучую среду на водной основе; размещение очищающей текучей среды в подземном пласте; удаление загрязнителей, по меньшей мере, с части подземного пласта для формирования очищенного участка пласта; получение консолидирующего агента; размещение консолидирующего агента, по меньшей мере, на части очищенного участка пласта; и обеспечение прилипания консолидирующего агента, по меньшей мере, к некоторому количеству неконсолидированных частиц на очищенном участке пласта.

В одном из вариантов осуществления настоящее изобретение относится к способу, включающему в себя: получение очищающей текучей среды, содержащей пероксидобразующее соединение и текучую среду на водной основе; размещение очищающей текучей среды в подземном пласте; обеспечение проникновения очищающей текучей среды на часть подземного пласта; и обеспечение удаления очищающей текучей средой загрязнителей с части подземного пласта для формирования очищенного участка подземного пласта, при этом очищенный участок пласта включает в себя, по меньшей мере, некоторое количество очищенных маршрутов движения потоков.

Признаки и преимущества настоящего изобретения станут явно очевидными специалистам в данной области техники. Несмотря на то, что специалистами в данной области техники могут быть внесены многочисленные изменения, такие изменения находятся в пределах существа изобретения.

Настоящее изобретение относится к улучшению добычи углеводородов из подземного пласта. Более конкретно, изобретение относится к текучим средам для предварительной обработки пласта, содержащим пероксидобразующие соединения, и способам их использования для улучшения размещения и эксплуатационных качеств консолидирующих агентов в подземных пластах.

Среди многих преимуществ текучих сред для предварительной обработки настоящего изобретения, многие из которых не обсуждаются или не упоминаются в настоящем документе, имеется преимущество, заключающееся в том, что при их использовании поверхности породы в пределах пласта пребывают в смоченном состоянии, которое является ответственным за обеспечение прилипания к их поверхности смолы или агента для повышения клейкости при последующей консолидирующей обработке. Текучие среды для предварительной обработки настоящего изобретения являются очень эффективными при удалении загрязнителей с поверхностей пород. При сравнении со стандартными процедурами предварительной обработки растворителями отмечается повышение эффективности, особенно в отношении удаления или снижения количества в присутствии нефти, а также других загрязнителей, таких как не разрушенные частички геля для разрыва пласта или органогенные отложения, которые нерастворимы в стандартных растворителях. Кроме того, в качестве дополнительного положительного эффекта, текучие среды для предварительной обработки настоящего изобретения позволяют обеспечить проявление некоторого стимулирующего эффекта, заключающегося в том, что они удаляют загрязнители из каналов пор с целью освобождения маршрутов движения потоков для добычи углеводородов. Другой положительный эффект заключается в том, что применение указанных текучих сред для предварительной обработки является менее дорогостоящим, чем предварительные обработки растворителями, и не сопряжено с подобными проблемами токсичности или обращения с веществами при выполнении операций. Возможно, ключевым преимуществом является подверженность упомянутых текучих сред для предварительной обработки вспениванию; традиционные текучие среды для предварительной обработки растворителями не способны вспениваться вследствие внутренней несовместимости пенообразователя и растворителя. Это позволяет использовать текучие среды в течение длительных периодов времени внутри ствола скважины в пласте. В дополнение к этому, вспенивание текучих сред можно рассматривать как расширение текучих сред таким образом, что относительно маленький объем текучей среды может обладать большим объемом в забое ствола скважины, делая возможным контактирование более крупных разрезов залежей с меньшими объемами сред для обработки. В вариантах осуществления, предполагающих вспенивание текучих сред настоящего изобретения, они также могут действовать в качестве реагентов для избирательной закупорки пласта с целью содействия более равномерному матричному размещению химических веществ внутри залежи на протяжении длинных интервалов, что может обеспечивать преодоление воздействия различной проникающей способности веществ.

Очищающие текучие среды настоящего изобретения содержат текучую среду на водной основе и пероксидобразующее соединение. При необходимости, очищающие текучие среды могут содержать пенообразователь и газ. Также могут быть включены дополнительные компоненты, описанные ниже.

В способах настоящего изобретения предполагается, что пероксидобразующие соединения реагируют с выделением тепла, образованием кислорода и других соединений, таких как вода, которые можно использовать для очистки песчаных поверхностей пласта и удаления загрязнителей, которые в противном случае могут закупоривать маршруты движения потоков в скелете породы или образовывать покрытие на поверхностях частиц песка. Например, при разложении пероксида водорода на кислород и воду выделяется значительное количество тепла (т.е. приблизительно 23 ккал/г-моль H2O2) и высвобождается кислород, который может дополнительно реагировать с любым нефтяным остатком или выбуренной породой, присутствующими в подземном пласте, с образованием диоксида углерода и выделением дополнительных количеств тепла и воды. В зависимости от концентрации пероксида водорода, вода, образующаяся по двум реакциям, вместе с водой, уже присутствующей в текучей среде для предварительной обработки, может приводить к получению пара и/или горячей воды и сама по себе может понижать вязкость соприкасающихся с ней углеводородов. Вязкость сопредельных углеводородов может также понижаться под действием смешивающегося раствора диоксида углерода, образующегося в результате взаимодействия кислорода с углеводородами в пласте, на углеводороды в более холодных зонах залежи. Тепло, выделяющееся в ходе различных реакций, также может способствовать высвобождению углеводородов из пласта.

При необходимости, очищающие текучие среды можно вспенивать при помощи пенообразователя и газа. В таких вариантах осуществления изобретения очищающие текучие среды дополнительно содержат газ и пенообразователь. Хотя для вспенивания текучих сред для обработки настоящего изобретения можно использовать различные газы, предпочтительными являются азот, диоксид углерода и их смеси. В примерах таких вариантов осуществления газ может находиться в текучей среде для обработки в количестве в диапазоне от около 5% до около 95% в расчете на объем текучей среды для обработки, а более предпочтительно в диапазоне от около 20% до около 80%. На количество газа, который включают в состав текучей среды, могут оказывать влияние определенные факторы, включая вязкость текучей среды и значения давления в устье скважины, вовлеченной в конкретный вариант применения. Примеры предпочтительных пенообразователей, которые можно использовать для вспенивания и стабилизации текучих сред настоящего изобретения, включают алкиламидобетаины, такие как кокоамидопропилбетаин, альфа-олефинсульфонат, хлорид триметилталлоаммония, сульфат C8-C22-алкилэтоксилата, хлорид триметилкокоаммония, любое производное любого из упомянутых выше веществ, а также любое сочетание данных веществ, но не ограничиваются ими. Особенно предпочтительным является кокоамидопропилбетаин. Другие подходящие поверхностно-активные вещества, доступные для приобретения у фирмы Halliburton Energy Services, включают: «19NTM», «G-Sperse Dispersant», поверхностно-активное вещество «Morflo III.RTM», поверхностно-активное вещество «Hyflo.RTM. IV М», поверхностно-активное вещество «Pen-88МТМ», «НС2ТМ Agent», поверхностно-активное вещество «Pen-88 НТТМ», эмульгатор «SEM-7™», пенообразователь «Howco-Suds™», поверхностно-активное вещество «Howco Sticks™», диспергирующая добавка для кислотных присадок «А-Sperse™», поверхностно-активное вещество «SSO-21E» и поверхностно-активное вещество «SSO-21MW™», но не ограничиваются ими. В равной мере можно включать в состав и другие подходящие пенообразователи и пеностабилизирующие агенты, которые станут известны специалистам в данной области техники в связи с положительным эффектом данного раскрытия. Пенообразователь, как правило, присутствует в текучей среде настоящего изобретения в количестве, находящемся в диапазоне от около 0,1% до около 5% масс./об., более предпочтительно в количестве от около 0,2% до около 1% масс./об., и более предпочтительно около 0,5%.

Пероксидообразующие соединения, подходящие для использования в настоящем изобретении, могут включать в себя любой пероксид или пероксидобразующее соединение. Одним из подходящих пероксидобразующих соединений является пероксид водорода. Другим соединением является перкарбонат натрия (или пероксигидрат карбоната натрия), гранулированный продукт, используемый как альтернатива перборатным отбеливателям в составе бытовых моющих средств, который при растворении в воде высвобождает H2O2 и кальцинированную соду (карбонат натрия). Уровень pH полученного раствора обычно соответствует щелочной среде, которая активирует H2O2. Дополнительные подходящие пероксидобразующие соединения включают пероксид пентандиона, пероксид кальция, бихроматы, перманганаты, пероксидисульфаты, перборат натрия, пероксид карбоната натрия, пероксид водорода, трет-бутилгидропероксид, диперфосфат калия, а также соли аммония и щелочных металлов и динадсерной кислоты, перкарбонаты, персульфаты и перхлораты щелочных и щелочноземельных металлов, но не ограничиваются ими. Конкретные примеры включают в себя персульфаты аммония, а также щелочных и щелочноземельных металлов, такие как персульфат аммония, натрия и калия, но не ограничиваются ими. Дополнительные примеры включают в себя гидропероксид кумола, t-бутилкумилпероксид, ди-t-бутилпероксид, ди-(2-t-бутилпероксиизопропил)бензол, 2,5-диметил-2,5-ди(t-бутилперокси)гексан, моногидропероксид диизопропилбензола, дикумилпероксид, 2,2-ди-(t-бутилперокси)бутан, t-амилгидропероксид, бензоилпероксид, любое производное любого из указанных выше веществ, а также любое сочетание упомянутых выше веществ, но не ограничиваются ими. В равной мере пригодным является любое сочетание данных подходящих пероксидобразующих соединений. Другие подходящие пероксидобразующие соединения будут очевидны специалисту в данной области техники в связи с положительным эффектом данного раскрытия.

Как правило, пероксидобразующее соединение присутствует в текучих средах для обработки настоящего изобретения в количестве, находящемся в диапазоне от около 0,1% до около 10% масс./об. В конкретных вариантах осуществления пероксидобразующее соединение может присутствовать в текучих средах для обработки в количестве, находящемся в диапазоне от около 1% до около 5% масс./об.

Как упомянуто выше, пероксидобразующие соединения могут характеризоваться склонностью к преждевременному самопроизвольному разложению или взаимодействию в окружающих условиях ствола скважины. На указанные реакции могут оказывать влияние многие факторы, включая, в числе других, температуру, pH, концентрацию и присутствие потенциальных катализаторов. Например, разложение пероксидобразующего соединения можно ускорять повышением температуры, регулированием уровня pH, равным 7,0 или выше, или введением катализаторов разложения, таких как соли железа, никеля, кобальта или некоторых других металлов. Как правило, скорость разложения увеличивается приблизительно в 2,2 раза примерно на каждые 10°C повышения температуры в диапазоне от около 20°C до около 100°C, и около 1,5 раз на каждые 10°F повышения от 68°F до 212°F. В целом, пониженные температуры оказывают небольшое влияние на пероксид водорода до тех пор, пока они не опускаются существенно ниже 0°C. Кристаллы не начинают появляться в 35% и 50%-ных растворах пероксида водорода раньше достижения около -33°C (-27,4°F) и -52,2°C (-62°F), соответственно.

В конкретных вариантах осуществления настоящего изобретения можно использовать одно или несколько механических приспособлений с целью сведения к минимуму разложения пероксидобразующего соединения до его опускания в ствол скважины. Как правило, сборные резервуары, насосы и тому подобное оборудование, используемое для выполнения технологических операций с пероксидобразующим соединением до его закачивания в подземный пласт, изготовляют из пассивированных коррозионно-стойких материалов, таких как нержавеющая сталь, специально выбранная для сведения к минимуму разложения пероксида водорода. В конкретных вариантах осуществления настоящего изобретения также можно механически изолировать пероксидобразующее соединение от самой окружающей среды ствола скважины до тех пор, пока вещество не достигнет желаемого местоположения в подземном пласте. В конкретных вариантах осуществления это определяет способ закачивания пероксидобразующего соединения в пласт с использованием гибких насосно-компрессорных труб малого диаметра, изготовленных из материала, выбранного с учетом его совместимости и с коррозионными требованиями пероксидобразующего соединения, и с физическими требованиями, налагаемыми на гибкие насосно-компрессорные трубы малого диаметра. Подобные совместимые материалы гибких насосно-компрессорных труб малого диаметра включают сплавы QT 16Cr, такие как QT 16Cr30 и QT 16Cr80, доступные для приобретения под торговым названием «NITRONIC.RTM. 30» у фирмы Quality Tubing, Inc., Хьюстон, Техас, но не ограничиваются ими. В других конкретных вариантах осуществления можно использовать другие коррозионно-стойкие трубы, как например, трубы из чистого алюминия, трубы из нержавеющей стали марки Туре 304, облицованные пластиком стальные трубы или трубы, облицованные сшитым полиэтиленом (РЕХ), полиэтиленом или каким-либо другим материалом, инертным в отношении пероксидов.

В конкретных вариантах осуществления настоящего изобретения можно также использовать химическое средство для минимизирования разложения пероксидобразующего соединения до тех пор, пока пероксидобразующее соединение не достигнет желаемого местоположения в подземном пласте, либо отдельно, либо в сочетании с механическими приспособлениями. Как правило, в упомянутых вариантах осуществления используют замедлитель для замедления разложения пероксидобразующего соединения и можно дополнительно использовать инициатор для катализирования реакции сразу же по достижении пероксидобразующим соединением своего местоположения в пласте.

Доступны несколько способов для определения того, достаточно ли присутствующих в пласте минералов для инициирования реакции пероксидобразующего соединения. Как правило, образец пласта подвергают воздействию пероксидобразующего соединения. Если пероксидобразующее соединение слишком активно реагирует с пластом, можно добавлять замедлитель. Замедлитель добавляют до тех пор, пока около 95% пероксидобразующего соединения не остается неизрасходованным по истечении 24-часового периода. В некоторых вариантах осуществления указанное содержание замедлителя можно затем повысить на величину около 20% в целях обеспечения присутствия адекватного количества замедлителя для предотвращения преждевременного разложения пероксидобразующего соединения. В связи с положительным эффектом настоящего раскрытия специалист в данной области техники должен быть способен определять надлежащее количество замедлителя для использования в выбранном пласте. В некоторых вариантах осуществления настоящего изобретения замедлитель или замедлители вводят в концентрациях от около 10 мг замедлителя на литр раствора пероксида водорода до около 500 мг замедлителя на литр раствора пероксида водорода; однако когда желательно почти полностью остановить реакцию, замедлитель можно вводить в концентрациях нескольких граммов замедлителя на литр раствора пероксида водорода, например, в некоторых вариантах осуществления можно использовать 2 грамма замедлителя на литр раствора пероксида водорода. В других вариантах осуществления настоящего изобретения замедлитель или замедлители вводят в концентрациях от около 25 мг замедлителя на литр раствора пероксида водорода до около 250 мг замедлителя на литр раствора пероксида водорода.

При необходимости, очищающие текучие среды настоящего изобретения могут содержать поверхностно-активные вещества, взаимные растворители, окислители, хелатообразующие реагенты, любое производное любого из приведенных выше веществ, кислоты (как неорганические, так и органические), любое производное любого из упомянутых выше веществ, а также любое сочетание указанных выше веществ.

Поверхностно-активные вещества, которые являются подходящими для использования в очищающих текучих средах настоящего изобретения, включают неионогенные этоксилированные поверхностно-активные вещества, но не ограничиваются ими. Поверхностно-активные вещества, которые являются особенно подходящими, имеют в своем составе от около 3 до около 12 моль оксида этилена, как например, нонилфенолэтоксилаты, содержащие от около 4 моль до около 10,5 моль оксида этилена. Имеющимся на рынке примером подходящего поверхностно-активного вещества является продукт «BEROL® 226 SA» доступный для приобретения у фирмы Akzo Nobel в различных подразделениях. Доступный для приобретения продукт, который является подходящим и который привносит и пероксигидрат карбоната, и этоксилированное поверхностно-активное вещество, представляет собой «OXICLEAN®», доступный у фирмы Church & Dwight, Inc. При использовании поверхностно-активное вещество можно включать в количестве от около 0,1% до около 4% масс./об.

Примеры подходящих взаимных растворителей включают простой монобутиловый эфир этиленгликоля, 1-метокси-пропанол-2, простой метиловый эфир дипропиленгликоля, простой диметиловый эфир дипропиленгликоля, простой метиловый эфир диэтиленгликоля, простой бутиловый эфир этиленгликоля и простой бутиловый эфир диэтиленгликоля, простой монобутиловый эфир пропиленгликоля, воду, метанол, изопропиловый спирт, простые эфиры спиртов, ароматические растворители, другие углеводороды, минеральные масла, парафины, любое производное любого из упомянутых выше веществ и любое сочетание приведенных выше веществ, но не ограничиваются ими. Дополнительные подходящие взаимные растворители включают взаимный растворитель «MUSOL.RTM», взаимный растворитель «MUSOL.RTM.A» и взаимный растворитель «MUSOL.RTM.Е», но не ограничиваются ими, все из них доступны от фирмы Halliburton Energy Services в Дункане, Оклахома. Можно также использовать другие подходящие растворители. При использовании взаимный растворитель можно вводить в количестве от около 0,1%) до около 10%) масс./об. Примеры подходящих окислителей включают гипогалиты щелочных и щелочноземельных металлов, такие как гипогалиты натрия или кальция, любое производное любого из упомянутых выше веществ, а также любое сочетание приведенных выше веществ, но не ограничиваются ими. Конкретный пример включает гипохлорит натрия. При использовании окислитель можно вводить в количестве от около 0,1% до около 10% масс./об.

Примеры подходящих хелатообразующих реагентов включают этилендиаминтетрауксусную кислоту, нитрилотриуксусную кислоту, гидроксиэтилэтилендиаминтриуксусную кислоту, диэтилентриаминпентауксусную кислоту, пропиленэтилендиаминтетрауксусную кислоту, этилендиаминди-о-гидроксифенилуксусную кислоту, натриевую или калиевую соль любого из упомянутых выше веществ, тетранатриевую соль дикарбоксиметилглютаминовой кислоты, любое производное любого из упомянутых выше веществ, а также любое сочетание приведенных выше веществ, но не ограничиваются ими. При использовании хелатообразующий реагент можно вводить в количестве от около 0,1% до около 10% масс./об.

Если желательно повышение вязкости текучей среды для предварительной обработки, в альтернативных вариантах осуществления можно включать в состав вязкоупругое поверхностно-активное вещество. Подходящие вязкоупругие поверхностно-активные вещества, которые могут быть пригодными, включают сульфонаты сложных метиловых эфиров, сульфосукцинаты, таураты, оксиды аминов, этоксилированные амины, алкоксилированные жирные кислоты, алкоксилированные спирты, этоксилат лаурилового спирта, этоксилированный нонилфенол, этоксилированные жирные амины, этоксилат кокоалкиламина, бетаины, модифицированные бетаины, алкиламидобетаины, кокоамидопропилбетаин, четвертичные аммониевые соединения, хлорид триметилталлоаммония, хлорид триметилкокоаммония, аммониевая соль сульфата алкилового эфира, оксид кокоамидопропилдиметиламина, кокоамидопропилгидроксисультаин, таллодигидроксиэтилбетаин, любое производное любого из упомянутых выше веществ, а также любое сочетание приведенных выше веществ, но не ограничиваются ими.

В одном из вариантов осуществления настоящего изобретения предлагается способ, включающий в себя: получение очищающей текучей среды, содержащей пероксидобразующее соединение и текучую среду на водной основе; размещение очищающей текучей среды в подземном пласте; удаление загрязнителя, по меньшей мере, с части подземного пласта для формирования очищенного участка пласта; получение консолидирующего агента; размещение консолидирующего агента, по меньшей мере, на части очищенного участка пласта; обеспечение условий для прилипания консолидирующего агента, по меньшей мере, к некоторому количеству неконсолидированных частиц на очищенном участке пласта. Термин «очищенный», употребляемый в данном документе, не подразумевает какой-либо конкретной степени удаления загрязнителя на указанном участке пласта.

Подходящие консолидирующие агенты включают в себя смолы и реагенты для повышения клейкости. В некоторых вариантах осуществления упомянутые консолидирующие агенты можно использовать в форме эмульсии. В таких вариантах осуществления эмульсия может содержать текучую среду на водной основе и подходящее поверхностно-активное вещество.

Смолы, пригодные для использования в составе консолидирующих текучих сред настоящего изобретения, включают в себя все смолы, известные в данной области техники, которые обладают способностью формировать отвержденную, консолидированную массу. Многие из таких смол обычно используют в операциях консолидации подземного пласта, и некоторые подходящие смолы включают в себя двухкомпонентные смолы на основе эпоксидов, новолачные смолы, полиэпоксидные смолы, фенолоальдегидные смолы, мочевиноальдегидные смолы, уретановые смолы, фенольные смолы, фурановые смолы, смолы на основе смеси фуран/фурфуриловый спирт, фенольно-латексные смолы, фенолформальдегидные смолы, смолы из сложных полиэфиров, а также их гибриды и сополимеры, полиуретановые смолы и их гибриды и сополимеры, акрилатные смолы и их смеси. Некоторые подходящие смолы, такие как эпоксидные смолы, можно отверждать с использованием внутреннего катализатора или активатора, так что при закачивании в скважину их можно отверждать только при помощи времени и температуры. Другие подходящие смолы, как например, фурановые смолы, обычно требуют катализатора, действующего с задержкой во времени, или внешнего катализатора для облегчения активации полимеризации смол при низкой температуре отверждения (т.е., ниже 250°F), но они будут отверждаться под воздействием времени и температуры, если температура пласта выше около 250°F, предпочтительно выше около 300°F. В связи с положительным эффектом настоящего раскрытия, в пределах компетенции специалиста в данной области техники выбрать подходящую смолу для использования в вариантах осуществления настоящего изобретения и определить, требуется ли катализатор для инициирования отверждения.

На выбор подходящей смолы может оказывать влияние температура подземного пласта, в который вводят текучую среду. В качестве примера, для подземных пластов со стационарной температурой забоя ствола скважины («BHST»), находящейся в диапазоне от около 60°F до около 250°F, предпочтительными могут быть двухкомпонентные смолы на основе эпоксидов, содержащие отверждаемый смоляной компонент и компонент отверждающего агента, имеющий в своем составе определенные отверждающие реагенты. Для подземных пластов с параметром BHST, находящимся в диапазоне от около 300°F до около 600°F, предпочтительной может быть смола на основе фурана. Для подземных пластов с параметром BHST, находящимся в диапазоне от около 200°F до около 400°F, могут подходить либо смола на фенольной основе, либо однокомпонентная смола НТ на основе эпоксидов. Для подземных пластов с параметром BHST, по меньшей мере, около 175°F, может подходить также смола состава фенол/феноло-формальдегид/фурфуриловый спирт.

Любой растворитель, который является совместимым с выбранной смолой и с помощью которого достигают желаемого эффекта вязкости, является подходящим для использования в настоящем изобретении. Некоторые предпочтительные растворители представляют собой вещества, характеризующиеся высокими температурами вспышки (например, около 125°F), наряду с прочим, вследствие проблем экологии и безопасности; такие растворители включают в себя бутиллактат, бутилглицидиловый эфир, метиловый эфир дипропиленгликоля, диметиловый эфир дипропиленгликоля, диметилформамид, метиловый эфир диэтиленгликоля, бутиловый эфир этиленгликоля, бутиловый эфир диэтиленгликоля, пропиленкарбонат, бутиловый спирт, d-лимонен, метиловые эфиры жирных кислот и любое производное любого из упомянутых выше веществ, а также любое сочетание приведенных выше веществ. Другие предпочтительные растворители включают в себя такие водорастворимые растворители, как метанол, изопропанол, бутанол, растворители на основе простых гликолевых эфиров и любое производное любого из упомянутых выше веществ, а также любое сочетание приведенных выше веществ. Подходящие растворители на основе простых гликолевых эфиров включают в себя метиловый эфир диэтиленгликоля, метиловый эфир дипропиленгликоля, 2-бутоксиэтанол, простые эфиры двухатомного C2-C6-алканола, содержащего, по меньшей мере, одну C16-алкильную группу, простые моноэфиры двухатомных алканолов, метоксипропанол, бутоксиэтанол, гексоксиэтанол и его изомеры, но не ограничиваются ими. Выбор соответствующего растворителя зависит от выбранной смолы и находится в пределах компетенции специалиста в данной области техники в связи с положительным эффектом настоящего раскрытия.

В некоторых вариантах осуществления композиции, подходящие для использования в настоящем изобретении в качестве реагентов для повышения клейкости, могут содержать любое соединение, которое, находясь в жидкой форме или в растворе растворителя, образует на частице клейкое, не отверждающееся покрытие. Реагенты для повышения клейкости, подходящие для использования в настоящем изобретении, включают в себя безводные реагенты для повышения клейкости; водосодержащие реагенты для повышения клейкости; силилмодифицированные полиамиды, а также продукты взаимодействия амина и фосфатного сложного эфира. В дополнение к стимулированию частиц образовывать агрегаты, использование реагента для повышения клейкости может приводить к уменьшению обратного потока частиц сразу же после размещения частиц в подземном пласте. Реагенты для повышения клейкости предпочтительно наносят на частицы в количестве, находящемся в диапазоне от около 0,1% до около 5% от массы частиц без покрытия, предпочтительно находящемся в диапазоне от около 0,5% до около 2,5% от массы частиц без покрытия.

Один из типов реагента для повышения клейкости, подходящий для использования в настоящем изобретении, представляет собой безводный реагент для повышения клейкости. Особенно предпочтительная группа реагентов для повышения клейкости имеет в своем составе полиамиды, которые являются жидкостями или находятся в растворе при температуре подземного пласта, так что они не отверждаются самостоятельно при введении в подземный пласт. Особенно предпочтительным продуктом является продукт реакции конденсации, образуемый имеющимися на рынке поликислотами и полиамином. Подобные товарные продукты включают в себя такие соединения, как смеси двухосновных C36-кислот, содержащие некоторое количество тримерных и высших олигомеров, а также небольшие количества мономерных кислот, которые подвергаются взаимодействию с полиаминами. Другие поликислоты включают в себя тримерные кислоты, синтетические кислоты, полученные из жирных кислот, малеиновый ангидрид, акриловую кислоту и тому подобное. Подобные кислотные соединения доступны для приобретения у таких компаний, как Witco Corporation, Union Camp, Chemtall и Emery Industries. Продукты реакции доступны для приобретения, например, у фирм Champion Technologies, Inc. и Witco Corporation. Дополнительные соединения, которые можно использовать в качестве безводных соединений для повышения клейкости, включают в себя жидкости и растворы, например, сложных полиэфиров, поликарбонатов и поликарбаматов, натуральных смол, таких как шеллак, и тому подобного. Другие подходящие безводные реагенты для повышения клейкости описаны в патенте США №5853048, выданном авторам Weaver, et al. и патенте США №5833000, выданном авторам Weaver, et al., соответствующие раскрытия которых включены в настоящий документ ссылкой.

Безводные реагенты для повышения клейкости, подходящие для использования в настоящем изобретении, либо можно использовать таким образом, чтобы они формировали не отверждающееся покрытие, либо их можно сочетать с многофункциональным материалом, способным реагировать с безводным реагентом для повышения клейкости с образованием отвержденного покрытия. Термин «отвержденное покрытие», используемый в настоящем документе, означает, что реакция вещества для повышения клейкости с многофункциональным материалом приводит к образованию практически нетекучего продукта реакции, который характеризуется более высоким пределом прочности на сжатие в консолидированном агломерате, чем само соединение для повышения клейкости вместе с частицами. В данном случае безводный реагент для повышения клейкости может действовать аналогично отверждаемой смоле. Многофункциональные материалы, подходящие для использования в настоящем изобретении, включают в себя альдегиды, такие как формальдегид, диальдегиды, такие как глутаровый альдегид, полуацетали или соединения, высвобождающие альдегиды, галогениды двухосновных кислот, дигалогениды, такие как дихлориды и дибромиды, ангидриды поликислот, как например, лимонной кислоты, эпоксиды, фурфуроловый альдегид, глутаровый альдегид или конденсаты альдегидов и тому подобное, а также любое производное любого из упомянутых выше веществ и любое сочетание приведенных выше веществ, но не ограничиваются ими. В некоторых вариантах осуществления настоящего изобретения многофункциональный материал можно смешивать с веществом для повышения клейкости в количестве от около 0,01 до около 50 процентов от массы вещества для повышения клейкости с целью осуществления образования продукта реакции. В некоторых предпочтительных вариантах осуществления данное вещество присутствует в количестве от около 0,5 до около 1 процента от массы вещества для повышения клейкости. Подходящие многофункциональные материалы описаны в патенте США №5839510, выданном авторам Weaver et al., соответствующее раскрытие которого включено в настоящий до