Способ анализа смесей химических соединений на основе разделения ионов этих соединений в линейной радиочастотной ловушке

Иллюстрации

Показать все

Изобретение относится к области анализа смесей химических соединений на основе разделения ионов, выведенных из приосевой зоны, в линейной радиочастотной ловушке с газовым потоком вдоль оси этой ловушки по отношениям массы к заряду и на базе различий в устойчивости ионов к столкновительно-индуцированной диссоциации. Для предотвращения излишней гибели анализируемых ионов внутренние стенки входной и выходной диафрагм разрезаны на сегменты, и к ним приложены альтернированные или переменные напряжения. Регистрация масс-спектров ионов-продуктов в процессе столкновительно-индуцированной диссоциации осуществляется с помощью масс-анализатора, сопряженного с ловушкой, в частности на времяпролетном масс-анализаторе с ортогональным вводом ионов. Технический результат - получение количественной информации об исследуемых соединениях и повышение точности структурно-химического анализа. 14 з.п. ф-лы, 7 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к методам и технике химического анализа органических, биоорганических и неорганических соединений на базе сочетания разделения ионов этих соединений по отношениям массы к заряду, подвижности, устойчивости к столкновительной фрагментации ионов и масс-анализа ионов-продуктов этой фрагментации. В частности, речь идет о предварительном разделении ионов, поступающих из источника электронной ионизации или из внешних источников ионов, при совместном действии электрических полей и газового потока в линейной радиочастотной ловушке, направленного к ее выходу, по величинам зарядов и масс, сечений столкновений и устойчивости к распаду. Последующий анализ ионов-продуктов по отношениям массы к заряду может производиться с помощью времяпролетного масс-спектрометра с ортогональным вводом ионов (орто-ВПМС) либо на каком-либо другом масс-анализаторе.

Распад или гибель анализируемых ионов может вызываться как разогревом вращающихся ионов за счет их столкновений с атомами или молекулами газа, так и соударениями ионов со стержнями ловушки. Использование таких распадов или гибели для разделения и идентификации анализируемых соединений является одним из отличительных признаков настоящего изобретения, оно многократно увеличивает разделительную способность метода.

Среди задач, для которых кроме чувствительности важны как разделительная способность, так и динамический диапазон измерений, может быть упомянут экспресс-анализ микропримесей в атмосферном воздухе применительно к использованию в системах безопасности, таможенного и экологического контроля. Вторая задача, где разделительная способность и «информационная производительность» являются определяющими - это исследование структуры ионов биомолекул, что может быть важным для задач протеомики, биомедицинских и биотехнологических применений.

УРОВЕНЬ ТЕХНИКИ

После разработки и создания в нашем институте первых времяпролетных масс-спектрометров с ортогональным вводом ионов (орто-ВПМС) [1, 2] приборы этого типа получили широкое распространение при решении разнообразных аналитических и структурных задач [3-5]. Удобство сочленения таких приборов с различными устройствами предварительного разделения ионов, производящими непрерывный или квазинепрерывный поток ионов, с импульсным времяпролетным масс-анализом, рекордным по быстродействию среди всех известных типов масс-анализаторов, обусловили высокую эффективность и привлекательность таких сочетаний для решения разнообразных аналитических и структурных задач. В то же время существуют важные структурно-аналитические проблемы, для которых разделительная способность и «информационная производительность» известных приборных комплексов, включающих в свой состав орто-ВПМС, оказывается недостаточной. Для преодоления этих ограничений естественным является стремление ввести в масс-спектрометрический эксперимент дополнительные размерности измерений, связанные с контролируемыми превращениями исследуемых ионов и регистрацией данных в процессе этих превращений. Для проведения подобных измерений желательно иметь в реакторе достаточно большое число (или достаточно интенсивный поток) исследуемых ионов и отделить эти ионы от других мешающих ионов.

В последние 20 лет широкое распространение в масс-спектрометрии получили газонаполненные радиочастотные мультиполи, устройства, содержащие набор обычно параллельных друг другу стержней, симметрично расположенных вокруг оси устройства. Радиочастотные напряжения чаще всего в противофазе подаются на соседние стержни. Эти устройства обычно используются как средства фокусировки и эффективной транспортировки ионов или для накопления ионов (в этом случае они называются линейными радиочастотными ловушками или линейными ионными ловушками) с возможной изоляцией выбранных ионов и проведением контролируемой диссоциации и других структурных превращений [6-8]. В этих устройствах используется описанное еще в Механике Ландау и Лифшица [9] свойство высокочастотных силовых полей вызывать выталкивание частиц в таких полях в сторону уменьшения напряженности этих полей. Если говорить более точно, то усредненное движение частиц в таких (электрических) полях описывается в первом приближении эффективным потенциалом, прямо пропорциональным квадрату напряженности высокочастотного поля, умноженной на квадрат заряда частицы, и обратно пропорциональным массе частицы. Для частного случая идеального радиочастотного квадруполя эффективный потенциал квадратично зависит от обеих координат (в прямоугольной системе координат в плоскости, ортогональной оси квадруполя), достигая минимального значения на оси квадруполя, и усредненное свободное движение ионов в таком поле - независимые гармонические колебания по обеим координатам. В этих устройствах, используемых как ионные накопители и реакторы, два важных в этом случае свойства - способность к накоплению ионов и способность разделять эти ионы могут вступать в противоречие друг с другом. Для того, чтобы эффективно останавливать ионы внутри мультиполя, обычно нужна достаточно высокая плотность газа, а для высокой селективности изоляции выбранных ионов или возбуждения резонансных осцилляции ионов и их разогрева (для проведения фрагментации и других превращений) плотность газа должна быть относительно мала.

Один из возможных подходов для преодоления этого противоречия путем создания мало расходящегося сверхзвукового газового потока [16], направленного вдоль оси мультиполя и создающего повышенную плотность газа около этой оси, описан в наших патентах РФ [10, 11] и заявке на патент РФ [12]. Второй возможный способ накопления выбранных ионов является предметом настоящего изобретения. Его предпосылкой является создание нами методики резонансного возбуждения вращения выбранных ионов вокруг оси радиочастотного квадруполя и осуществление фрагментации этих ионов за счет столкновений с молекулами буферного газа [13-15]. Эта методика была новой, ранее никем не предлагавшейся. В отличие от настоящего изобретения, возбуждение вращения ионов в этом случае производится во время их одностороннего движения вдоль квадруполя без накопления. В конце квадруполя вращающее поле отсутствует, и ионы фокусируются к оси квадруполя, что и требует относительно высокой плотности буферного газа. Такая плотность также нужна для того, чтобы иметь относительно короткое время установления стационарного радиуса вращения ионов при наличии вращающего поля. Это сужает возможности для проведения кинетических измерений и обеспечивает ограниченную способность отстройки от сигналов мешающих ионов. Кроме этого, такой способ осуществления резонансного вращения накладывает очень жесткие ограничения на качество изготовления квадруполя. Небольшие отклонения в диаметре стержней или в расстояниях между ними приводит к существенным потерям в разрешающей способности метода, которая при проведении реальных измерений в нашем случае была существенно менее 100.

В предлагаемом варианте ионы вращаются при значительно меньшей плотности буферного газа. Эта плотность такова, что характерное время релаксации скорости немного превышает или становится сравнимым со временем прохождения ионами расстояния между входной и выходной диафрагмами. При обеспечении отражения ионов от внутренних поверхностей этих диафрагм вращающиеся ионы при их радиусе вращения, превышающем эффективные радиусы отверстий выходной и входной диафрагм, будут накапливаться в пространстве между этими поверхностями, осциллируя между ними. Таким образом, неоднородности полей в значительной степени усредняются, и их влияние на ширину резонансных кривых ослабляется. В этом случае разрешающая способность резонансного возбуждения для заданных ионов и заданного буферного газа будет в основном определяться плотностью этого газа в области вращения. При остаточном давлении в 0,1 мТорр (азота) ожидаемая массовая разрешающая способность на полувысоте пиков для органических ионов с массой около 500 Да может быть около или даже более 1000. Для идеального квадруполя разрешенность резонансного вращательного возбуждения ионов будет возрастать пропорционально уменьшению плотности буферного газа.

Теоретическая модель разогрева ионов, движущихся в газе под действием электрического поля, описана нами в [20]. Модель является оригинальной, ее предсказания несколько отличаются от известных моделей. В частности, она предсказывает несколько более высокую величину внутренней температуры иона по сравнению с температурой его поступательного движения, которая в литературе обычно называется эффективной температурой. Эта модель косвенно подтверждается имеющимися экспериментальными данными, и ее использование для получения количественных термохимических данных для исследуемых ионов является возможным.

Программное обеспечение для анализа экспериментальных данных должно включать пакеты программ, реализующие в основных чертах разработанные нами оригинальные методы, описанные в [21-25, 32]. Среди этих методов наиболее важными являются:

1. Метод коррекции эффектов насыщения и «мертвого» времени при использовании времяцифрового преобразования для регистрации данных ВПМС [23, 32];

2. Метод выявления экспоненциальных вкладов в зарегистрированный сигнал от ансамбля ионов, релаксирующего к новому стационарному состоянию после переключения режима накопления ионов [21, стр.192], с нахождением корней характеристического полинома с помощью процедуры, описанной в [25];

3. Метод выявления экспоненциальных вкладов в совокупности кривых ионного тока, развитый ранее для анализа совокупности эффузиометрических кривых [24].

Существующие методы при реализации столкновительно-индуцированной диссоциации ионов или при проведении кинетических масс-спектрометрических измерений предполагают обычно предварительную изоляцию одного типа ионов при потере всех остальных, тем самым требуя использования большого объема исходного образца и больших временных затрат на проведение экспериментов. Одно из исключений представляет собой «многоотражательный» орто-ВПМС А.Н. Веренчикова [26], где из-за значительного увеличения эффективной длины дрейфа ионов и, следовательно, их времени пролета появляется возможность произвести столкновительную диссоциацию не одного, а нескольких типов выбранных ионов, достаточно далеко разнесенных по времени выхода (на время, большее времени дрейфа ионов во вторичном времяпролетном масс-спектрометре). Этот гораздо более технически сложный, чем в нашем случае, подход, конечно, исключает проведение каких-либо кинетических измерений и производит выделение первичных ионов для диссоциации только по m/z.

Возможный подход, снижающий потери первичных ионов, описан в патенте США А.В. Лободы №7,459,679 [27]. В этом патенте предлагается после накопления ионов в квадруполе при давлении буферного газа около 0.1 Торр осуществлять дипольное возбуждение колебаний ионов с выбранным m/z, так чтобы эти ионы в плоскости дипольного возбуждения в среднем достаточно далеко отклонялись от оси квадруполя. Во время такого возбуждения или после его окончания создается линейно изменяющееся вдоль квадруполя постоянное во времени квадрупольное поле. Потенциалы этого поля выбираются такими, чтобы в плоскости возбуждения колебаний выбранных ионов создавать в среднем электрическое поле, двигающее ионы к выходу из квадруполя (на оси квадруполя такое поле равно 0, а в перпендикулярной плоскости оно двигает ионы в противоположном направлении). В этом случае невозбужденные ионы, имеющие в среднем меньшее отклонение от оси квадруполя в этой плоскости, будут менее подвержены влиянию этого вытягивающего поля. Таким образом, интересующий пакет ионов может быть передвинут в камеру столкновений, а остальные ионы останутся в накопительном квадруполе. После завершения работы с первым пакетом аналогичным образом в камеру столкновений может быть доставлен следующий пакет. Такой подход достаточно интересен и, по-видимому, будет работать. Однако, его разрешающая способность должна быть достаточно низкой (вряд ли она будет более 10) по нескольким причинам. Главная из них - это достаточно высокая плотность буферного газа, необходимая для захвата ионов в ловушку. Таким образом, передаваемые в камеру столкновений пакеты ионов будут содержать множество ионов в достаточно широком диапазоне масс, и для проведения столкновительной диссоциации «индивидуальных» ионов все остальные ионы из этого пакета должны быть удалены. Относительно большая плотность газа в радиочастотном мультиполе при накоплении ионов в существующих системах приводит либо к невысокой избирательности ионов при их изоляции, либо требует дополнительного времени на скачивание "лишнего" газа. Другое возможное решение - это создание сложных многотамбурных систем, где функции накопления, изоляции и столкновительной диссоциации выполняются в разных частях системы с сильно различающимися плотностями буферного газа. Такая конструкция приводит к дополнительным потерям ионов и удорожанию приборного комплекса. Именно такое построение и предлагается в только что описанном патенте США [27].

Динамические методы захвата ионов в квадрупольную ловушку, когда обратный выход ионов запирается включением соответствующего потенциала до момента возврата запущенного пакета ионов от точки разворота, позволяют использовать только небольшую часть исходного потока ионов, если последующие манипуляции с ионами требуют относительно большого времени. Исходный поток ионов должен быть заперт на это время, и соответствующие ионы обычно теряются.

Использование резонансного вращательного движения ионов также как и их резонансных одномерных колебаний в радиочастотном квадруполе для устранения излишних ионов, мешающих измерению менее интенсивных аналитических ионов или вызывающих явления насыщения в измерительной системе времяпролетного масс-спектрометра описано в патентной заявке США №20080149825 Козловского В.И. и др. [28]. В нашем случае аналогичных целей можно добиться путем соответствующей резонансной раскрутки ионов, осциллирующих в накопительной части радиочастотного квадруполя, что позволит повысить избирательность такого устранения по сравнению с раскруткой ионов при однократном прохождении квадруполя.

Использование вращательного поля для селективной диссоциации накопленных в квадрупольной линейной ловушке ионов при столкновении с атомами или молекулами буферного газа описано в патенте США №7,351,965 B2 [29]. Регистрацию ионов-продуктов, также удаление нежелательных ионов предлагается производить через щели вдоль вершин основных электродов гиперболической формы. Нарушения квадрупольного поля вблизи этих щелей предлагается компенсировать с помощью тонких электродов, расположенных вдоль щелей посередине на выходе из них. При проведении диссоциации предлагается намеренно искажать квадрупольное поле заданием потенциалов на этих вспомогательных электродах, отличных от потенциалов основных электродов. Это полезно делать для смещения резонансных частот сильно раскрученных ионов для предотвращения их гибели на электродах квадруполя. В нашем случае использование круглых стержней квадруполя (что технологически много проще использования гиперболических стержней) приведет к тому же самому эффекту при диссоциации выбранных ионов. В патенте США №7,353,965 В2 [29] предлагается производить захват ионов в ловушку динамически, поднимая напряжение на входной диафрагме, т.к. давление буферного газа в квадруполе недостаточно, чтобы остановить ионы, отраженные от запирающего потенциала на последней секции квадруполя. В этом случае в ловушке остаются ионы, совершившие отражение от этого потенциала и не успевшие выйти назад через выходную диафрагму квадруполя до установления на ней запирающего напряжения. В патенте [29] для обеспечения улавливания достаточно большого числа анализируемых ионов предполагается использование относительно длинного квадруполя (1000 мм). Такая длина не только увеличивает габариты прибора, но и предъявляет более жесткие требования к параллельности стержней квадруполя и соблюдению других условий его изготовления для обеспечения однородности резонансных частот свободных движений ионов в разных местах квадруполя. Предлагаемый в настоящем изобретении метод накопления ионов, как ожидается, позволит накапливать достаточное число ионов в квадруполе, на порядок менее длинном, при сравнимом остаточном давлении буферного газа.

По-видимому, наиболее близкий по своим возможностям метод, который можно рассматривать как один из аналогов предлагаемого изобретения, заявлен в патенте США №7,507,953 [30]. В основных чертах это развитие описанного в предыдущем пункте подхода, если не принимать во внимание компенсацию нарушений квадрупольного поля вблизи выходных щелей вдоль стержней линейной квадрупольной ловушки для транспорта ионов в систему регистрации. В рассматриваемом случае выбранные ионы в виде «ленточного» пучка могут попадать и в плоскую камеру столкновений, а затем транспортироваться непосредственно или после столкновительной диссоциации во времяпролетный масс-спектрометр с ортогональным вводом ионов. Возможность автономной регистрации (отдельной системой, как в предыдущем патенте) исходных ионов также предусмотрена. В этом методе в отличие от общепринятых подходов достигается использование для столкновительной диссоциации не одного, а любого желаемого числа видов родительских ионов. Такая же возможность реализуется и в предлагаемом изобретении. В патенте предусмотрено также стандартное использование линейной квадрупольной ловушки для последовательного осуществления изоляции и столкновительной диссоциации ионов для реализации MS" метода, включая на последнем этапе регистрацию ионов-продуктов с помощью времяпролетного масс-спектрометра. Эта же возможность может быть реализована и в настоящем изобретении.

В перспективе предполагается использование описанного в патенте прибора в сочетании с жидкостным хроматографом для предварительного разделения сложных образцов биологического происхождения. В этом случае такой подход по сравнению с другими известными представляется наиболее эффективным с точки зрения объема получаемой информации, времени анализа и количества используемого образца.

К недостаткам описанной системы можно отнести потери разрешающей способности и чувствительности при ортогональном вводе родительских ионов в ячейку столкновений, в том числе и из-за отклонений поля вблизи выходной щели от квадрупольного. Кроме этого, использование дипольного возбуждения ионов в отличие от нашего подхода, где используются вращающие поля, приводит к более сильному влиянию объемного заряда остальных накопленных ионов на разрешающую способность выделения родительских ионов. В нашем случае эти ионы рассредоточены на различных орбитах вращения (в зависимости от m/z и подвижности ионов). В случае же резонансного дипольного возбуждения остальные ионы в среднем сосредоточены вблизи оси квадруполя, и при достаточно большом их числе создают заметное дополнительное поле, искажающее гармонический характер эффективного потенциала квадрупольного поля вблизи оси квадруполя. Для вращающихся ионов возможность возбуждения дополнительных гармонических осцилляции сохраняется и при наличии существенного влияния объемного заряда других ионов [11].

Для достижения более эффективного использования потока исходных ионов в одном из вариантов, предлагаемых в патенте, предусмотрено разделение линейной квадрупольной ловушки на две части. В первой части, работающей при повышенном давлении, происходит накопление всех ионов предпочтительно в непрерывном режиме. Во вторую часть, осуществляющей резонансную селекцию родительских ионов при пониженном давлении (для лучшей избирательности), ионы в выбранном интервале m/z переводятся возбуждением продольных колебаний в первой части для сообщения им энергии, достаточной для преодоления потенциального барьера между первой и второй частью. В нашем случае достаточно эффективное накопление ионов, выделение родительских ионов и их фрагментацию предполагается проводить в едином квадруполе, откачиваемом одним турбомолекулярным насосом.

В рассматриваемом патенте [11] проведение кинетических измерений не предусматривается, и вряд ли в описываемой конструкции это возможно. С другой стороны, такие измерения, как предлагается в настоящем изобретении, при сочетании с предварительным хроматографическим разделением из-за временных ограничений возможны только для отдельных хроматографических пиков, отделенных друг от друга достаточными временными интервалами. В то же время эти измерения могут обеспечить дополнительное разделение ионов, которое может компенсировать отсутствие или даже превысить разделительные способности хроматографа при меньшем общем времени анализа. Возможно также и значительное увеличение результирующего разделения при сочетании с хроматографом, т.к. устойчивость к столкновительной диссоциации вряд ли будет сильно коррелировать с временами удерживания соединений в хроматографических колонках.

Стандартным методом оценки сечений столкновений ионов, движущихся в газе, является та или иная разновидность измерения подвижности иона или коэффициента пропорциональности между стационарной скоростью иона и напряженностью электрического поля, вызывающего это движение. Часто это движение используется для предварительного разделения ионов. Поскольку в обычных вариантах реализации метода время движения ионов в дрейфовой трубе относительно невелико, наиболее приемлемым оказывается сочетание разделения ионов по подвижности с времяпролетным анализатором с ортогональным вводом ионов.

Серьезной проблемой такого сочетания является обеспечение высокой трансмиссии ионов через дрейфовую трубу в ВПМС. Одно из возможных решений было предложено нами в патенте США №6,992,284 [31], где приведен достаточно подробный обзор работ по разделению ионов по подвижности. В патенте 6,992,284 речь идет об использовании в дрейфовой трубе при давлении буферного газа в несколько Торр вместо однородного электрического поля последовательности чередующихся участков сильного и слабого поля. Это приводит к фокусировке ионов к оси квадруполя и позволяет несколько увеличить общее напряжение вдоль трубы, что благоприятно сказывается на разрешении пакетов ионов по подвижности. Все же во всех реализованных вариантах разделения ионов по подвижности достаточно высокого разрешения получить не удается. Даже для дрейфа ионов при атмосферном давлении не достигается разрешения более 100.

В предлагаемом изобретении подвижность ионов в их разделении выступает опосредованно. Чем больше подвижность ионов с заданным m/z, тем большую скорость движения и больший радиус вращения ионы будут иметь под действием вращающего поля и, следовательно, более высокую внутреннюю температуру, добавки к которой пропорциональны квадрату скорости [20] и квадрату радиуса вращения [13]. Если устойчивости к распаду рассматриваемых ионов близки, то быстрее будут распадаться ионы с большей подвижностью. При этом в нашем случае, имеется возможность выбора m/z ионов заданием частоты вращающего поля, а выбором амплитуды вращающего поля можно регулировать скорость распада. В случае классического разделения ионов по подвижности имеется довольно слабая возможность влиять на время выхода и ширину пакета интересующих ионов. Уменьшением напряженности поля вдоль трубы можно увеличить время выхода ионов, но при этом уменьшается разрешение по подвижности.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Особенностями одной из возможных реализации предлагаемых методов являются:

Поток исследуемых ионов - это результат ионизации соединений, поступающих с газовым потоком в ионный источник электронной ионизации, или транспортировки ионов, в том числе и многозарядных ионов биомолекул, например, из электроспрейного источника на вход радиочастотного квадруполя, сопряженного с орто-ВПМС. Вместо электроспрейного источника при таком вводе ионов может использоваться и любой другой источник ионов, работающий при атмосферном или относительно высоком давлении. При использовании внешнего источника ионов источник электронной ионизации может отсутствовать.

Накопление, предварительное разделение, управляемая фрагментация и фокусировка ионов осуществляются в радиочастотном квадруполе с газовым потоком, имеющим значимую составляющую скорости вдоль оси квадруполя, направленную к выходу из квадруполя. Внутренние поверхности входной и выходной диафрагм разрезаны на секторные фрагменты, к которым приложены противоположные по знаку и близкие по абсолютной величине напряжения, которые далее для краткости называются альтернированными напряжениями. При относительно большой абсолютной величине этих напряжений для вращающихся вокруг оси квадруполя ионов возникает достаточный отталкивающий эффективный потенциал. Это аналогично фокусировке ионов, движущихся вдоль секционированного цилиндрического канала с альтернированными напряжениями, приложенными к соседним секциям канала, как показано в работе Маршалла [34]. Альтернативно вместо таких постоянных напряжений на внутренние секции входной или/и выходной диафрагм могут быть поданы и переменные напряжения, если подача таких напряжений может обеспечить, например, более благоприятные условия по вводу ионов из ионного источника внутрь квадруполя и по выводу ионов-продуктов управляемой фрагментации из квадруполя. При этом газовый поток будет обеспечивать транспорт ионов, находящихся вблизи оси квадруполя (с резонансными частотами вращения, отличающимися от частот раскрутки) в выходную часть квадруполя и далее во времяпролетный масс-анализатор или какой-либо другой масс-анализатор. В том числе такой транспорт будет осуществляться для ионов-продуктов столкновительно-индуцированной диссоциации, если среди вращающих полей нет поля с частотой, совпадающей с резонансной частотой, какого-либо дочернего иона. При желании такие поля можно создавать специально, чтобы накапливать желаемые ионы-продукты для дальнейшего исследования. Похожий способ накопления ионов описан в нашей заявке на патент РФ [35]. Отличия состоят в вводе ионов не в квадруполь, а в секционированнную цилиндрическую ячейку, в которой в режиме накопления создается усредненное по вращениям ионов тормозящее параболическое поле, и входящие ионы отражаются именно от этого поля. Входная диафрагма имеет также секционированную внутреннюю поверхность. Однако, это секционирование является более сложным, чем в случае настоящего изобретения, и наряду с созданием отталкивательного эффективного потенциала приложенные к секциям напряжения вместе напряжениями секций цилиндрической поверхности ячейки создают усредненные по вращениям ионов квадратичные распределения потенциала вдоль оси и по радиусу ячейки.

Формированием соответствующего резонансного вращающего поля (или нескольких полей для изоляции нескольких типов выбранных ионов) ионы заданного отношения массы к заряду начинают вращаться и удерживаются далее на устойчивых орбитах вращения (ионы с более высокой подвижностью на более высокой орбите) в основной части вне отверстий входной и выходной диафрагм. При необходимости альтернированное или переменное напряжение на выходной диафрагме может быть повышено для увеличения потенциального барьера для накапливаемых ионов. Значимое уменьшение регистрируемого тока выбранных ионов означает начало их накопления. Возвращение к прежнему или несколько меньшему стационарному значению (при возможной гибели части ионов внутри квадруполя) соответствует достижению максимального в данных условиях уровня накопления ионов. Достижение характерных времен релаксации регистрируемого ионного тока в диапазоне секунд или десятков секунд - желательное условие для проведения удобных измерений для настоящего изобретения. Такая релаксация после достижения стационарного уровня регистрируемого потока анализируемых ионов может быть вызвана изменением стационарного радиуса их вращения при задании нового значения амплитуды вращающего поля или запиранием входного потока ионов повышением напряжения на внешней поверхности входной диафрагмы.

При достижении достаточного количества вращающихся ионов или после прохождения заданного времени накопления амплитуда (выбранного) вращающего напряжения в квадруполе увеличивается до оптимального значения для удерживания и резонансной раскрутки с возможной фрагментацией анализируемых ионов. При этом напряжение на внешней стороне входной диафрагмы может быть увеличено, чтобы прекратить поступление ионов в квадруполь. Если при накоплении альтернированное или переменное напряжение выходной диафрагмы было повышено, то оно может быть понижено для обеспечения более свободного выхода ионов, движущихся вблизи оси квадруполя.

В стационарных условиях разогрева индивидуальных ионов (при отсутствии заметной гибели ионов за счет расталкивания объемным зарядом) должны будут наблюдаться экспоненциально затухающие сигналы ионов-продуктов, по характеристическому времени уменьшения сигналов и соотношениям амплитуд которых могут быть определены соответствующие константы скорости распада. При наличии нескольких типов распадающихся ионов с заданным значением m/z появляется возможность на основе анализа пиков всех продуктов выявить число таких типов и определить константы распада по каждому каналу всех этих типов ионов. Характеристические времена убывания интенсивностей регистрируемых пиков будут определяться суммарными константами распада исходных ионов, что может позволить отделить соответствующие сигналы для разных исходных ионов, хотя их величины m/z и подвижностей могут совпадать.

При увеличении амплитуд вращающих напряжений также возможно включение процессов распада более устойчивых ионов и выбывание из «игры» относительно легко распадающихся ионов. Тем самым могут быть проанализированы все ионы, резонансные частоты которых близки к частотам вращающих полей, если только дальнейшее увеличение радиуса вращения ионов не приведет к неприемлемому увеличению скорости их гибели на стержнях квадруполя. В этом случае альтернативой может быть периодическое кратковременное увеличение амплитуды фокусирующего радиочастотного напряжения в целое число раз вплоть до последней величины, не превышающей порога устойчивости движения выбранных ионов в квадруполе. Желательно при этом, чтобы другие накопленные ионы в квадруполе обладали большими m/z и меньшими радиусами вращения, чтобы не было потери их устойчивости движения и гибели и в результате столкновительно-индуцированной диссоциации. Время включения увеличенного радиочастотного напряжения должно быть близким к периоду вращения анализируемых ионов или к кратной величине для этого периода. В этом случае эти ионы, получив кратно увеличенные частоты вращения за прежний период вращения совершат целое число оборотов, и их фаза будет близка к фазе вращающего напряжения. При возврате к прежней амплитуде радиочастотного напряжения резонансное вращающее напряжение относительно быстро восстановит прежний стационарный радиус вращения выбранных ионов. Время между включениями увеличенного радиочастотного напряжение должно превышать время выхода из квадруполя ионов, не подверженных раскрутке. В этом случае ионы продукты даже при меньших значениях m/z, чем для исходных ионов, будут зарегистрированы последующим масс-анализатором и не будут в значительной степени гибнуть из-за потери устойчивости движения при повышенной напряженности радиочастотного поля.

Поскольку ионы часто довольно сильно различаются по степени устойчивости к распаду, то возможны адекватные оценки резонансных частот и даже в случаях, когда эти значения достаточно близки и не могли быть разрешены стандартными методами масс-анализа. Эта ситуация аналогична предварительному хроматографическому разделению анализируемых соединений или разделению на основе электрофореза. Отличие состоит в том, что в предлагаемом изобретении имеется возможность выбора для кинетического исследования ионов в некотором относительно узком диапазоне m/z за счет подбора частот соответствующих вращающих полей.

Теоретические основы метода разделения экспоненциальных вкладов применительно к анализу совокупностей эффузиометрических кривых нами были разработаны ранее [24]. Суть подхода основана на полной аналогии между системами дифференциальных и конечно-разностных линейных уравнений с постоянными коэффициентами. Эта аналогия для одного уравнения, например, была использована нами при разработке методов линейного прогноза для эффективной оценки массовых чисел ионов по их временам выхода для магнитного статического масс-спектрометра [21, 33]. Определив коэффициенты такого прогноза, в частности, являющегося точным для суммы экспоненциальных кривых, факторы затухания соответствующих экспонент могут быть определены нахождением корней характеристического полинома, как и для соответствующего дифференциального уравнения с постоянными коэффициентами. В этом случае может быть использована вычислительная процедура, описанная нами в [25].

Исходя из этой аналогии, для линейной комбинации экспоненциально спадающих потоков ионов-продуктов в общем случае совокупный вектор интенсивностей этих ионов для последующих регистрации без учета ошибок измерения может быть выражен как произведение некоторой матрицы перехода на вектор таких интенсивностей для предыдущей регистрации. Матричные элементы этой матрицы перехода могут быть найдены минимизацией погрешности такой аппроксимации, что сводится к решению соответствующих систем линейных алгебраических уравнений для каждой строки этой матрицы. Собственные векторы этой матрицы описывают с точностью до нормировки вектор интенсивностей ионов-продуктов каждого типа ионов, присутствующих в анализируемой смеси. Соответствующие этим векторам собственные числа характеризуют факторы экспоненциального затухания числа таких ионов. Коэффициенты, описывающие вклады собственных векторов матрицы перехода в наблюдаемые интенсивности ионов-продуктов, находятся по методу наименьших квадратов для обеспечения в среднем минимальных погрешностей измеренных интенсивностей пиков масс-спектра для всех регистрации. Качество аппроксимации по сравнению с ошибками измерений является критерием правильности проведенного анализа. Зная число типов исходных ионов и характерные времена их экспоненциального убывания, можно решением соответствующих систем линейных уравнений найти вклады каждой из этих экспонент во все отсчеты в зарегистрированных масс-спектрах. Тем самым будут получены масс-спектры ионов-продуктов каждого типа исходных ионов, как будто они были полностью разделены перед их регистрацией. Это важно, т.к. позволит определить «точные» массы всех ионов-продуктов, если соответствующие масс-спектры были зарегистрированы на масс-анализаторе с высокой разрешающей способностью.

Альтернативно гибель и распад ионов могут происходить при их соударении с поверхностью стержней квадруполя. В этом случае частота соударений достаточно сильно раскрученных ионов о поверхность этих стержней будет контролироваться средним расстоянием этих ионов до ближайшей поверхности, глубиной потенциальной ямы, создаваемой эффективным потенциалом радиочастотного поля и центробежным потенциалом вращающихся ионов. Эффективная температура ионов, являющаяся вторым фактором для частоты столкновений, будет определяться для данных ионов и буферного газа скоростью вращения этих ионов или средним радиусом вращения. Малая часть ионов, зависящая от их заряда, энергия которых достаточна, чтобы преодолеть разность потенциальных энергий между дном ямы и