Устройство терминала беспроводной связи, устройство базовой станции беспроводной связи и способ задания ресурсной области

Иллюстрации

Показать все

Изобретение относится к радиосвязи. Терминал, способный сокращать ресурсные области в полосе частот компонента восходящей линии связи без увеличения сигнализации, даже если множество сигналов подтверждения данных нисходящей линии связи, передаваемых соответственно во множестве полос частот компонента нисходящей линии связи, передается из одной полосы частот компонента восходящей линии связи. Терминал (200), в котором блок (208) приема PCFICH получает информацию CFI, указывающую количество символов, используемых для канала управления, которому выделяется информация выделения ресурсов, относящаяся к данным нисходящей линии связи, направленным устройству, для каждой из полос частот компонента нисходящей линии связи, блок отображения (214) задает ресурсную область, которой выделяется сигнал подтверждения данных нисходящей линии связи, для каждой из множества полос частот компонента нисходящей линии связи, согласно информации CFI каждой из полос частот компонента нисходящей линии связи, в полосе частот компонента восходящей линии связи, заданной для устройства, и отображает сигналы подтверждения в ресурсные области, соответствующие полосам частот компонента нисходящей линии связи, используемым для выделения данных нисходящей линии связи. 6 н. и 14 з.п. ф-лы, 10 ил.

Реферат

Область техники

Настоящее изобретение относится к устройству терминала радиосвязи, устройству базовой станции радиосвязи и способу задания ресурсной области.

Уровень техники

3GPP-LTE (проект долгосрочного развития сети беспроводного доступа проекта партнерства третьего поколения, в дальнейшем именуемый “LTE”) использует OFDMA (множественный доступ с ортогональным частотным разделением) в качестве схемы связи нисходящей линии связи и использует SC-FDMA (множественный доступ с частотным разделением на одной несущей) в качестве схемы связи восходящей линии связи (см., например, непатентные источники 1, 2 и 3).

Согласно LTE, устройство базовой станции радиосвязи (в дальнейшем сокращенно именуемое “базовой станцией”) осуществляет связь путем выделения блоков ресурса (RB) в системной полосе устройству терминала радиосвязи (в дальнейшем сокращенно именуемому “терминалом”) для каждой единицы времени, именуемой “подкадром”. Кроме того, базовая станция передает информацию управления для сообщения результатов выделения ресурсов данных нисходящей линии связи и данных восходящей линии связи терминалу. Эта информация управления передается на терминал с использованием канала управления нисходящей линии связи, например, PDCCH (физического канала управления нисходящей линии связи). Здесь, каждый PDCCH занимает ресурс, образованный одним или множеством непрерывных CCE (элементов канала управления). LTE поддерживает полосу частот шириной максимум 20 МГц в качестве системной полосы.

Кроме того, PDCCH передается в трех начальных символах OFDM каждого подкадра. Кроме того, количеством символов OFDM, используемых для передачи PDCCH, можно управлять в единицах подкадра и управлять с помощью информации CFI (индикатора формата управления), сообщаемой с использованием PCFICH (физического канала индикатора формата управления), передаваемого с использованием первого символа OFDM каждого подкадра.

Кроме того, базовая станция одновременно передает множество PDCCH для выделения множества терминалов одному подкадру. В этом случае базовая станция включает в себя биты CRC, маскированные (или скремблированные) ID терминалов назначения, для идентификации соответствующих терминалов назначения PDCCH на PDCCH и передает PDCCH. Терминал демаскирует (или дескремблирует) биты CRC в множестве PDCCH, которые могут быть направлены терминалу, с помощью ID терминала для терминала и, таким образом, вслепую декодирует PDCCH и обнаруживает PDCCH, направленный терминалу.

Кроме того, проводятся исследования, касающиеся способа ограничения CCE, подлежащих слепому декодированию, для каждого терминала с целью снижения количества осуществлений слепого декодирования на терминале. Этот способ ограничивает область CCE, подлежащих слепому декодированию (в дальнейшем именуемое “пространством поиска”), для каждого терминала. Таким образом, каждому терминалу необходимо осуществлять слепое декодирование только в отношении CCE в пространстве поиска, выделенном этому терминалу, и он может уменьшить кратность осуществления слепого декодирования. Здесь, пространство поиска каждого терминала задается с использованием хэш-функции, которая является функцией для осуществления рандомизации с помощью ID терминала каждого терминала.

Кроме того, для данных нисходящей линии связи от базовой станции к терминалу, терминал возвращает ответный сигнал, указывающий результат обнаружения ошибок данных нисходящей линии связи (в дальнейшем именуемый “сигналом ACK/NACK”), на базовую станцию. Сигнал ACK/NACK передается на базовую станцию с использованием канала управления восходящей линии связи, например, PUCCH (физического канала управления восходящей линии связи). Здесь, для устранения необходимости в сигнализации для сообщения PUCCH, используемого для передачи сигнала ACK/NACK с базовой станции на каждый терминал, и эффективного использования ресурсов связи нисходящей линии связи, номер CCE, которому назначены данные нисходящей линии связи, связывают с номером ресурса PUCCH, который передает сигнал ACK/NACK, соответствующий данным нисходящей линии связи. Каждый терминал может по своему выбору использовать PUCCH для передачи сигнала ACK/NACK с терминала из CCE, в который отображается информация управления, направленная терминалу. Сигнал ACK/NACK является 1-битовым сигналом, указывающим ACK (отсутствие ошибки) или NACK (наличие ошибки), и подлежит BPSK-модуляции и передаче. Кроме того, базовая станция может свободно задавать ресурсную область PUCCH, используемую для передачи сигнала ACK/NACK, и сообщает номер начального ресурса ресурсной области PUCCH всем терминалам, находящимся в соте терминала, с использованием широковещательной информации.

Кроме того, мощность передачи, используемая терминалом для передачи PUCCH, регулируется битом управления мощностью передачи PUCCH, включенным в PDCCH.

Кроме того, был установлен стандарт 3GPP LTE-Advanced (в дальнейшем именуемый “LTE-A”), который реализует дополнительное повышение скорости связи по сравнению с LTE. LTE-A предусматривает использование базовых станций и терминалов (в дальнейшем именуемых “терминалами LTE-A”), способных осуществлять связь в широкой полосе частот 40 МГц или выше для реализации максимальной скорости передачи нисходящей линии связи 1 Гбит/с или выше и максимальной скорости передачи восходящей линии связи 500 Мбит/с или выше. Кроме того, в системе LTE-A могут работать не только терминалы LTE-A, но и терминалы, поддерживающие систему LTE (в дальнейшем именуемые “терминалами LTE”).

LTE-A предусматривает схему объединения полос, позволяющую осуществлять связь путем объединения множества полос частот, для реализации связи в широкой полосе 40 МГц или выше (см., например, непатентный источник 1). Например, полоса частот шириной 20 МГц предполагается базовой единицей (в дальнейшем именуемой “полоса частот компонента”). Таким образом, LTE-A реализует системную полосу 40 МГц путем объединения двух полос частот компонента.

Кроме того, согласно LTE-A, базовая станция может сообщать информацию выделения ресурсов каждой полосы частот компонента терминалу с использованием полосы частот компонента нисходящей линии связи каждой полосы частот компонента (см., например, непатентный источник 4). Например, терминал, осуществляющий широкополосную передачу в полосе 40 МГц (терминал, использующий две полосы частот компонента), получает информацию выделения ресурсов двух полос частот компонента, принимая PDCCH, размещенный в полосе частот компонента нисходящей линии связи каждой полосы частот компонента.

Кроме того, согласно LTE-A, предполагается, что объемы передачи данных на восходящей и нисходящей линиях связи не зависят друг от друга. Например, может быть случай, когда широкополосная передача (в полосе связи 40 МГц) осуществляется на нисходящей линии связи и узкополосная передача (в полосе связи 20 МГц) осуществляется на восходящей линии связи. В этом случае терминал использует две полосы частот компонента нисходящей линии связи на нисходящей линии связи и использует только одну полосу частот компонента восходящей линии связи на восходящей линии связи. Таким образом, для восходящей и нисходящей линий связи используются асимметричные полосы частот компонента (см., например, непатентный источник 5). В этом случае оба сигнала ACK/NACK, соответствующие данным нисходящей линии связи, передаваемым в двух полосах частот компонента нисходящей линии связи, передаются на базовую станцию с использованием ресурсов ACK/NACK, размещенных на PUCCH одной полосы частот компонента восходящей линии связи.

Кроме того, также, когда для восходящей и нисходящей линий связи используются одинаковое количество полос частот компонента, как и в описанном выше случае использования асимметричных полос частот компонента, также проводятся исследования в отношении возможности передачи множества сигналов ACK/NACK, соответствующих данным нисходящей линии связи, передаваемым во множестве полос частот компонента нисходящей линии связи, из одной полосы частот компонента восходящей линии связи. Здесь, для каждого терминала независимо устанавливается, из какой полосы частот компонента восходящей линии связи из множества полос частот компонентов восходящей линии связи передается сигнал ACK/NACK.

Библиография

Непатентные источники

NPL 1

3GPP TS 36.211 V8.3.0, “Physical Channels and Modulation (Release 8)”. май 2008

NPL 2

3GPP TS 36.212 V8.3.0, “Multiplexing and channel coding (Release 8)”, май 2008

NPL 3

3GPP TS 36.213 V8.3.0, “Physical layer procedures (Release 8)”, май 2008

NPL 4

3GPP TSG RAN WG1 meeting, R1-082468, “Carrier aggregation LTE-Advanced”, июль 2008

NPL 5

3GPP TSG RAN WG1 meeting, R1-083706, “DL/UL Asymmetric Carrier aggregation”, сентябрь 2008

Сущность изобретения

Техническая проблема

Когда множество сигналов ACK/NACK, соответствующих данным нисходящей линии связи, передаваемым во множестве полос частот компонента нисходящей линии связи, передается из одной полосы частот компонента восходящей линии связи, необходимо предотвращать конфликты сигналов ACK/NACK, соответствующих данным нисходящей линии связи, передаваемым в каждой полосе частот компонента нисходящей линии связи, друг с другом. Таким образом, в каждой полосе частот компонента восходящей линии связи, необходимо задавать ресурсную область PUCCH для передачи сигнала ACK/NACK (в дальнейшем именуемую “областью PUCCH”) для каждой из всех полос частот компонента нисходящей линии связи.

Здесь, для области PUCCH, соответствующей каждой полосе частот компонента нисходящей линии связи, заданной в каждой полосе частот компонента восходящей линии связи, необходимо в достаточной степени обеспечивать ресурсную область для вмещения сигнала ACK/NACK, соответствующего данным нисходящей линии связи, передаваемым из каждой полосы частот компонента нисходящей линии связи. Дело в том, что ресурсы ACK/NACK связаны с CCE взаимно-однозначным соответствием. По этой причине, с увеличением количества полос частот компонента нисходящей линии связи, количество областей PUCCH (количество ресурсов ACK/NACK), которые необходимо обеспечить, для каждой полосы частот компонента восходящей линии связи, возрастает, и ресурсов восходящей линии связи, которым выделяются данные восходящей линии связи терминала (например, PUSCH (физический совместно используемый канал восходящей линии связи)), не хватает. Это может приводить к снижению пропускной способности данных восходящей линии связи.

Кроме того, базовая станция сообщает область PUCCH, соответствующую каждой полосе частот компонента нисходящей линии связи, с использованием широковещательной информации. Здесь, поскольку вышеупомянутую область PUCCH необходимо задавать во множестве полос частот компонента восходящей линии связи, базовая станция сообщает область PUCCH каждой полосы частот компонента нисходящей линии связи с использованием широковещательной информации полосы частот компонента нисходящей линии связи, связанной (объединенной в пары) с каждой полосой частот компонента восходящей линии связи. Таким образом, информацию об областях PUCCH для всех полос частот компонента нисходящей линии связи (широковещательную информацию) необходимо сообщать каждой полосе частот компонента восходящей линии связи. По этой причине увеличение служебной нагрузки широковещательной информации нисходящей линии связи приводит к снижению пропускной способности данных нисходящей линии связи.

Поэтому задачей настоящего изобретения является обеспечение терминала, базовой станции и способа задания ресурсной области, способных сокращать области PUCCH (количество ресурсов ACK/NACK) в полосе частот компонента восходящей линии связи без увеличения сигнализации, даже когда множество сигналов ACK/NACK, относящихся к данным нисходящей линии связи, передаваемым во множестве полос частот компонента нисходящей линии связи, передается из одной полосы частот компонента восходящей линии связи.

Решение проблемы

Терминал согласно настоящему изобретению представляет собой устройство терминала радиосвязи, которое осуществляет связь с использованием множества полос частот компонента нисходящей линии связи, и использует конфигурацию, включающую в себя блок приема, который получает информацию CFI, указывающую количество символов, используемых для канала управления, которому выделяется информация выделения ресурсов данных нисходящей линии связи, направленная устройству терминала радиосвязи, для каждой из множества полос частот компонента нисходящей линии связи, блок задания, который задает, в полосе частот компонента восходящей линии связи, заданной в устройстве терминала, ресурсную область, которой выделяется ответный сигнал, соответствующий данным нисходящей линии связи, для каждой из множества полос частот компонента нисходящей линии связи на основании информации CFI, для каждой из множества полос частот компонента нисходящей линии связи, и блок отображения, который отображает ответный сигнал в ресурсную область, соответствующую полосе частот компонента нисходящей линии связи, используемую для выделения данных нисходящей линии связи.

Базовая станция, отвечающая настоящему изобретению, использует конфигурацию для устройства терминала радиосвязи, которое осуществляет связь с использованием множества полос частот компонента нисходящей линии связи, включающую в себя блок генерации, который генерирует информацию CFI, указывающую количество символов, используемых для канала управления, которому выделяется информация выделения ресурсов данных нисходящей линии связи, направленная устройству терминала радиосвязи, для каждой из множества полос частот компонента нисходящей линии связи, и блок приема, который идентифицирует ресурсную область, которой выделяется ответный сигнал, соответствующий данным нисходящей линии связи, на основании информации CFI, для каждой из множества полос частот компонента нисходящей линии связи в полосе частот компонента восходящей линии связи, заданной в устройстве терминала радиосвязи, и извлекает ответный сигнал из ресурсной области, соответствующей полосе частот компонента нисходящей линии связи, используемой для выделения данных нисходящей линии связи.

Способ задания ресурсной области, отвечающий настоящему изобретению, представляет собой способ для устройства терминала радиосвязи, которое осуществляет связь с использованием множества полос частот компонента нисходящей линии связи, содержащий этапы, на которых получают информацию CFI, указывающую количество символов, используемых для канала управления, которому выделяется информация выделения ресурсов данных нисходящей линии связи, направленная устройству терминала радиосвязи, для каждой из множества полос частот компонента нисходящей линии связи, и задают, в полосе частот компонента восходящей линии связи, заданной в устройстве терминала радиосвязи, ресурсную область, которой выделяется ответный сигнал, соответствующий данным нисходящей линии связи, для каждой из множества полос частот компонента нисходящей линии связи на основании информации CFI, для каждой из множества полос частот компонента нисходящей линии связи.

Преимущества изобретения

Согласно настоящему изобретению, даже когда множество сигналов ACK/NACK, соответствующих данным нисходящей линии связи, передаваемым в каждой из множества полос частот компонента нисходящей линии связи, передается из одной полосы частот компонента восходящей линии связи, можно сократить области PUCCH (количество ресурсов ACK/NACK) в полосе частот компонента восходящей линии связи без увеличения сигнализации.

Краткое описание чертежей

Фиг. 1 - блок-схема, иллюстрирующая конфигурацию базовой станции согласно варианту осуществления 1 настоящего изобретения.

Фиг. 2 - блок-схема, иллюстрирующая конфигурацию терминала согласно варианту осуществления 1 настоящего изобретения.

Фиг. 3 - схема, иллюстрирующая ресурсы PUCCH, связанные с каждым CCE, согласно варианту осуществления 1 настоящего изобретения.

Фиг. 4 - схема, иллюстрирующая задание областей PUCCH согласно варианту осуществления 1 настоящего изобретения.

Фиг. 5 - схема, иллюстрирующая задание областей PUCCH согласно варианту осуществления 2 настоящего изобретения (способ задания 1).

Фиг. 6 - схема, иллюстрирующая задание областей PUCCH согласно варианту осуществления 2 настоящего изобретения (способ задания 1).

Фиг. 7 - схема, иллюстрирующая задание областей PUCCH согласно варианту осуществления 2 настоящего изобретения (способ задания 2).

Фиг. 8 - схема, иллюстрирующая задание областей PUCCH согласно варианту осуществления 2 настоящего изобретения (случай асимметричного задания).

Фиг. 9 - схема, иллюстрирующая задание областей PUCCH согласно варианту осуществления 3 настоящего изобретения.

Фиг. 10 - схема, иллюстрирующая задание областей PUCCH согласно варианту осуществления 4 настоящего изобретения.

Описание вариантов осуществления

В дальнейшем, варианты осуществления настоящего изобретения будут подробно описаны со ссылкой на прилагаемые чертежи. В нижеследующих вариантах осуществления одинаковым компонентам будут присвоены одинаковые условные обозначения, и повторные объяснения будут опущены.

В нижеследующем описании рассматривается система, восходящая и нисходящая линии связи которой образованы двумя полосами частот компонента, соответственно. Кроме того, базовая станция выделяет данные нисходящей линии связи с использованием PDCCH, размещенных в двух полосах частот компонента нисходящей линии связи, и передает данные нисходящей линии связи на терминал. Кроме того, терминал возвращает сигнал ACK/NACK, соответствующий данным нисходящей линии связи, передаваемым с использованием двух полос частот компонента нисходящей линии связи, на базовую станцию с использованием PUCCH, размещенного в одной полосе частот компонента восходящей линии связи.

(Вариант осуществления 1)

На фиг. 1 показана блок-схема, иллюстрирующая конфигурацию базовой станции 100 согласно настоящему варианту осуществления.

На базовой станции 100, показанной на фиг. 1, блок задания 101 задает (конфигурирует) одну или множество полос частот компонента для использования на восходящей и нисходящей линиях связи для каждого терминала согласно требуемым скорости передачи и объему передачи данных и т.п. Например, блок задания 101 задает полосу частот компонента восходящей линии связи и полосу частот компонента нисходящей линии связи для использования при передаче данных, и полосу частот компонента восходящей линии связи для использования при передаче PUCCH. Затем блок задания 101 выводит задающую информацию, включающую в себя полосу частот компонента, заданную на каждом терминале, на блок управления 102, блок 103 генерации PDCCH и блок модуляции 107.

Блок управления 102 генерирует информацию выделения ресурсов восходящей линии связи, указывающую ресурсы восходящей линии связи (например, PUSCH), которым выделяются данные восходящей линии связи терминала, и информацию выделения ресурсов нисходящей линии связи, указывающую ресурсы нисходящей линии связи (например, PDSCH (физический совместно используемый канал нисходящей линии связи)), которым выделяются данные нисходящей линии связи, направленные терминалу. Затем блок управления 102 выводит информацию выделения ресурсов восходящей линии связи на блок 103 генерации PDCCH и блок извлечения 119 и выводит информацию выделения ресурсов нисходящей линии связи на блок 103 генерации PDCCH и блок мультиплексирования 111. Здесь, блок управления 102 выделяет информацию выделения ресурсов восходящей линии связи и информацию выделения ресурсов нисходящей линии связи каналам PDCCH, размещенным в полосах частот компонента нисходящей линии связи, заданных на каждом терминале, на основании задающей информации, поступающей от блока задания 101. В частности, блок управления 102 выделяет информацию выделения ресурсов нисходящей линии связи каналам PDCCH, размещенным в полосах частот компонента нисходящей линии связи, для выделения ресурсов, указанного в информации выделения ресурсов нисходящей линии связи. Кроме того, блок управления 102 выделяет информацию выделения ресурсов восходящей линии связи каналам PDCCH, размещенным в полосах частот компонента нисходящей линии связи, связанных с полосами частот компонента восходящей линии связи, для выделения ресурсов, указанного в информации выделения ресурсов восходящей линии связи. PDCCH образован одним или множеством CCE. Кроме того, количество CCE, используемых базовой станцией 100, задается на основании качества пути распространения (CQI: индикатора качества канала) терминала, являющегося целью выделения, и размера информации управления, что позволяет терминалу принимать информацию управления с необходимой и достаточной частотой ошибок. Кроме того, блок управления 102 определяет, для каждой полосы частот компонента, количество символов OFDM, используемых для передачи каналов PDCCH, на основании количества CCE, используемых для PDCCH, которым выделяется информация управления (например, информация выделения) в каждом компоненте нисходящей линии связи, и генерирует информацию CFI, указывающую результат определения количества символов OFDM. Таким образом, блок управления 102 генерирует, для каждой из множества полос частот компонента нисходящей линии связи, информацию CFI, указывающую количество символов OFDM, используемых для PDCCH, которому выделяется информация выделения ресурсов (информация выделения ресурсов восходящей линии связи или информация выделения ресурсов нисходящей линии связи) данных нисходящей линии связи, направленная терминалу, для терминала, который осуществляет связь с использованием множества полос частот компонента нисходящей линии связи. Затем блок управления 102 выводит информацию CFI для каждой полосы частот компонента нисходящей линии связи на блок 106 генерации PCFICH, блок мультиплексирования 111 и блок 122 приема ACK/NACK.

Блок 103 генерации PDCCH генерирует сигнал PDCCH, включающий в себя информацию выделения ресурсов восходящей линии связи и информацию выделения ресурсов нисходящей линии связи, поступающую от блока управления 102. Кроме того, блок 103 генерации PDCCH добавляет бит CRC к сигналу PDCCH, которому выделены информация выделения ресурсов восходящей линии связи и информация выделения ресурсов нисходящей линии связи, и дополнительно маскирует (или скремблирует) бит CRC с помощью ID терминала. Затем блок 103 генерации PDCCH выводит маскированный сигнал PDCCH на блок модуляции 104.

Блок модуляции 104 модулирует сигнал PDCCH, поступающий от блока 103 генерации PDCCH после канального кодирования, и выводит модулированный сигнал PDCCH на блок выделения 105.

Блок выделения 105 выделяет сигнал PDCCH каждого терминала, поступающий от блока модуляции 104, для CCE в пространстве поиска для каждого терминала в полосе частот компонента нисходящей линии связи в каждой полосе частот компонента. Например, блок выделения 105 вычисляет пространство поиска каждой из множества полос частот компонента нисходящей линии связи, заданных на каждом терминале, на основании ID терминала каждого терминала, номера CCE, вычисленного с использованием хэш-функции для осуществления рандомизации, и количества CCE (L), образующих пространство поиска. Таким образом, блок выделения 105 задает номер CCE, вычисленный с использованием ID терминала определенного терминала и хэш-функции, в начальной позиции (номер CCE) пространства поиска терминала и задает последующие CCE, соответствующие количеству CCE L, от начальной позиции в качестве пространства поиска терминала. Здесь, блок выделения 105 задает одно и то же пространство поиска (пространство поиска, образованное CCE с одним и тем же номером CCE) среди множества полос частот компонента нисходящей линии связи, заданных для каждого терминала. Затем блок выделения 105 выводит сигнал PDCCH, выделенный для CCE, на блок мультиплексирования 111. Кроме того, блок выделения 105 выводит номер CCE для CCE, которому выделен сигнал PDCCH, на блок 122 приема ACK/NACK.

Блок 106 генерации PCFICH генерирует сигнал PCFICH на основании информации CFI для каждой полосы частот компонента нисходящей линии связи, поступающей от блока управления 102. Например, блок 106 генерации PCFICH генерирует информацию из 32 битов путем кодирования информации CFI (битов CFI) из 2 битов каждой полосы частот компонента нисходящей линии связи, модулирует по схеме QPSK сгенерированную информацию из 32 битов и, таким образом, генерирует сигнал PCFICH. Затем блок 106 генерации PCFICH выводит сгенерированный сигнал PCFICH на блок мультиплексирования 111.

Блок модуляции 107 модулирует задающую информацию, поступающую от блока задания 101, и выводит модулированную задающую информацию на блок мультиплексирования 111.

Блок 108 генерации широковещательной информации задает рабочие параметры (системную информацию (SIB: системный информационный блок)) базовой станции соты и генерирует широковещательную информацию, включающую в себя заданную системную информацию (SIB). Здесь, базовая станция 100 вещает системную информацию каждой полосы частот компонента восходящей линии связи с использованием полосы частот компонента нисходящей линии связи, связанной с полосой частот компонента восходящей линии связи. Примеры системной информации полосы частот компонента восходящей линии связи включают в себя информацию области PUCCH, указывающую начальную позицию (номер ресурса) области PUCCH, используемой для передачи сигнала ACK/NACK. Затем блок 108 генерации широковещательной информации выводит широковещательную информацию, включающую в себя системную информацию (SIB) базовой станции соты, включающую в себя информацию области PUCCH и т.п., на блок модуляции 109.

Блок модуляции 109 модулирует широковещательную информацию, поступающую от блока 108 генерации широковещательной информации, и выводит модулированную широковещательную информацию на блок мультиплексирования 111.

Блок модуляции 110 модулирует введенные данные передачи (данные нисходящей линии связи) после канального кодирования и выводит модулированный сигнал передачи данных на блок мультиплексирования 111.

Блок мультиплексирования 111 мультиплексирует сигнал PDCCH, поступающий от блока выделения 105, сигнал PCFICH, поступающий от блока 106 генерации PCFICH, задающую информацию, поступающую от блока модуляции 107, широковещательную информацию, поступающую от блока модуляции 109, и сигнал данных (т.е. сигнал PDSCH), поступающий от блока модуляции 110. Здесь, блок мультиплексирования 111 определяет количество символов OFDM, в которых размещены PDCCH для каждой полосы частот компонента нисходящей линии связи, на основании информации CFI, поступающей от блока управления 102. Кроме того, блок мультиплексирования 111 отображает сигнал PDCCH и сигнал данных (сигнал PDSCH) в каждую полосу частот компонента нисходящей линии связи на основании информации выделения ресурсов нисходящей линии связи, поступающей от блока управления 102. Блок мультиплексирования 111 также может отображать задающую информацию в PDSCH. Затем блок мультиплексирования 111 выводит мультиплексированный сигнал на блок 112 IFFT (обратного быстрого преобразования Фурье).

Блок IFFT 112 преобразует мультиплексированный сигнал, поступающий от блока мультиплексирования 111, во временную форму сигнала, и блок 110 добавления CP (циклического префикса) добавляет CP к временной форме сигнала и, таким образом, получает сигнал OFDM.

Блок 114 передачи РЧ применяет обработку радиопередачи (повышение частоты, цифро-аналоговое преобразование и т.п.) к сигналу OFDM, поступающему от блока 113 добавления CP, и передает сигнал OFDM через антенну 115.

С другой стороны, блок 116 приема РЧ применяет обработку радиоприема (понижение частоты, аналого-цифровое преобразование и т.п.) к принятому радиосигналу, принятому в полосе приема через антенну 115, и выводит полученный принятый сигнал на блок 117 удаления CP.

Блок удаления CP 114 удаляет CP из принятого сигнала, и блок 115 FFT (быстрого преобразования Фурье) преобразует принятый сигнал после удаления CP в сигнал частотной области.

Блок извлечения 119 извлекает данные восходящей линии связи каждого терминала и сигнал PUCCH (например, сигнал ACK/NACK) из сигнала частотной области, поступающего от блока FFT 118, на основании информации выделения ресурсов восходящей линии связи (например, информации выделения ресурсов восходящей линии связи на 4 подкадра вперед), поступающей от блока управления 102. Блок 120 IDFT (обратного дискретного преобразования Фурье) преобразует сигнал, извлеченный блоком извлечения 119, в сигнал временной области и выводит сигнал временной области на блок 121 приема данных и блок 122 приема ACK/NACK.

Блок 121 приема данных декодирует данные восходящей линии связи из сигнала временной области, поступающего от блока IDFT 120. Блок 121 приема данных выводит декодированные данные восходящей линии связи в качестве принятых данных.

Блок 122 приема ACK/NACK извлекает сигнал ACK/NACK от каждого терминала, соответствующий данным нисходящей линии связи (сигналу PDSCH) из сигнала временной области, поступающего от блока IDFT 120. В частности, блок 122 приема ACK/NACK извлекает, в полосе частот компонента восходящей линии связи, заданной в каждом терминале, сигнал ACK/NACK из PUCCH (ресурса ACK/NACK), связанного с CCE, используемым для сигнала PDCCH, из области PUCCH, соответствующей полосе частот компонента нисходящей линии связи, в которой размещен сигнал PDCCH, используемый для выделения данных нисходящей линии связи. Здесь, область PUCCH идентифицируется из количества CCE, доступных в каждой полосе частот компонента нисходящей линии связи, поступающего от блока управления 102 и вычисленного из информации CFI каждой полосы частот компонента нисходящей линии связи, и номера полосы частот компонента нисходящей линии связи. Здесь, если базовая станция 100 выделяет сигнал PDCCH, включающий в себя информацию выделения ресурсов нисходящей линии связи для данных нисходящей линии связи (сигнал PDSCH) из множества полос частот компонента элементам CCE множества полос частот компонента нисходящей линии связи для определенного терминала, блок 122 приема ACK/NACK извлекает сигнал ACK/NACK из PUCCH (ресурса ACK/NACK), связанного с номером CCE для CCE, используемого для выделения данных нисходящей линии связи в областях PUCCH, соответствующих соответственным полосам частот компонента нисходящей линии связи. В частности, блок 122 приема ACK/NACK идентифицирует область PUCCH, которой выделяется сигнал ACK/NACK, соответствующий данным нисходящей линии связи, на основании количества CCE, доступных для каждой из множества полос частот компонента нисходящей линии связи, вычисленный на основании информации CFI для каждой из множества полос частот компонента нисходящей линии связи, заданных на терминале, в полосе частот компонента восходящей линии связи, заданной на терминале. Затем блок 122 приема ACK/NACK извлекает сигнал ACK/NACK из области PUCCH, соответствующей полосе частот компонента нисходящей линии связи, используемый для выделения данных нисходящей линии связи. Таким образом, блок 122 приема ACK/NACK получает каждый сигнал ACK/NACK, соответствующий данным нисходящей линии связи, из множества полос частот компонента. Затем блок 122 приема ACK/NACK принимает решение ACK/NACK в отношении извлеченного сигнала ACK/NACK.

На фиг. 2 показана блок-схема, иллюстрирующая конфигурацию терминала 200 согласно настоящему варианту осуществления. Терминал 200 принимает сигнал данных (данные нисходящей линии связи) с использованием множества полос частот компонента нисходящей линии связи и передает сигнал ACK/NACK для сигнала данных на базовую станцию 100 с использованием PUCCH одной полосы частот компонента восходящей линии связи.

На терминале 200, показанном на фиг. 2, блок 202 приема РЧ выполнен с возможностью изменения полосы приема и изменяет полосу приема на основании информации полосы, поступающей от блока 207 приема задающей информации. Затем блок 202 приема РЧ применяет обработку радиоприема (понижение частоты, аналого-цифровое преобразование и т.п.) к принятому радиосигналу (здесь, сигналу OFDM), принятому в полосе приема через антенну 201, и выводит полученный принятый сигнал на блок 203 удаления CP.

Блок 203 удаления CP удаляет CP из принятого сигнала, и блок FFT 204 преобразует принятый сигнал после удаления CP в сигнал частотной области. Сигнал частотной области выводится на блок демультиплексирования 205.

Блок демультиплексирования 205 демультиплексирует сигнал, поступающий от блока FFT 204, в широковещательную информацию, включающую в себя системную информацию для каждой соты, включающую в себя информацию области PUCCH, указывающую область PUCCH, сигнал управления (например, сигнализацию RRC) более высокого уровня, включающий в себя задающую информацию, сигнал PCFICH, сигнал PDCCH и сигнал данных (т.е. сигнал PDSCH). Затем блок демультиплексирования 205 выводит широковещательную информацию на блок 206 приема широковещательной информации, выводит сигнал управления на блок 207 приема задающей информации, выводит сигнал PCFICH на блок 208 приема PCFICH, выводит сигнал PDCCH на блок 209 приема PDCCH и выводит сигнал PDSCH на блок 210 приема PDSCH.

Блок 206 приема широковещательной информации считывает системную информацию (SIB) из широковещательной информации, поступающей от блока демультиплексирования 205. Кроме того, блок 206 приема широковещательной информации выводит информацию области PUCCH, включенную в системную информацию полосы частот компонента нисходящей линии связи, связанной с полосой частот компонента восходящей линии связи, для использования при передаче PUCCH на блок отображения 214. Здесь, информация области PUCCH включает в себя начальную позицию (номер ресурса) области PUCCH полосы частот компонента восходящей линии связи и вещается, например, посредством SIB2 (системного информационного блока 2 типа).

Блок 207 приема задающей информации считывает полосу частот компонента восходящей линии связи и полосу частот компонента нисходящей линии связи для использования при передаче данных, заданной на терминале, и информацию, указывающую полосу частот компонента восходящей линии связи для использования при передаче PUCCH, из сигнала управления, поступающего от блока демультиплексирования 205. Затем блок 207 приема задающей информации выводит считанную информацию на блок 209 приема PDCCH, блок 202 приема РЧ и блок 217 передачи РЧ в качестве информации полосы. Кроме того, блок 207 приема задающей информации считывает информацию, указывающую ID терминала, заданный на терминале, из сигнала управления, поступающего от блока демультиплексирования 205, и выводит считанную информацию на блок 209 приема PDCCH в качестве информации ID терминала.

Блок 208 приема PCFICH извлекает информацию CFI из сигнала PCFICH, поступающего от блока демультиплексирования 205. Таким образом, блок 208 приема PCFICH получает информацию CFI, указывающую количество символов OFDM для использования при передаче PDCCH, которому выделяется информация выделения ресурсов данных нисходящей линии связи, направленную терминалу, для каждой из множества полос частот компонента нисходящей линии связи, заданной на терминале. Затем блок 208 приема PCFICH выводит извлеченную информацию CFI на блок 209 приема PDCCH и блок отображения 214.

Блок 209 приема PDCCH вслепую декодирует сигнал PDCCH, поступающий от блока демультиплексирования 205, и получает сигнал PDCCH (информацию выделения ресурсов), направленный терминалу. Здесь, сигнал PDCCH выделяется каждому CCE (т.е. PDCCH), размещенному в полосе частот компонента нисходящей линии связи, заданной на терминале, указанном в информации полосы, поступающей от блока 207 приема задающей информации. В частности, блок 209 приема PDCCH идентифицирует количество символов OFDM, в которых размещен PDCCH, для каждой полосы частот компонента нисходящей линии связи, на основании информации CFI, поступающей от блока 208 приема PCFICH. Затем блок 209 приема PDCCH вычисляет пространство поиска терминала с использованием ID терминала для терминала, указанного в информации ID терминала, поступающей от блока 207 приема задающей информации. Все вычисленные здесь пространства поиска (номера CCE для CCE, образующих пространство поиска) одинаковы среди множества полос частот компонента нисходящей линии связи, заданной на терминале. Затем блок 209 приема PDCCH демодулирует и декодирует сигнал PDCCH, выделенный каждому CCE, в вычисленном пространстве поиска. Блок 209 приема PDCCH демаскирует бит CRC с помощью ID терминала для терминала, указанного в информации ID терминала, для декодированного сигнала PDCCH и, таким образом, выбирает сигнал PDCCH, для которого CRC=OK (отсутствие ошибки) в качестве сигнала PDCCH,