Облегченный беспроводной ультразвуковой датчик

Иллюстрации

Показать все

Изобретение относится к медицинской технике, а именно к медицинским диагностическим ультразвуковым системам. Датчик содержит матричный преобразователь, соединенную с ним схему формирователя луча, контроллер сбора данных, приемопередатчик, чувствительный к, по меньшей мере, частично сфокусированным формирователем луча эхо-сигналам, который выполняет функцию беспроводной передачи информационных сигналов изображения в хост-систему, схему питания и батарею, соединенную со схемой питания. Матричный преобразователь, схема формирователя луча, контроллер сбора данных, приемопередатчик, схема питания и батарея вмещены внутрь корпуса датчика, и суммарный вес корпуса датчика и вмещенных компонентов не превышает 300 грамм. Хост-система дополнительно содержит дисплей, который отображает изображения, передаваемые беспроводным образом упомянутым приемопередатчиком датчика в хост-систему. Использование изобретения позволяет упростить беспроводную передачу изображений в удаленную хост-систему во время хирургической процедуры. 19 з.п. ф-лы, 14 ил.

Реферат

Настоящее изобретение относится к медицинским диагностическим ультразвуковым системам и, в частности, облегченным беспроводным ультразвуковым датчикам.

Один из давних недостатков медицинской ультразвуковой диагностики, особенно с точки зрения специалистов по ультразвуковой эхографии, состоит в кабеле, который соединяет сканирующий датчик с ультразвуковой системой. Упомянутые кабели имеют большую длину и часто толщину из-за необходимости вмещения множества коаксиальных линий от нескольких десятков, сотен или даже тысяч элементов-преобразователей в датчике. В результате, упомянутые кабели датчиков могут создавать сложности при обращении и иметь большой вес. Некоторые специалисты по ультразвуковой эхографии пробуют справиться с проблемой кабеля перекидыванием кабеля через руку или плечо для поддержки во время сканирования. Это может приводить к многократным повреждениям от давления во многих случаях. Другая проблема состоит в том, что кабель датчика может инфицировать стерильное поле хирургической операции с навигацией по изображениям. Кроме того, упомянутые кабели датчиков стоят довольно дорого и часто являются самым дорогим компонентом датчика. Таким образом, давно существует потребность в избавлении ультразвуковой диагностики от кабелей датчиков.

В патенте США № 6142946 (Hwang et al.) описан ультразвуковой датчик и система, которые работают именно таким способом. В данном патенте описан батарейный датчик с матричным преобразователем и встроенным формирователем луча. Приемопередатчик посылает собранные ультразвуковые данные в ультразвуковую систему, выполняющую функцию его базовой станции. Обработка и отображение изображений выполняется в ультразвуковой системе.

Полностью интегрированный беспроводной ультразвуковой датчик ставит проблему веса датчика. Хотя беспроводной датчик избавлен от тяжелого объемного кабеля, датчик все еще нуждается в снижении веса и повышении удобства манипулирования, чтобы исключить проблемы эргономичности при многократном применении. От датчика требуется сканировать и фокусировать пучки по двумерной или трехмерной области тела, формировать пучки принятых эхо-сигналов и передавать и принимать эхо-сигналы и управляющую информацию. Все компоненты для упомянутых функций вносят вклад в вес датчика. Кожух датчика и батарея дополнительно увеличивают вес. Соответственно, данный датчик следует сформировать так, чтобы обеспечить все функции, но не создавать проблемы веса для пользователя.

В соответствии с принципами настоящего изобретения, предлагается беспроводной ультразвуковой датчик, который имеет малый вес и удобен для пользователя. Датчик содержит матричный преобразователь и микроформирователь луча на интегральной схеме, подсистему сбора данных на интегральной схеме, приемопередатчик на интегральной схеме и антенну, и электронные соединения между данными компонентами. Батарея и подсистема питания обеспечивают необходимую энергию для возбуждения матрицы преобразователя и передачи ультразвуковых данных в базовую станцию. Компоненты заключены в ручной корпус, и укомплектованный датчик весит не более 300 грамм.

На чертежах:

фиг.1a - изображение ручного беспроводного ультразвукового датчика в соответствии с настоящим изобретением.

Фиг.1b - изображение беспроводного ультразвукового датчика и присоединенного пользовательского интерфейса в соответствии с настоящим изобретением.

Фиг.1c - изображение беспроводного пользовательского интерфейса для беспроводного датчика в соответствии с настоящим изобретением.

Фиг.2a, 2b и 2c - изображения разных систем ультразвуковой визуализации, которые могут служить как базовые станции для беспроводного датчика в соответствии с настоящим изобретением.

Фиг.3 - изображение функциональных компонентов беспроводного 1-мерного матричного датчика в соответствии с настоящим изобретением.

Фиг.4 - изображение функциональных компонентов беспроводного 2-мерного матричного датчика в соответствии с настоящим изобретением.

Фиг.5 - блок-схема основных электронных подсистем между формирователем луча и антенной беспроводного датчика в соответствии с настоящим изобретением.

Фиг.6 - блок-схема основных компонентов хост-узла базовой станции для беспроводного датчика в соответствии с настоящим изобретением.

Фиг.7 - блок-схема подсистемы сбора данных, пригодной для применения в беспроводном датчике в соответствии с настоящим изобретением.

Фиг.8a и 8b - виды в разрезе облегченного беспроводного датчика в соответствии с настоящим изобретением.

Фиг.9a и 9b - примеры пользовательского интерфейса беспроводного датчика.

Фиг.10a и 10b - изображения USB-кабеля для беспроводного датчика в соответствии с настоящим изобретением.

Фиг.11 - схема использования определения расстояний для обнаружения и определения местоположения беспроводного датчика в соответствии с настоящим изобретением.

Фиг.12 - изображение головной гарнитуры визуализации, пригодной для применения с беспроводным датчиком в соответствии с настоящим изобретением.

Фиг.13 - изображение беспроводной гарнитуры радиотелефонного приемопередатчика стандарта Bluetooth для применения с беспроводным датчиком в соответствии с настоящим изобретением.

Фиг.14 - беспроводной датчик в соответствии с настоящим изобретением в ходе применения с несколькими другими беспроводными устройствами.

На фиг.1 показан беспроводной ультразвуковой датчик 10 в соответствии с настоящим изобретением. Датчик 10 заключен в твердый полимерный кожух или корпус 8, который имеет дистальный конец 12 и проксимальный конец 14. На дистальном конце 12 находится линза преобразователя или акустическое окно 12 для матричного преобразователя. Сквозь данное акустическое окно посылаются ультразвуковые волны матрицей преобразователя и принимаются возвращающиеся эхо-сигналы. Антенна расположена внутри корпуса на проксимальном конце 14 датчика, который передает и принимает радиоволны 16 в хост-узел базовой станции и из него. Контакты для зарядки батареи также расположены на проксимальном конце датчика, как показано на фиг.10a и 10b. На боковой стороне датчика 10 находится обычная лево-правосторонняя метка 18, которая обозначает боковую сторону датчика, соответствующую левой или правой стороне изображения. Смотри патент США 5255682 (Pawluskiewicz et al.). Как показано, проксимальный участок корпусной части датчика уже, чем более широкий дистальный конец датчика. Обычно так делают для того, чтобы пользователь мог захватывать зауженный проксимальный конец и прилагать усилие к расширенному дистальному концу, когда требуется особенно плотный контакт с кожей пациента. Корпус 8 датчика герметизирован, чтобы его можно было промывать и протирать для удаления геля и можно стерилизовать после использования.

На фиг.1b показан другой пример беспроводного датчика 10' в соответствии с настоящим изобретением, который содержит подсоединенный приемопередающий пользовательский интерфейс 22. Корпус 8' датчика в настоящем примере содержит матричный преобразователь и может также содержать другие компоненты, например, формирователь луча и подсистему сбора данных. Однако данные другие компоненты могут в альтернативном варианте находиться в приемопередающем пользовательском интерфейсе 22, который имеет размеры, которые допускают размещение элементов пользовательского управления, показанные на верхней поверхности интерфейса и описаны в связи с фиг.1c. Элементы управления предпочтительно исполнены в таком виде, который допускает удобную очистку в условиях ультразвуковой диагностики, в которых присутствует гель, например, герметичной мембраны или сенсорного экрана. Выбор местоположения вышеупомянутых других компонентов будет влиять на кабель 20, который соединяет датчик 10' с пользовательским интерфейсом 22. Если в корпусе 8' датчика находится только матричный преобразователь, то кабель 20 будет содержать проводники для всех элементов матрицы между матрицей преобразователя и формирователем луча в пользовательском интерфейсе 22. Если формирователь луча расположен в корпусе 8' датчика, что предпочтительнее, то кабель 20 может быть тоньше, так как от кабеля требуется пропускание только сфокусированных формирователем луча или детектированных (а не поэлементных) сигналов и сигналов питания преобразователя и управления им. Смотри патент США 6,102,863 (Pflugrath et al.). Кабель 20 может иметь долговременное соединение с пользовательским интерфейсом 22, но, предпочтительно, соединен с разъемным соединителем, чтобы датчик 10' можно было отсоединять, чистить, промывать и стерилизовать или заменять другим датчиком.

В данном варианте осуществления приемопередающий пользовательский интерфейс 22 содержит радиоприемопередатчик и антенну, которая поддерживает связь с хост-системой базовой станции. На нижней поверхности пользовательского интерфейса 22 находится ремешок или браслет 24 для кисти. Данный ремешок или браслет может закрепляться эластично или на липучке (Velcro) и охватывать предплечье пользователя. Следовательно, пользователь-правша будет носить пользовательский интерфейс 22 с верхней стороны правого предплечья и при этом удерживать датчик 10' в правой руке и манипулировать элементами пользовательского управления на правом предплечье пальцами левой руки.

На фиг.1c показан беспроводной пользовательский интерфейс 32 для беспроводного датчика в соответствии с настоящим изобретением. Хотя беспроводной датчик 10 может, по желанию, содержать несколько простых элементов управления, как поясняется ниже, многие пользователи предпочтут, чтобы элементы пользовательского управления были полностью отделены от беспроводного датчика. В данном случае беспроводной датчик 10 может содержать только один двухпозиционный переключатель или совсем не содержать элементов управления, и элементы пользовательского управления для работы с датчиком могут быть элементами управления ультразвуковой системой (42, смотри фиг.2a) или элементами пользовательского управления беспроводным пользовательским интерфейсом 32. Пример беспроводного пользовательского интерфейса 32 на фиг.1c содержит передатчик, который передает радиочастотные или инфракрасные, или другие беспроводные сигналы 16' управления либо непосредственно в беспроводной датчик 10, или хост-узел базовой станции для последующей трансляции в беспроводной датчик. В показанном примере пользовательский интерфейс 32 получает питание от батареи и содержит двухпозиционный переключатель 33 для пользовательского интерфейса и/или беспроводного датчика. В наличии имеются также основные элементы управления датчика, например, кнопка 35 стоп-кадра и кулисный переключатель 34 для перемещения курсора. Другими элементами управления, которые могут присутствовать, являются элементы управления режимом и кнопка выделения. Данный пример содержит также индикатор 36 заряда батареи и индикатор 37 уровня сигнала, которые показывают упомянутые параметры для беспроводного датчика 10, для беспроводного пользовательского интерфейса 32 или того и другого. Беспроводным пользовательским интерфейсом можно управлять, когда он удерживается рукой пользователя или установлен у постели пациента во время обследования последнего.

На фиг.2a-2c представлены примеры подходящих хост-систем базовой станции для беспроводного ультразвукового датчика в соответствии с настоящим изобретением. На фиг.2a показана ультразвуковая система 40, смонтированная на тележке, с нижней секцией для электронных схем системы и источника питания. Система 40 содержит панель 42 управления, которая служит для управления работой системы и может применяться для управления беспроводным датчиком. Элементы управления на панели управления, которую можно использовать для управления датчиком, содержат трекбол, клавишу выбора, ручку регулировки усиления, кнопку стоп-кадра изображения, элементы управления режимом и т.п. Ультразвуковые изображения, формируемые по сигналам, принятым из беспроводного датчика, отображаются на дисплее 46. В соответствии с принципами настоящего изобретения, система 40, смонтированная на тележке, содержит, по меньшей мере, одну антенну 44 для передачи и приема сигналов 16, которыми обмениваются беспроводной датчик и хост-система. В альтернативном варианте можно использовать другие методы связи, кроме радиочастотных сигналов, например, инфракрасный канал передачи данных, между датчиком и системой.

На фиг.2b показана хост-система, выполненная в конструктиве носимого персонального компьютера. Корпус 50 вмещает электронные схемы хост-системы, содержащие приемопередатчик для связи с беспроводным датчиком. Приемопередатчик может находиться внутри корпуса 50, в ячейке корпуса для дополнительного оборудования, например, типа ячейки для накопителя данных или батареи. Приемопередатчик может быть также выполнен в виде платы PCMCIA-карты (карты адаптера для подключения к компьютерной сети портативных устройств) или дополнительного устройства с подключением к системе через USB-разъем, как описано в публикации международной заявки WO 2006/111872 (Польша). По меньшей мере, одна антенна 54 соединена с приемопередатчиком. Беспроводной датчик может работать с управлением от панели 52 управления системы, и ультразвуковые изображения, сформированные по сигналам датчика, отображаются на дисплее 56.

На фиг.2c ручной блок 60 отображения с батарейным питанием, пригодный для применения в качестве хост-системы для беспроводного датчика в соответствии с настоящим изобретением. Блок 60 имеет ужесточенный корпус, предназначенный для применения в окружающих условиях, в которых осуществляется много физических манипуляций, например, в санитарно-транспортном средстве, отделении неотложной помощи или службе неотложной помощи (EMT). Блок 60 содержит элементы 62 управления для управления датчиком и блоком 60 и содержит приемопередатчик, который осуществляет связь с помощью антенны 64.

На фиг.3 показан беспроводной датчик 10 в соответствии с настоящим изобретением, сконструированный для получения двумерных изображений. Чтобы сканировать плоскость двумерного изображения, датчик 10 использует одномерную (1-мерную) матрицу 70 преобразователей, расположенную на дистальном конце 12 датчика около акустического окна датчика. Матрица преобразователей может быть сформирована керамическими пьезоэлектрическими элементами-преобразователями, пьезоэлектрическим полимером (PVDF - поливинилиденфторид) или может представлять собой полупроводниковый ультразвуковой преобразователь, полученный методом микрообработки (MUT), например, матрицу элементов PMUT (пьезоэлектрических MUT), или CMUT (емкостных MUT). 1-мерный матричный преобразователь 70 возбуждается и эхо-сигналы обрабатываются, по меньшей мере, одной ASIC (специализированной интегральной схемой) 72 сжатия данных микроформирователя луча. Микроформирователь 72 луча принимает эхо-сигналы из элементов 1-мерной D матрицы преобразователей и задерживает и группирует поэлементные эхо-сигналы в небольшое число частично сфокусированных формирователем луча сигналов. Например, микроформирователь 72 луча может принимать эхо-сигналы из 128 элементов-преобразователей и группировать упомянутые сигналы для формирования восьми частично сфокусированных формирователем луча сигналов и, тем самым, для сокращения числа сигнальных трактов со 128 до восьми. Микроформирователь 72 луча может быть также выполнен с возможностью формирования полностью сфокусированных формирователем луча сигналов от всех элементов активной апертуры, как описано в вышеупомянутом патенте США 6,142,946. В предпочтительном варианте осуществления полностью сфокусированные формирователем луча и детектированные сигналы формируются датчиком для беспроводной передачи в базовую станцию так, чтобы снижать скорость передачи данных до уровня, который обеспечивает приемлемую визуализацию в реальном времени. Технология микроформирователя луча, подходящая для использования в формирователе 72 луча, описана в патентах США 5229933 (Larson III), 6375617 (Fraser) и 5997479 (Savord et al.). Сфокусированные формирователем луча эхо-сигналы вводятся в управляющую и приемопередающую подсистему 74 датчика, которая передает сфокусированные формирователем луча сигналы в хост-систему, в которой они могут подвергаться дополнительной обработке по формированию луча и затем обработке для формирования и отображения изображений. Управляющая и приемопередающая подсистема 74 датчика принимает также сигналы управления из хост-системы, когда датчик работает с управлением от хост-узла, и вводит соответствующие сигналы управления в микроформирователь 72 луча для, например, фокусировки пучков на требуемой глубине или посылки и приема сигналов требуемого режима (доплеровского, B-режима) в требуемую область изображения и из данной области. На упомянутой выше фигуре не показаны подсистема питания и батарея для питания датчика, которые описаны ниже.

Приемопередатчик управляющей и приемопередающей подсистемы 74 датчика передает и принимает радиочастотные сигналы с помощью штыревой антенны 76, аналогичной антенне сотового телефона. Штыревая антенна обеспечивает одно из таких же преимуществ, как антенна на сотовом телефоне, которое состоит в том, что малогабаритные обводы антенны делают ее удобной для удерживания и ношения и снижают вероятность повреждения. Однако в настоящем варианте осуществления беспроводного датчика штыревая антенна 76 служит для дополнительной цели. Когда специалист по ультразвуковой эхографии держит обычный, снабженный кабелем датчик, датчик захватывается сбоку, как захватывают толстый карандаш. Беспроводной датчик, например датчик, показанный на фиг.1a, можно удерживать таким же образом, однако поскольку датчик не содержит кабеля, его можно также держать с захватом проксимального конца датчика. Это невозможно сделать с обычным, снабженным кабелем датчиком из-за присутствия кабеля. У пользователя беспроводного датчика может появляться желание удерживать беспроводной датчик за проксимальный конец, чтобы прилагать большое усилие к телу для улучшения акустического контакта. Однако охватывание рукой проксимального конца датчика, когда антенна находится внутри проксимального конца датчика, будет экранировать антенну от передачи и приема сигнала и может привести к ненадежности связи. Как выяснилось, применение антенны, которая выступает из проксимального конца датчика, не только расширяет поле антенны далеко наружу от корпуса датчика, но также препятствует удерживанию датчика за проксимальный конец вследствие неудобства нажима на штыревую антенну. Вместо этого пользователь, вероятнее всего, будет захватывать датчик сбоку обычным образом, с оставлением поля антенны открытым для качественного приема и передачи сигнала. Для улучшения приема конфигурация антенны хост-узла базовой станции может вносить разнос по эффектам поляризации и ориентации путем создания двух совместно работающих диаграмм направленности с разными поляризациями. В альтернативном варианте антенна может быть единственной высокоэффективной симметричной вибраторной антенной с подходящей диаграммой направленности с одной поляризацией. При расположении антенны на проксимальном конце датчика диаграмма направленности датчика может продолжаться радиально относительно продольной оси датчика и подходящим образом пересекать диаграмму направленности хост-узла базовой станции. Такого рода диаграмма направленности датчика может быть эффективной с антеннами хост-узла базовой станции, находящими на потолке, как можно установить в хирургическом блоке. Как выяснилось также, при данной диаграмме направленности датчика прием является эффективным при отражениях от стен кабинета и других поверхностей, которые часто расположены вплотную к месту ультразвукового исследования. Обычно десятиметровая зона действия достаточна для большинства исследований, так как датчик и хост-узел базовой станции находятся в непосредственной близости друг к другу. Применяемые частоты связи могут находиться в 4-ГГц диапазоне, и полимеры, подходящие для корпуса датчика, например, ABS (акрилонитрил-бутадиен-стирол) характеризуются относительной прозрачностью к радиочастотным сигналам на данных частотах. Высокочастотную связь можно улучшить в хост-узле базовой станции, где можно применить несколько антенн для повышения разноса в вариантах осуществления, в которых несколько антенн не являются громоздкими, какими они могли бы быть в беспроводном датчике. Смотри, например, публикацию международной заявки WO 2004/051882, «Delay Diversity In A Wireless Communications System». Несколько антенн могут использовать разные поляризации и местоположения для обеспечения надежной связи, даже при изменении линейных и угловых ориентаций, принимаемых датчиком во время типичного ультразвукового исследования. При типичной манипуляции датчиком возможен поворот датчика в диапазоне 360° углов поворота и наклона в приблизительно полусферическом диапазоне отклонения углов от вертикали. Следовательно, диаграмма направленности дипольного излучения, отцентрированная по центральной продольной оси датчика, будет оптимальной для одной антенны, и ее местоположение на проксимальном конце оказалось наиболее желательным. Диаграмму направленности антенны можно выставлять точно по данной центральной оси или со смещением, но по-прежнему приблизительно в параллельной ориентации относительно данной центральной оси.

На фиг.4 представлен другой пример беспроводного датчика 10 в соответствии с настоящим изобретением. В данном примере беспроводной датчик содержит двумерный матричный преобразователь 80 в качестве чувствительного элемента датчика, который позволяет формировать как двумерные, так и трехмерные изображения. 2-мерный матричный преобразователь 80 связан с микроформирователем 82 луча, который предпочтительно выполнен в виде ASIC, монтируемой методом перевернутого кристалла и присоединенной непосредственно к сборке матричного преобразователя. Как и в случае беспроводного датчика, показанного на фиг.3, между микроформирователем луча и управляющей и приемопередающей подсистемой 74 датчика передаются полностью сфокусированные формирователем луча и детектированные эхо-сигналы и сигналы управления датчиком.

Типичная управляющая и приемопередающая подсистема 74 датчика для беспроводного датчика в соответствии с настоящим изобретением показана на фиг.5. Батарея 92 питает беспроводной датчик и связана со схемой 90 источника и регулятора питания. Схема источника и регулятора питания преобразует напряжение батареи в несколько напряжений, необходимых для компонентов беспроводного датчика, содержащего матрицу преобразователя. Для типичного представленного датчика может требоваться, например, девять разных напряжений. Схема источника и регулятора питания обеспечивает также управление зарядкой во время подзарядки батареи 92. В представленном варианте осуществления батарея является литиевой полимерной батареей, которая является призматической и может быть выполнена в подходящей форме для пространства, доступного под батарею внутри корпуса датчика.

Модуль 94 сбора данных обеспечивает связь между микроформирователем луча и приемопередатчиком. Модуль сбора данных подает сигналы синхронизации и управления в микроформирователь пучка, чем обеспечивает направление распространения ультразвуковых волн и прием из микроформирователя луча, по меньшей мере, частично сфокусированных формирователем луча эхо-сигналов, которые демодулируются и детектируются (и по желанию преобразуются в другой стандарт развертки) и передаются в приемопередатчик 96 для передачи в хост-узел базовой станции. Подробная блок-схема подходящего модуля сбора данных показана на фиг.7. В данном примере модуль сбора данных поддерживает связь с приемопередатчиком по параллельной шине или шине USB таким образом, что, при необходимости, можно использовать USB-кабель, как поясняется ниже. Если применяют шину USB или другую шину, то она может обеспечивать альтернативное проводное соединение с хост-узлом базовой станции по кабелю, с обходом, тем самым, приемопередающего участка 96, как поясняется ниже.

Громкоговоритель 102, который возбуждается усилителем 104 и выдает акустические сигналы или звуки, также связан с модулем 94 сбора данных и получает питание из схемы 90 источника и регулятора питания. В предпочтительном варианте осуществления громкоговоритель 102 является пьезоэлектрическим громкоговорителем, расположенным внутри корпуса 8, и который может находиться за мембраной или стенкой корпуса для хорошей акустики и уплотнения. Громкоговоритель можно применять для формирования множества различных звуков или тональных сигналов, или даже голосовых сообщений. Громкоговоритель имеет множество различных применений. Если беспроводной датчик перемещают слишком далеко от хост-узла так, что прием сигнала хост-узлом или датчиком становится ненадежным или даже полностью пропадает, громкоговоритель может издавать звуковой сигнал для предупреждения пользователя. Громкоговоритель может издавать звуковой сигнал, когда заряд батареи становится слабым. Громкоговоритель может испускать тональный сигнал, когда пользователь нажимает кнопку или элемент управления на датчике, чем обеспечивается звуковая обратная связь по включению элемента управления. Громкоговоритель может обеспечивать тактильную обратную связь на основании ультразвукового исследования. Громкоговоритель может испускать звук, когда включают элемент управления поискового вызова для определения местоположения датчика. Громкоговоритель может формировать доплеровские аудиосигналы во время доплеровского исследования или тона сердца, когда датчик используют как стетоскоп.

Приемопередатчик в данном примере - набор 96 сверхширокополосных интегральных схем (ИС). Как оказалось, сверхширокополосный приемопередатчик имеет скорость передачи данных, которая обеспечивает частоты кадров, подходящие для визуализации в реальном времени, а также зону действия, подходящую для приемлемого уровня мощности, потребляемой от батареи. Наборы сверхширокополосных ИС доступны из множества разных источников, например, General Atomics, San Diego, California; WiQuest, Allen, Texas; Sigma Designs, Milpitas, California; Focus Semiconductor, Hillsboro, Oregon; Alereon, Austin, Texas; и Wisair of Campbell, California.

На фиг.6a показан сигнальный тракт беспроводного датчика в хост-узле базовой станции, который, в данном случае показан в конфигурации 50 носимого персонального компьютера. Антенна 54 связана с идентичным или совместимым набором 96 сверхширокополосных ИС, который выполняет передачу и прием в хост-узле. В предпочтительном варианте осуществления для конфигурации носимого персонального компьютера антенна 54 и набор сверхширокополосных ИС выполнены в виде «программного ключа» 110, который подсоединяется по шине USB, как показано на фиг.6b, и вставляется в USB-порт хост-системы 50 и получает питание через данный порт.

Пример модуля сбора данных, пригодного для применения в беспроводном датчике в соответствии с настоящим изобретением, показан на фиг.7. С левой стороны данного чертежа показаны сигналы, вводимые в микроформирователь луча и сборку матрицы преобразователей и выводимые из них. Упомянутые сигналы содержат сигналы этапа TGC (компенсации усиления по глубине), индивидуальные сигналы сфокусированных формирователем луча эхо-сигналов из микроформирователя луча, другие сигналы данных и синхронизации для микроформирователя луча, сигналы термистора и переключения для контроля перегрева на дистальном конце датчика, источники низкого напряжения питания для микроформирователя луча и высокие напряжения, в настоящем примере +/-30 Вольт, для возбуждения элементов-преобразователей матрицы. С правой стороны чертежа показаны соединения с приемопередатчиком и, как описано ниже, проводники USB и напряжения из проводника USB или от батареи. Упомянутые напряжения поставляют мощность для источников питания, вольтодобавочных/промежуточных преобразователей для преобразования постоянного напряжения и стабилизаторов 202 LDO (с малым падением напряжения), которые стабилизируют разные уровни напряжения, необходимые для беспроводного блока, содержащие напряжения возбуждения подсистемы сбора данных и матрицы преобразователей. Данная подсистема контролирует также напряжение батареи, которое замеряется последовательным ADC (аналого-цифровым преобразователем) 214, и измеренное значение используется для отображения остаточной энергии батареи и для инициирования мер по экономии энергопотребления, как описано ниже. Подсистема 202 выключает датчик, если напряжение батареи доходит до уровня, который повлек бы повреждение батареи. Подсистема также контролирует напряжения, потребляемые датчиком и электронными схемами сбора данных, и аналогично выключает их, если любое достигает небезопасных уровней.

Основой модуля сбора данных является FPGA (программируемая пользователем вентильная матрица) 200 контроллера. Данная FPGA работает как конечный автомат для управления синхронизацией, режимом и характеристиками посылки и приема ультразвуковых волн. Кроме того, FPGA 200 управляет формированием луча при посылке и приеме. FPGA 200 содержит цифровой сигнальный процессор (DSP), который можно программировать для обработки принятых эхо-сигналов различными требуемыми способами. По существу, FPGA 200 управляет всеми аспектами посылки и приема ультразвука. Принятые эхо-сигналы вводятся в FPGA 200 восьмеричной входной ASIC 206. ASIC 206 содержит A/D (аналого-цифровые) преобразователи, преобразующие эхо-сигналы, принимаемые из микроформирователя луча, в цифровые сигналы. Усилители с переменным усилением в составе ASIC применяются для применения этапа TGC к принятым эхо-сигналам. Принятые эхо-сигналы фильтруются фильтрами 210 реконструкции и пропускаются через переключатель 208 передачи/приема во входную ASIC 206. Для излучения ультразвуковых волн сигналы передачи, выдаваемые FPGA 200, преобразуются в аналоговые сигналы DAC (цифроаналоговым преобразователем) 211, пропускаются через T/R-переключатель 208 (переключатель передачи/приема), фильтруются фильтрами 210 и подаются в микроформирователь луча для матричного преобразователя.

В данном исполнении маломощный USB-микроконтроллер 204 используют для приема управляющей информации по шине USB, которая передается в FPGA 200. Эхо-сигналы, принятые и обработанные в FPGA 200, предпочтительно, включая демодуляцию и детектирование, вводятся в микроконтроллер 204 для обработки в формате USB для шины USB и сверхширокополосного приемопередатчика 96. Данные элементы, включая фильтры 210 реконструкции, T/R-переключатель 208, DAC 211 (на излучение), входную ASIC 206 (на прием), FPGA 200 контроллера и USB-микроконтроллер 204, составляют тракт ультразвукового сигнала между приемопередатчиком 96 и микроформирователем 72, 82 луча. Специалисту в данной области техники будут понятны различные другие элементы и регистры, показанные на фиг.7.

На фиг.8a и 8b показана компоновка конструкции беспроводного датчика 10 в соответствии с настоящим изобретением на видах в продольном и поперечном разрезах. Компоненты датчика в данном варианте осуществления расположены внутри корпуса 8a. Каркас внутри корпуса служит для монтажа и расположения компонентов, а также служит как теплоотвод для быстрого и равномерного отведения тепла, выделяемого внутри датчика. Электронные компоненты датчика смонтированы на монтажных платах 121, которые соединяются гибкими схемными соединениями 114. В данном примере монтажные платы и гибкие схемы формируют слитные автономные узлы для эффективного и компактного платного соединения и потока сигналов. Как можно видеть на фиг.8b, каждая из верхней и нижней частей электронного блока содержит две монтажных платы 112, сложенные параллельно одна другой и соединенные гибкой схемой 114. Как можно видеть, входная ASIC 206 и FPGA 200 контроллера смонтированы на нижней стороне нижней монтажной платы на чертежах. Верхние монтажные платы в датчике содержат смонтированные компоненты источника питания и набор 96 ИС приемопередатчика с антенной 76. В конкретном исполнении для набора 96 сверхширокополосных ИС, возможно, было бы желательно использовать отдельную монтажную плату, которая специально предназначена для высокочастотных компонентов и сигналов приемопередатчика. В показанном варианте осуществления пьезоэлектрический громкоговоритель 102 расположен на верхней монтажной плате. Гибкая схема 114 на дистальных концах продольно продолжающихся монтажных плат соединена с меньшей монтажной платой 112, на которой находятся микросхемы 72, 82 микроформирователя луча. Матрица 70, 80 преобразователей присоединена к микроформирователю пучка на дистальном конце 12 датчика.

В показанном узле батарея 92 заполняет центральное пространство датчика между монтажными платами. При применении показанной батареи, продолжающейся по длине, вес батареи распределяется вдоль большей части длины датчика, и улучшается равновесие датчика при манипулировании. Корпус можно изготавливать с отверстием, чтобы батарею 92 можно было достать для замены, или корпус может быть герметизированным, чтобы замена батареи была возможна только на предприятии. На проксимальном конце корпуса 8 датчика гибкой схемой 114 подсоединена небольшая монтажная плата 112, на которой смонтирован USB-разъем 120. Данный разъем может быть стандартным USB-разъемом типа A или типа B. В предпочтительном варианте осуществления USB-разъем выполнен, как показано на фиг.10a и 10b.

Облегченная компактная конструкция, показанная на фиг.8a и 8b, распределяет вес компонентов датчика следующим образом. Корпус 8 и его каркас, гибкие схемы 114, матрица 70, 80 преобразователей и микроформирователь 72, 82 луча весят около 50 грамм в представленной конструкции варианта осуществления. Компоненты модуля 94 сбора данных, набор 96 сверхширокополосных ИС, компоненты 90 источника и регулятора питания и монтажные платы для упомянутых компонентов и набора ИС весят около 40 грамм. Литиевая полимерная батарея на 1800 мА-час и разъем весят около 40 грамм. Громкоговоритель весит около пяти грамм, и антенна весит около десяти грамм. USB-разъем весит около трех грамм. Таким образом, общий вес данного беспроводного датчика приблизительно равен 150 граммам. При снижении веса, возможном для каркаса и собранных монтажных плат, можно достигнуть веса 130 грамм или менее. С другой стороны, батарея большей емкости для более длительного применения между подзарядками, матрица преобразователей с более широкой апертурой и/или корпус большего размера для более эффективного теплоотвода могут удвоить вес до приблизительно 300 грамм. Если батарея меньшей емкости может обеспечить сканирование в течение часа (одно исследование) до зарядки, то батарея большей емкости может допускать использование беспроводного датчика в течение всего дня (8 часов) и его укладку на подставку для ночной подзарядки. Некоторые специалисты по ультразвуковой эхографии могут потребовать как можно более легкий датчик, а другие предпочтут более тяжелый датчик с более продолжительным сканированием между подзарядками. В зависимости от сравнительной важности приведенных соображений для проектировщика и пользователя можно реализовать разные датчики разного веса.

В некоторых исполнениях, возможно, целесообразно создать беспроводной датчик, на котором отсутствуют физические элементы управления, как в случае большинства обычных ультразвуковых датчиков в настоящее время. Многие специалисты по ультразвуковой эхографии не желали бы присутствия элементов управления на датчике, так как, возможно, удерживать датчик одной рукой в положении для визуализации будет труднее, при одновременном манипулировании элементами управления на датчике другой рукой, то есть при работе со скрещенными руками. В других исполнениях на самом датчике находится только двухпозиционный переключатель, так что пользователь может убедиться, что неиспользуемый датчик выключен и не расходует батарею. В еще одних исполнениях на датчике представляется основная визуальная информация, например, уровень сигнала и остаточный ресурс батареи. Основная информация данного типа на датчике будет помогать осуществлению пол