Способ и устройство для определения смещения нуля в вибрационном расходомере

Иллюстрации

Показать все

Способ содержит этапы приема сигналов датчика от вибрационного расходомера и определения текущего нулевого смещения для вибрационного расходомера. Текущее нулевое смещение может быть определено исходя из принятых сигналов датчика. Способ также содержит этап определения одного или нескольких текущих эксплуатационных условий. Одно или несколько текущих эксплуатационных условий могут быть сравнены с эксплуатационными условиями предварительно установленной корреляции смещения. Способ также включает в себя этап формирования среднего нулевого смещения исходя из текущего нулевого смещения и нулевого смещения предварительно установленной корреляции смещения, если предварительно установленная корреляция смещения включает в себя нулевое смещение, соответствующее текущим эксплуатационным условиям. Технический результат - возможность определения и компенсации дрейфа смещения нуля при работе датчика в течение нормального его использования. 2 н. и 8 з.п. ф-лы, 7 ил., 1 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к вибрационным расходомерам и, более конкретно, к способу и устройству для определения изменения смещения нуля вибрационного расходомера.

УРОВЕНЬ ТЕХНИКИ

Вибрационные датчики, например, вибрационные денситометры и расходомеры Кориолиса хорошо известны и используются для измерения массового расхода и получения другой информации о материалах, текущих через трубки в расходомере. Примерные расходомеры Кориолиса раскрыты в Патенте США 4,109,524, Патенте США 4,491,025, и Re. 31,450, все от J.E.Smith и др. Эти расходомеры имеют одну или несколько трубок, прямой или изогнутой конфигурации. Каждая конфигурация трубки в массовом расходомере Кориолиса имеет набор собственных колебательных мод, которые могут быть простыми изгибными, крутильными, или модами связанного типа. Каждая трубка может быть возбуждена для колебаний на предпочтительной моде.

Материал втекает в расходомер из присоединенного магистрального трубопровода со стороны впускного отверстия расходомера, направляется через трубку(-и), и выходит из расходомера со стороны выпускного отверстия расходомера. Собственные колебательные моды заполненной материалом системы отчасти определяются объединенной массой трубок и материала, текущего внутри трубок.

Когда поток через расходомер отсутствует, приводная сила, приложенная к трубке(-ам), заставляет все точки вдоль трубки(-ок) осциллировать с одинаковой фазой, или с малым "смещением нуля", которое представляет собой временную задержку, измеренную при нулевом потоке. Как только материал начинает течь через расходомер, силы Кориолиса приводят к тому, что каждая точка вдоль трубки(-ок) имеет отличающуюся фазу. Например, фаза у впускного конца расходомера отстает от фазы в центрированном положении размещения привода, тогда как фаза при выпуске опережает фазу в центрированном положении размещения привода. Измерительные преобразователи на трубке(-ах) формируют синусоидальные сигналы, отображающие движение трубки(-ок). Снимаемые с измерительных преобразователей сигналы обрабатываются для определения временной задержки между измерительными преобразователями. Временная задержка между двумя или несколькими измерительными преобразователями пропорциональна массовому расходу материала, текущего через трубку(-и).

Измерительная электроника, соединенная с приводом, формирует приводной сигнал для управления приводом и определяет массовый расход и другие свойства материала по сигналам, принятым от измерительных преобразователей. Привод может содержать одну из многих известных конструкций; однако, магнит и противостоящая приводная индукционная катушка получили наибольшее распространение в производстве расходомеров. Переменный ток проходит через приводную индукционную катушку, заставляя колебаться расходомерные трубки с желаемой амплитудой и частотой. Обычно, в данной области техники измерительные преобразователи представляют собой конструкцию из магнита и индукционной катушки, очень похожую на конструкцию привода. Однако, если привод принимает ток, который индуцирует перемещение, то измерительные преобразователи могут использовать обеспечиваемое приводом перемещение для индуцирования напряжения. Величина временной задержки, измеряемая измерительными преобразователями, очень мала; и часто измеряется в наносекундах. Поэтому, необходимо иметь очень точный выходной сигнал преобразователя.

Обычно, расходомер Кориолиса изначально калибруется, и калибровочный коэффициент расхода может быть сформирован вместе со смещением нуля. При работе, для получения массового расхода, калибровочный коэффициент расхода может быть умножен на временную задержку, измеренную измерительными преобразователями, минус смещение нуля. Как правило, расходомер Кориолиса изначально калибруется изготовителем, и предполагается, что он обеспечивает точные измерения без необходимости в дополнительных калибровках. Кроме того, подход в технике предшествующего уровня включает в себя нулевую калибровку расходомера пользователем, после его монтажа, посредством остановки потока, перекрытия клапанов, и, поэтому, для рабочих условий предоставляется опорный нулевой расход измерителя.

Как отмечено выше, во многих вибрационных датчиках, включая в себя расходомеры Кориолиса, может иметь место смещение нуля, которое в технике предшествующего уровня корректируется. Хотя в ограниченных случаях это изначально определенное смещение нуля может адекватно скорректировать измерения, смещение нуля может изменяться во времени вследствие изменения различных эксплуатационных условий, главным образом температуры, из-за чего возможны только частичные коррекции. Вместе с тем, другие эксплуатационные условия также могут влиять на смещение нуля, включая в себя давление, плотность флюида, условия монтажа датчика, и т.д. Кроме того, смещение нуля может в различной степени изменяться в различных измерителях. Это может быть особенно важно в ситуациях, когда несколько измерителей связаны последовательно так, что каждый из измерителей должен считывать то же самое, если измеряется тот же самый поток флюида.

Поэтому, в данной области техники имеется потребность в способе для определения и компенсации изменения смещения нуля вибрационного датчика. Настоящее изобретение преодолевает эти и другие проблемы, и достигается прогресс в данной области техники.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Способ для эксплуатации вибрационного расходомера, имеющего предварительно установленную корреляцию смещения между нулевым смещением и одним или несколькими эксплуатационными условиями, предложен в соответствии с вариантом реализации изобретения. Способ содержит этапы приема сигналов датчика от вибрационного расходомера и определения текущего нулевого смещения для вибрационного расходомера, исходя из принятых сигналов датчика. Способ также содержит этапы определения одного или нескольких текущих эксплуатационных условий и сравнения одного или нескольких текущих эксплуатационных условий с одним или несколькими предыдущими эксплуатационными условиями корреляции смещения. В соответствии с вариантом реализации изобретения, если корреляция смещения включает в себя предварительно определенное нулевое смещение, соответствующее текущим эксплуатационным условиям, то способ формирует среднее нулевое смещение, исходя из текущего и предварительно определенного нулевых смещений.

Измерительная электроника для вибрационного расходомера предоставляется в соответствии с вариантом реализации изобретения. Измерительная электроника включает в себя систему обработки, сконфигурированную для приема сигналов датчика от вибрационного расходомера. Система обработки также может быть сконфигурирована для определения текущего нулевого смещения для вибрационного расходомера, исходя из принятых сигналов датчика, и определения одного или нескольких текущих эксплуатационных условий. В соответствии с вариантом реализации изобретения, измерительная электроника также может быть сконфигурирована для сравнения одного или нескольких текущих эксплуатационных условий с одним или несколькими предыдущими эксплуатационными условиями корреляции смещения, и если корреляция смещения включает в себя предварительно определенное нулевое смещение, соответствующее одному или нескольким текущим эксплуатационным условиям, то для формирования среднего нулевого смещения, основанного на текущем и предварительно определенном нулевых смещениях.

АСПЕКТЫ

В соответствии с объектом изобретения, способ для эксплуатации вибрационного расходомера, имеющего предварительно установленную корреляцию смещения между нулевым смещением и одним или несколькими эксплуатационными условиями, содержит этапы:

приема сигналов датчика от вибрационного расходомера;

определения текущего нулевого смещения для вибрационного расходомера, исходя из принятых сигналов датчика;

определения одного или нескольких текущих эксплуатационных условий;

сравнение одного или нескольких текущих эксплуатационных условий с одним или несколькими предыдущими эксплуатационными условиями корреляции смещения; и

если корреляция смещения включает в себя предварительно определенное нулевое смещение, соответствующее текущим эксплуатационным условиям, то формируют среднее нулевое смещение, исходя из текущего и предварительно определенного нулевых смещений.

Предпочтительно, способ дополнительно содержит этап сохранения текущего нулевого смещения для вибрационного расходомера и одного или нескольких текущих эксплуатационных условий, если корреляция смещения не включает в себя предварительно определенное нулевое смещение, соответствующее одному или нескольким текущим эксплуатационным условиям.

Предпочтительно, этап формирования среднего нулевого смещения содержит этапы:

применения первого весового коэффициента к текущему нулевому смещению для формирования первого взвешенного нулевого смещения;

применения второго весового коэффициента к предварительно определенному нулевому смещению для формирования второго взвешенного нулевого смещения; и

расчет среднего нулевого смещения, исходя из первого и второго взвешенных нулевых смещений.

Предпочтительно, первый и второй весовые коэффициенты содержат взвешенные по времени коэффициенты.

Предпочтительно, способ дополнительно содержит этапы:

формирования новой корреляции смещения, исходя из среднего нулевого смещения и одного или нескольких эксплуатационных условий.

В соответствии с другим объектом изобретения, измерительная электроника для вибрационного расходомера включает в себя систему обработки, сконфигурированную для:

приема сигналов датчика от вибрационного расходомера;

определение текущего нулевого смещения для вибрационного расходомера, исходя из принятых сигналов датчика;

определения одного или нескольких текущих эксплуатационных условий;

сравнения одного или нескольких текущих эксплуатационных условий с одним или несколькими предыдущим эксплуатационным условиям корреляции смещения; и

если корреляция смещения включает в себя предварительно определенное нулевое смещение, соответствующее одному или нескольким текущим эксплуатационным условиям, то формируют среднее нулевое смещение, исходя из текущего и предварительно определенного нулевых смещений.

Предпочтительно, система обработки дополнительно сконфигурирована для:

сохранения текущего нулевого смещения для вибрационного расходомера и одного или нескольких текущих эксплуатационных условий, если корреляция смещения не включает в себя предварительно определенное нулевое смещение, соответствующее одному или нескольким текущим эксплуатационным условиям.

Предпочтительно, этап формирования среднего нулевого смещения содержит этапы:

применения первого весового коэффициента к текущему нулевому смещению для формирования первого взвешенного нулевого смещения;

применения второго весового коэффициента к предварительно определенному нулевому смещению для формирования второго взвешенного нулевого смещения; и

расчет среднего нулевого смещения, исходя из первого и второго взвешенных нулевых смещений.

Предпочтительно, первый и второй весовые коэффициенты содержат взвешенные по времени коэффициенты.

Предпочтительно, система обработки дополнительно сконфигурирована для:

формирование новой корреляции смещения, исходя из среднего нулевого смещения и одного или нескольких эксплуатационных условий.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 изображает сборку вибрационного датчика в соответствии с вариантом реализации изобретения.

Фиг.2 - измерительная электроника для вибрационного датчика в соответствии с вариантом реализации изобретения.

Фиг.3 - блок-схема системы расходомера в соответствии с вариантом реализации изобретения.

Фиг.4 - подпрограмма определения дифференциального смещения в соответствии с вариантом реализации изобретения.

Фиг.5 - график корреляции дифференциального смещения в соответствии с вариантом реализации изобретения.

Фиг.6 - подпрограмма определения дифференциального нуля в соответствии с вариантом реализации изобретения.

Фиг.7 - подпрограмма определения смещения нуля в соответствии с другим вариантом реализации изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Чертежи на Фиг.1-7 и нижеследующее описание демонстрируют конкретные примеры для пояснения специалистам в данной области техники того, как реализовать и использовать наилучший вариант изобретения. С целью пояснения принципов изобретения, некоторые обычные объекты были упрощены или опущены. Специалисты в данной области техники увидят возможные вариации этих примеров, которые находятся в пределах объема изобретения. Специалисты в данной области техники увидят, что описанные ниже признаки могут быть различным образом объединены, образуя множественные вариации изобретения. Таким образом, изобретение не ограничивается описанными ниже конкретными примерами, но только формулой и ее эквивалентами.

На Фиг.1 показан пример сборки 5 вибрационного датчика в виде расходомера Кориолиса, содержащего расходомер 10 и одну или более измерительную электронику измерителей 20. Одна или более измерительная электроника 20 соединяется с расходомером 10 для измерения параметров текущего материала, например, плотности, массового расхода, объемного расхода, суммарного массового расхода, температуры, и для получения другой информации.

Расходомер 10 включает в себя пару фланцев 101 и 101', манифольды 102 и 102', и трубки 103A и 103B. Манифольды 102, 102' прикреплены к противоположным концам трубок 103A, 103B. Фланцы 101 и 101' настоящего примера прикреплены к манифольдам 102 и 102'. Манифольды 102 и 102' настоящего примера прикреплены к противоположным концам проставки 106. Проставка 106 поддерживает определенное расстояние между манифольдами 102 и 102', в настоящем примере, чтобы предотвратить нежелательные колебания в трубках 103A и 103B. Трубки вытянуты наружу от манифольдов по существу параллельно друг другу. Когда расходомер 10 вставляется в трубопроводную магистраль (не показана), которая переносит текучий материал, материал входит в расходомер 10 через фланец 101, проходит через впускной манифольд 102, где суммарное количество материала направляется в трубки 103A и 103B, протекает через трубки 103A и 103B, и назад, в выпускной манифольд 102', где материал выходит из расходомера 10 через фланец 101'.

Расходомер 10 включает в себя привод 104. Привод 104 прикреплен к трубкам 103A, 103B в положении, где привод 104 может возбудить колебания трубок 103A, 103B на приводной моде. Более конкретно, привод 104 включает в себя первую составляющую часть привода (не показана), прикрепленную к трубкам 103A, и вторую составляющую часть привода (не показана), прикрепленную к трубкам 103B. Привод 104 может содержать одно из многих известных устройств, например, магнит, установленный на трубке 103A, и противостоящую катушку, установленную на трубке 103B.

В настоящем примере, приводная мода представляет собой первую несинфазную изгибную моду, и трубки 103A и 103B предпочтительно выбраны и соответственно смонтированы на впускном манифольде 102 и выпускном манифольде 102' так, чтобы обеспечить сбалансированную систему, имеющую по существу то же самое массовое распределение, моменты инерции, и упругие модули относительно изгибных осей W-W и W'-W', соответственно. В настоящем примере, где приводная мода представляет собой первую несинфазную изгибную моду, трубки 103A и 103B приводятся в движение приводом 104 в противоположных направлениях относительно их соответствующих изгибных осей W-W и W'-W'. Приводной сигнал в виде переменного тока может быть предоставлен одним или несколькими электронными измерителями 20, например, по каналу 110, и пропущен через катушку, чтобы возбудить колебания обоих трубок 103A, 103B. Обычные специалисты в данной области техники увидят, что в рамках настоящего изобретения могут быть использованы и другие приводные моды.

Показанный расходомер 10 включает в себя пару измерительных преобразователей 105, 105', которые прикреплены к трубкам 103A, 103B. Более конкретно, первая составляющая часть измерительного преобразователя (не показана) расположена на трубке 103A, и вторая составляющая часть измерительного преобразователя (не показана) расположена на трубке 103B. В изображенном варианте реализации, измерительные преобразователи 105, 105' могут быть электромагнитными детекторами, например, тензометрическими магнитами и тензометрическими индукционными катушками, которые производят тензометрические сигналы, отображающие скорость перемещения и положение трубок 103A, 103B. Например, измерительные преобразователи 105, 105' могут подавать тензометрические сигналы на одну или более измерительную электронику 20 по каналам 111, 111'. Обычные специалисты в данной области техники увидят, что перемещение трубок 103A, 103B пропорционально определенным параметрам текущего материала, например, массовому расходу и плотности материала, текущего через трубки 103A, 103B.

Следует отметить, что хотя описанный выше расходомер 10 содержит двойную расходомерную трубку, в рамках настоящего изобретения вполне возможно реализовать расходомер с единственной трубкой. Кроме того, хотя расходомерные трубки 103A, 103B показаны как трубки с изогнутой конфигурацией, настоящее изобретение может быть реализовано с расходомером, содержащим расходомерные трубки прямой конфигурации. Поэтому, описанный выше конкретный вариант реализации расходомера 10 представляет собой просто отдельный пример, и никоим образом не должен ограничивать объем притязаний настоящего изобретения.

В показанном на Фиг.1 примере, одна или более измерительная электроника 20 принимает тензометрические сигналы от измерительных преобразователей 105, 105'. Канал 26 предоставляет входное и выходное средство, которое позволяет одной или более измерительной электронике 20 взаимодействовать с оператором. Одна или более измерительная электроника 20 измеряет параметры текущего материала, например, разность фаз, частоту, временную задержку, плотность, массовый расход, объемный расход, суммарный массовый расход, температуру, поправки к измерениям, и позволяет получать другую информацию. Более конкретно, одна или более измерительная электроника 20 принимает один или несколько сигналов, например, от измерительных преобразователей 105, 105', и от одного или нескольких температурных датчиков (не показаны), и использует эту информацию для измерения параметров текущего материала.

Методики, с помощью которых сборки вибрационных датчиков, например, расходомеры Кориолиса или денситометры, измеряют параметры текущего материала, хорошо известны; поэтому, подробное их описание в данном случае для краткости опущено.

Как рассмотрено кратко выше, одна проблема, связанная со сборками вибрационных датчиков, например, с расходомерами Кориолиса, заключается в наличии смещения нуля, которое является измеренной временной задержкой для измерительных преобразователей 105, 105' при нулевом потоке флюида. Если смещение нуля не учитывается при расчете расхода и различных других измерений потока, то измерения потока обычно будут включать в себя ошибку измерения. Типичный подход предшествующего уровня техники при компенсации смещения нуля заключается в том, чтобы измерить начальное смещение нуля (Δt0) в течение процесса начальной калибровки, который обычно проходит при закрытых клапанах и при обеспечении условия нулевого опорного потока. Такие процессы калибровки общеизвестны в данной области техники, и их подробное рассмотрение опущено для краткости описания. Как только начальное смещение нуля определено, во время эксплуатации, измерения расхода корректируются вычитанием начального смещения нуля из измеренной временной разности в соответствии с уравнением (1).

m ˙ = F C F ( Δ t m e a s u r e d − Δ t 0 ) (1),

где:

m ˙ - массовый расход

FCF - калибровочный коэффициент расхода

Δ t m e a s u r e d - измеренная временная задержка

Δt0 - начальное смещение нуля

Следует отметить, что уравнение (1) предоставляется исключительно как пример и никоим образом не должно ограничивать объем притязаний настоящего изобретения. Хотя уравнение (1) предоставляется для расчета массового расхода, следует понимать, что на различные другие измерения потока также может влиять смещение нуля и, поэтому, они могут быть скорректированы таким же образом.

Хотя этот подход может предоставить удовлетворительные результаты в ситуациях, когда эксплуатационные условия по существу те же, что и имеющиеся во время начальной калибровки и определения смещения нуля, Δt0, во многих случаях, эксплуатационные условия в течение эксплуатации существенно отличаются от эксплуатационных условий, имеющихся во время калибровки. В результате изменения условий, вибрационный расходомер может испытывать дрейф смещения нуля. Иначе говоря, смещение нуля может изменяться от первоначально рассчитанного смещения нуля, Δt0. Дрейф смещения нуля может серьезно воздействовать на рабочие параметры датчика, приводя к неточным измерениям. Это так потому, что в технике предшествующего уровня смещение нуля, используемое для компенсации измеренной временной разности во время эксплуатации, просто содержало изначально рассчитанное смещение нуля, без учета изменения смещения нуля. Другие подходы предшествующего уровня техники требовали ручной повторной калибровки датчика. Как правило, повторная калибровка требует остановки потока через датчик, чтобы повторно обнулить датчик. Это может оказаться дорогостоящим, поскольку должна быть остановлена вся система в целом. Кроме того, когда в технике предшествующего уровня поток останавливается, чтобы выполнить нулевую калибровку, температура измерителя может быстро измениться, если окружающая температура отличается от температуры флюида. Это может привести к недостоверной нулевой калибровке.

В соответствии с вариантом реализации изобретения, измерительная электроника 20 может быть сконфигурирована для формирования корреляции между смещением нуля и одним или несколькими эксплуатационными условиями. В соответствии с вариантом реализации изобретения, измерительная электроники 20 может быть сконфигурирована для компенсации дрейфа смещения нуля. В соответствии с вариантом реализации изобретения, измерительная электроника 20 может скомпенсировать дрейф смещения нуля, исходя из корреляции между смещением нуля и одним или несколькими измеряемыми эксплуатационными условиями. В соответствии с одним вариантом реализации изобретения, смещение нуля содержит абсолютное смещение нуля. В соответствии с другим вариантом реализации изобретения, смещение нуля содержит дифференциальное смещение нуля. Дифференциальное смещение нуля содержит начальное смещение нуля датчика, объединенное с дифференциальной ошибкой между двумя или несколькими датчиками. Дифференциальное смещение нуля может требоваться для формирования по существу равных расходов через анализируемый датчик и опорный датчик. Иначе говоря, обращаясь к вышеприведенному уравнению (1), если флюид с тем же самым расходом течет через калибруемый датчик и опорный датчик, эти два датчика могут создавать два массовых расхода, используя уравнение (1) для каждого датчика. Если предполагается, что массовый расход опорного датчика равен массовому расходу калибруемого измерителя, то дифференциальное смещение нуля калибруемого датчика может быть рассчитано. Этим способом находится новое смещение нуля для калибруемого датчика, чтобы отобразить опорный расход. Это новое смещение нуля представляет собой по существу дифференциальное смещение. Это показано в уравнениях (2) и (3).

m ˙ R = m ˙ C = F C F C [ Δ t c − ( Δ t 0 c + Δ t E ) ] (2)

( Δ t 0 c + Δ t E ) = Δ t c − m ˙ R F C F C (3)

де:

m ˙ R - опорный массовый расход

Δt0C - начальное смещение нуля калибруемого датчика

ΔtE - дифференциальная ошибка

Δtc - измеренная временная задержка калибруемого датчика

FCFC - калибровочный коэффициент расхода калибруемого датчика

Уравнение (3) может быть дополнительно упрощено, объединяя смещение нуля калибруемого датчика и дифференциальную ошибку. В результате получается уравнение, которое определяет дифференциальное смещение нуля, а именно - уравнение (4).

( Δ t D ) = Δ t c − m ˙ R F C F C (4)

где

ΔtD - дифференциальное смещение нуля

Поэтому, дифференциальное смещение нуля анализируемого датчика не является абсолютным смещением нуля в том смысле, что оно не относится к нулевому расходу, а содержит дифференциальное смещение нуля, в котором оно соответствует различию между двумя датчиками. Когда это дифференциальное смещение охарактеризовано и устранено, выполнение дифференциального измерения пары датчиков существенно улучшается. Может оказаться необходимым характеризовать дифференциальное смещение с изменением эксплуатационных условий. Следует отметить, что уравнение (4) может быть дополнительно упрощено посредством множества вариантов, предполагая, что определенные значения остаются постоянными, например, калибровочные коэффициенты расхода, или начальные значения смещения нуля. Поэтому, конкретная форма уравнения (4) не должна ограничивать объем притязаний настоящего изобретения.

В любом варианте реализации, настоящее изобретение может компенсировать дрейф смещения нуля, не останавливая поток через датчик. Преимущественно то, что в соответствии с настоящим изобретением можно определить и компенсировать дрейф смещения нуля при работе датчика в течение нормального его использования.

На Фиг.2 показана измерительная электроника 20 в соответствии с вариантом реализации изобретения. Измерительная электроника 20 может включать в себя интерфейс 201 и систему 203 обработки данных. Система 203 обработки данных может включать в себя систему 204 памяти. Система 204 памяти может содержать внутреннюю память, как это показано, или альтернативно, может содержать внешнюю память. Измерительная электроника 20 может создавать приводной сигнал 211 и подавать приводной сигнал 211 на привод 104. Кроме того, измерительная электроника 20 может принимать сигналы 210 датчика от расходомера 10 и/или расходомера 305, показанного ниже, например, измерительный/скорости сигналы преобразователя. В некоторых вариантах реализации сигналы 210 датчика могут быть приняты от привода 104. Измерительная электроника 20 может эксплуатироваться как денситометр, или может эксплуатироваться как массовый расходомер, включая в себя работу в качестве расходомера Кориолиса. Следует отметить, что измерительная электроника 20 также может работать как некоторые другие типы сборок вибрационных датчиков, и предоставленные конкретные примеры не должны ограничивать объем притязаний настоящего изобретения. Измерительная электроника 20 может обрабатывать сигналы 210 датчика для получения параметров потока материала, текущего через расходомерные трубки 103A, 103B. В некоторых вариантах реализации, измерительная электроника 20 может принимать температурный сигнал 212 от одного или нескольких датчиков RTD, или от других устройств измерения температуры, например.

Интерфейс 201 может принимать сигналы 210 датчика от привода 104 или от измерительных преобразователей 105, 105' через соединения 110, 111, 111'. Интерфейс 201 может выполнить любое необходимое или желаемое преобразование сигнала, например, любого рода форматирование, усиление, буферизацию, и т.д. Альтернативно, некоторые или все преобразования сигнала могут быть выполнены в системе 203 обработки данных. Кроме того, интерфейс 201 может обеспечить обмен данными между измерительной электроникой 20 и внешними устройствами. Интерфейс 201 может быть приспособлен для любого типа электронной, оптической, или беспроводной связи.

Интерфейс 201 в одном варианте реализации может включать в себя цифровой преобразователь (не показан), причем сигнал датчика содержит аналоговый сигнал датчика. Цифровой преобразователь может осуществлять выборку и оцифровывать аналоговый сигнал датчика и производить цифровой сигнал датчика. Цифровой преобразователь может также выполнить любое необходимое прореживание, причем цифровой сигнал датчика прореживается, чтобы сократить объем необходимой обработки сигнала и сократить время обработки.

Система 203 обработки данных может управлять работой измерительной электроникой 20 и обрабатывать измерения потока расходомером 10. Система 203 обработки данных может выполнять одну или несколько подпрограмм обработки данных, например, подпрограмму 213 определения дифференциального смещения, подпрограмму 215 определения дифференциального нуля, и подпрограмму 216 определения смещения нуля и, тем самым, обрабатывать данные измерений потока, чтобы получить один или несколько параметров потока, которые скомпенсированы относительно дрейфа смещения нуля датчика.

Система 203 обработки данных может содержать универсальный компьютер, микропроцессорную систему, логическую схему, или некоторое другое универсальное или специализированное устройство обработки данных. Система 203 обработки данных может быть распределена по множеству устройств обработки данных. Система 203 обработки данных может включать в себя любого вида составной или независимый электронный носитель данных, например, систему 204 памяти.

Система 203 обработки данных обрабатывает сигнал 210 датчика, в том числе, чтобы сформировать приводной сигнал 211. Приводной сигнал 211 подается на привод 104, заставляя колебаться соответствующую расходомерную трубку(-и), такие как расходомерные трубки 103A, 103B на Фиг.1.

Следует понимать, что измерительная электроника 20 может включать в себя различные другие компоненты и функции, которые являются общеизвестными в данной области техники. Эти дополнительные признаки для краткости опущены в описании и на чертежах. Поэтому, настоящее изобретение не должно ограничиваться конкретными показанными и обсуждаемыми вариантами реализации.

Поскольку система 203 обработки данных производит различные параметры потока, например, массовый расход или объемный расход, ошибка может быть связана с создаваемым расходом вследствие смещения нуля вибрационного расходомера и, более конкретно, вследствие изменения или дрейфа смещения нуля вибрационного расходомера. Хотя смещение нуля обычно изначально рассчитывается, как описано выше, дрейф смещения нуля может быть большим относительно этого изначально рассчитанного значения из-за множества факторов, включая в себя изменение одного или нескольких эксплуатационных условий, например, температуры вибрационного расходомера. Изменение температуры может быть вызвано изменением температуры флюида, изменением окружающей температуры, или и того, и другого. Изменение температуры может быть изменением опорной или калибровочной температуры T0 датчика во время определения начального смещения нуля. Изменение температуры может быть связано с изменением температуры датчика, изменением температуры измерительной электроники, или и того, и другого. В соответствии с вариантом реализации изобретения, измерительная электроника 20 может осуществить подпрограмму 213 определения дифференциального смещения, как дополнительно описывается ниже.

Хотя настоящее изобретение было описано выше в связи с единственным вибрационным расходомером, имеется много приложений, в которых используется множество последовательных вибрационных расходомеров. Во многих из этих приложений не представляет интереса абсолютный расход, измеренный каждым отдельным расходомером, а скорее представляет интерес различие в расходах, измеренных различными расходомерами. Два простых примера такой ситуации - это измерение топливной эффективности и измерения при регистрации утечки. Приложение для измерения топливной эффективности показано на Фиг.3; однако, чертеж одинаково применим к другим ситуациям, например, к системам обнаружения утечки, где множественные расходомеры работают последовательно, и анализируется различие в измерениях, по меньшей мере, между двумя расходомерами.

На Фиг.3 показана блок-схема расходомерной системы 300 в соответствии с вариантом реализации изобретения. Хотя система 300 расходомера показана как типичная система измерения топливной эффективности, следует отметить, что топливо является исключительно примером, и система 300 одинаково применима к другим флюидам. Поэтому, использование топлива не должно ограничивать объем притязаний настоящего изобретения. Система 300 расходомера включает в себя резервуар 301 подачи топлива, трубку 302 подачи топлива, первый вибрационный расходомер 10, установленный в топливоподающую трубку 302, выпуск 304 топлива, трубку 306 возврата топлива, и второй вибрационный расходомер 305, установленный в трубку 306 возврата топлива. Как правило, двигатель, или другое потребляющее топливо устройство, устанавливаются между первым и вторым расходомерами 10, 305; однако, это устройство для простоты не приводится на чертеже. Хотя это и не показано, следует отметить, что расходомеры 10, 305 обычно присоединяются с одной или более измерительной электроникой, как указано выше. В некоторых вариантах реализации, первый и второй расходомеры 10, 305 могут быть присоединены к тому же самому электронному измерителю. В соответствии с вариантом реализации изобретения, первый и второй расходомеры 10, 305 содержат расходомеры Кориолиса. Однако, расходомеры могут содержать другие типы вибрационных датчиков, у которых отсутствуют измерительные возможности расходомеров Кориолиса. Поэтому, настоящее изобретение не должно быть ограничено расходомерами Кориолиса.

При использовании, флюид, например, топливо, может быть подан на первый расходомер 10 через трубку 302 подачи флюида. Первый расходомер 10 может рассчитать различные параметры флюида, включая в себя расход флюида, как рассмотрено выше. Топливо затем выходит из первого расходомера 10 и протекает через потребляющее топливо устройство и, или к топливному выпуску 304, или на второй расходомер 305. Если топливо отбирается от топливного выпуска 304, например, если двигатель работает и потребляет топливо, то только часть топлива, выходящего из первого вибрационного расходомера 10, будет течь ко второму вибрационному расходомеру 305. Поэтому, расходы, измеренные первым и вторым вибрационным расходомерами 10, 305, будут различаться. Неиспо