Pvt-анализ сжатых флюидов
Иллюстрации
Показать всеНастоящее изобретение относится к портативным системам анализа и способам для проведения экспериментов по определению характеристики давление-объем-температура для флюидов. Система тестирования характеристики давление-объем-температура (PVT) содержит портативную камеру 14 контроля среды, первую капсулу 12 А давления, расположенную внутри портативной камеры контроля среды, и вторую капсулу 12 В давления, расположенную внутри портативной камеры контроля среды, при этом вторая капсула давления сообщается с первой капсулой давления. Также система содержит вискозиметр 18, конфигурированный для измерения вязкости флюида, протекающего между первой капсулой давления и второй капсулой давления и оптическую систему 22. При этом оптическая система конфигурирована для измерения оптических свойств флюида, протекающего между первой капсулой давления и второй капсулой давления. Кроме того, система также содержит автоматическую систему управления, способную поддерживать электронную связь с вискозиметром, оптической системой и насосами, сообщающимися с первой и второй капсулами давления. Техническим результатом является создание мобильной системы тестирования характеристики давление-объем-температура (PVT), обеспечивающей возможность выполнения анализа на месте забора образца. 3 н. и 26 з.п. ф-лы, 24 ил.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
По настоящей заявке испрашивается приоритет заявки на патент США № 61/229961, поданной 30 июля 2009 года, содержимое которой приводится в данном документе.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к портативным системам анализа и способам.
УРОВЕНЬ ТЕХНИКИ
Для определения физических свойств углеводородных пластовых флюидов (в газообразной, жидкой и иногда твердой фазах) могут быть проведены различные измерения характеристики давление-объем-температура (PVT). Данные измерения можно проводить в больших стационарных лабораториях с использованием многих видов оборудования. В ранних (и некоторых современных) модификациях PVT-ячеек в качестве среды для нагнетания давления и перемешивания применялась ртуть внутри терморегулируемой капсулы высокого давления. Блоки без ртути были разработаны в начале 1990-ых годов и использовали плавающий поршень или механический винтовой поршень для изменения объема образца и тем самым давления. Оба этих типа капсул использовали механическое перемешивание содержавшихся в них образцов. Традиционные и ныне коммерчески доступные PVT-системы обычно имеют «окна», устойчивые к давлениям менее 103,4 МПа, для наблюдения за содержимым ячейки с целью определения фазы и измерения объема.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Интегрированная портативная система, пригодная для проведения различных комплексов анализов, обычно требующих нескольких инструментов (аппаратуры), может быть использована для проведения PVT-измерений лабораторного уровня.
Согласно одному аспекту система измерения характеристики давление-объем-температура включает: портативную камеру контроля среды; первую капсулу давления, расположенную внутри портативной камеры контроля среды; вторую капсулу давления, расположенную внутри портативной камеры контроля среды, при этом вторая капсула давления гидравлически сообщается с первой; вискозиметр, сконфигурированный для измерения вязкости флюида, протекающего между первой и второй капсулами давления; оптическую систему, сконфигурированную для измерения оптических свойств флюида, протекающего между первой и второй капсулами давления. Варианты осуществления систем могут включать следующие признаки по отдельности или в их комбинации.
В некоторых вариантах осуществления изобретения вискозиметр включает капиллярный вискозиметр, расположенный так, что флюид, протекающий между первой и второй капсулами давления, протекает через капиллярный вискозиметр. В некоторых случаях вискозиметр включает два кварцевых датчика, способных измерять температуру и давление флюида (то есть первый кварцевый датчик находится на одной стороне капиллярной трубки, а второй - на другой стороне капиллярной трубки).
В некоторых вариантах осуществления изобретения оптическая система содержит спектрофотометр, оптически связанный с оптическим блоком посредством оптоволоконных кабелей, причем оптический блок расположен так, что флюид, протекающий между первой и второй капсулой давления, протекает через оптический блок.
В некоторых вариантах осуществления изобретения первая и вторая капсулы давления содержат поршни, отделяющие образец флюида от гидравлического флюида. В некоторых вариантах осуществления изобретения системы также включают автоматическую систему управления, обеспечивающую электронное взаимодействие с вискозиметром, оптической системой и насосами, гидравлически сообщающимися с первой и второй капсулами давления. В некоторых вариантах осуществления изобретения измерительные системы дополнительно включают автоматическую систему управления, способную определять удельные объемы углеводородной фазы на основе данных, хотя бы частично полученных от оптической системы. Автоматическая система управления способна обеспечить управление насосами во время PVT-экспериментов, включающих эксперименты: при постоянном составе смеси (CCE - Constant composition expansion), дифференциального выделения (DLE - Differential liberation), дифференциальной конденсации (CVD - Constant volume depletion), тестирование по разделению, измерения вязкости, определение температуры появления парафинов (WAT - Wax appearance temperature) и эксперименты по определению точки начала осаждения асфальтенов на основании данных, получаемых от насосов, оптических систем и вискозиметров, не требуя задания начальных параметров эксперимента оператором. Система управления способна обеспечить проведение более одного эксперимента одновременно.
В некоторых вариантах осуществления изобретения портативная камера контроля среды включает термостат, способный обеспечить контроль температуры флюида в капсулах давления. В некоторых случаях камера контроля способна обеспечить температуры в диапазоне от 255 до 450°К и позволяет поддерживать ее на постоянном уровне (изотерму), а также осуществлять постепенный программируемый контроль температуры.
В некоторых вариантах осуществления изобретения капсулы давления способны вращаться внутри портативной камеры контроля среды. Капсулы давления способны вращаться внутри портативной камеры контроля среды в целях контроля вертикального положения первой и второй капсулы относительно трубок, соединяющих первую и вторую капсулы давления.
В некоторых вариантах осуществления изобретения первая и вторая капсулы давления и связанные с ними фитинги и соединения сконфигурированы для поддерживания давления до 137,9 МПа.
В некоторых вариантах осуществления изобретения системы сконфигурированы для обеспечения точного измерения и контроля давления, температуры и объема с погрешностью, не превосходящей 2%.
Согласно одному аспекту способ тестирования флюида включает: доставку измерительной системы на место, где отбирается образец флюида из подземного образования; контроль температуры и давления образца флюида в системе тестирования; уравновешивание образца флюида за счет прокачки между первой и второй сообщающимися капсулами давления; измерения вязкости флюида, протекающего в процессе уравновешивания образца между первой и второй капсулами давления; измерения оптических свойств флюида, протекающего между первой и второй капсулами давления в процессе уравновешивания образца флюида.
В некоторых вариантах осуществления изобретения контроль температуры образца содержит контроль температуры образца флюида с использованием портативной камеры контроля среды, содержащей первую и вторую капсулы давления. В некоторых случаях способы также включают регулируемый контроль ориентации первой и второй капсул давления внутри портативной камеры контроля среды. В некоторых случаях способы также включают использование портативной камеры контроля среды для понижения с заданной скоростью температуры образца флюида.
В некоторых вариантах осуществления изобретения способы также включают определение границ фазового перехода в образце флюида на основании изменения оптических свойств части образца флюида.
В некоторых вариантах осуществления изобретения способы также включают одновременное проведение по меньшей мере двух из экспериментов: при постоянном составе смеси, дифференциального выделения (DLE), измерения вязкости, дифференциальной конденсации, по разделению, по определению температуры появления парафинов (WAT) и эксперимента по определению точки начала осаждения асфальтенов с флюидом в первой и второй капсулах давления.
В некоторых вариантах осуществления изобретения способы также включают контроль вертикальной ориентации первой и второй капсул давления для подвыборки, анализа конкретной углеводородной фазы или и того и другого.
Малый размер данных PVT-ячеек позволяет использовать описанную выше систему в мобильных лабораториях.
Использование капиллярного вискозиметра для определения фазы и измерения объема также позволяет создавать системы с максимально допустимым давлением свыше 103,4 МПа (например, до 137,9 МПа).
Подробности одного или больше вариантов осуществления изобретения изложены со ссылками на прилагаемые чертежи и в нижеприведенном описании. Прочие признаки, цели и преимущества изобретения будут очевидны из описания, чертежей и из формулы изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На чертежах:
Фиг.1 - схема аналитического устройства;
Фиг.2A-2F - изображения ячеек давления аналитического устройства;
Фиг.3A-3D - изображения аналитического устройства, общий вид, сбоку, сверху и спереди соответственно;
Фиг.4A и 4B - изображения интерфейса оптического детектора, общий вид и в разобранном виде, соответственно;
Фиг.5 - высокоуровневая блок-схема логики контроллера, который может быть использован для управления аналитическим устройством с Фиг.1;
Фиг.6 - блок-схема последовательности операций при постоянном составе смеси;
Фиг.7А - блок-схема последовательности операций дифференциального выделения;
Фиг.7B - схема давления на различных стадиях эксперимента дифференциального выделения;
Фиг.8A - блок-схема последовательности операций при разделении;
Фиг.8B - схема датчиков давления на различных стадиях эксперимента по разделению;
Фиг.9A - блок-схема последовательности операций при выпуске, при постоянном объеме;
Фиг.9B - схема ячейки давления на различных стадиях эксперимента дифференциальной конденсации, при постоянном объеме;
Фиг.10 - блок-схема последовательности операций эксперимента по определению температуры появления парафинов;
Фиг.11 - блок-схема последовательности операций эксперимента по определению давления начала осаждения асфальтенов;
Фиг.12 - схематическое изображение аналитической системы, развернутой на буровой платформе.
Одинаковые цифровые позиции относятся к одинаковым элементам.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
На Фиг.1 мини-PVT-система 10 представляет пример компактной системы, устойчивой к высоким давлениям и температурам, для измерений характеристики давление-объем-температура и определения физических свойств углеводородных пластовых флюидов (в газообразной, жидкой и иногда твердой фазах). Система 10 включает две капсулы, или ячейки 12A, 12B давления внутри камеры 14 контроля окружающей среды. Трубка 16, включающая капиллярный вискозиметр 18, гидравлически связывает две ячейки 12A, 12B. Капиллярный вискозиметр включает устройства 20 для измерения давления (например, кварцевые датчики давления), расположенные на каждом конце капиллярной трубки известных размеров. Система 10 может также включать оптический блок 22 сконфигурированный для измерения оптических свойств флюидов, протекающих через трубку 16 (например, для регистрации границы раздела фаз и/или наличия взвешенных твердых частиц).
Каждая из двух ячеек 12A, 12B содержит плавающий поршень 24. Ячейки 12A, 12B предназначены для малых объемов флюидов и связанных материалов, например, взвешенных твердых частиц, при высоких давлениях. Например, ячейки 12A, 12B могут включать камеры емкостью 200 см3, способные выдерживать давление до 137,9 МПа. Объем камеры с образцом, а тем самым и давление, контролируются либо подачей, либо откачкой гидравлического флюида (обычно воды) с обратной стороны плавающего поршня(ей) 24 с применением управляемых компьютером высокоточных насосов (не показаны). При проведении PVT-измерений, подробнее описываемых ниже, желательно, чтобы насосы были способны: долго работать (например, больше 6 часов, больше 12 часов или больше 24 часов); прокачивать по меньшей мере 10 см3 в минуту (например, приблизительно 50 или 100 см3 в минуту); точно измерять объемы (например, до 0,1 см3). Насос может быть использован на гораздо более низких скоростях, но предпочтительна точность выдерживания скорости(ей), поскольку эта величина требуется для расчета вязкости.
Фиг.2A-2F показывают вариант выполнения ячеек 12A/B. В данном варианте осуществления ячейка 12A/B включает полый цилиндрический корпус 30 с верхней заглушкой 32 и нижней заглушкой 34, герметизирующий поршень 24 внутри корпуса 30. К нижней заглушке 34 подводится гидравлическая линия, используемая для регулирования положения поршня 24. К верхней заглушке 32 подводятся различные линии, используемые для прокачки флюида между ячейками 12A/B, для впрыска флюида в систему 10 и для впрыска газов в систему 10.
Перемешивание флюидов в системе 10 и, тем самым, равновесие достигаются физическим продавливанием образца флюидов взад и вперед между камерами при поддержании требуемого давления и общего объема образца внутри камер и связанных соединений в ходе PVT-измерений, подробнее описываемых ниже. Данный подход к перемешиванию флюидов позволяет системе 10 одновременно и параллельно измерять вязкость флюида и фазовые объемы в ходе перемешивания. В некоторых случаях данный подход позволяет достичь фазового равновесия быстрее, чем в PVT-системах с одной ячейкой, в которой перемешивание образца проводится либо путем физического перемешивания (путем качания) ячейки, либо посредством внутреннего механического миксера. Кроме того, использование оптического блока 22 для регистрации границ между флюидами может позволить системе 10 работать при более высоких давлениях, чем системы с «окнами» для наблюдения за содержимым ячейки с целью определения фазы и измерения объема.
Использование плавающих поршней 24 позволяет системе 10 быстрее прокачивать газы и/или жидкости. В некоторых вариантах осуществления изобретения компоненты системы 10, включая ячейки 12A, 12B, устанавливаются с возможностью поворота так, что ячейки 12A, 12B могут вращаться и фиксироваться в различных ориентациях (например, ячейки 12A, 12B расположены так, что поршни 24 находятся под трубками 28 впуска, как показано на Фиг.1, или ячейки 12A, 12B расположены так, что поршни 24 находятся над трубками 28 впуска). В зависимости от ориентации ячеек 12A, 12B в системе 10 может быть предпочтительна прокачка газов или жидкостей. Данное свойство может быть также использовано для ускоренной подачи газа в раствор. Например, прокачка флюидов между ячейками 12A, 12B, притом, что ячейки 12A, 12B расположены так, что поршни 24 находятся над трубками 28 впуска, приводит к тому, что газообразная фаза образует пузырьки в жидкой фазе в ходе процесса перемешивания. Фиг.3A-3D - показаны общий вид системы 10 вид сбоку, сверху и спереди соответственно, причем компоненты, включая ячейки 12A, 12B, установлены с возможностью поворота так, что ячейки 12A, 12B могут вращаться и фиксироваться в различных ориентациях. На данных чертежах не показана дверца, используемая для закрывания камеры 14 контроля.
Капиллярный вискозиметр 18, расположенный между отдельными камерами 12A, 12B системы 10, представляет собой капиллярную трубку известной длины и внутреннего диаметра, позволяющую осуществлять измерения вязкости и реологических свойств анализируемого образца. Доступен набор капилляров различных длин и внутренних диаметров для удовлетворения меняющихся требований образцов. Например, для флюидов с вязкостью в диапазоне 0,01-1000 МПа·с могут использоваться различные вискозиметры. Такие вискозиметры коммерчески доступны, например, Vinci Technologies, Nanterre (Paris), France и Chandler Engineering, Tulsa, OK. Высокоточные кварцевые датчики 20 на каждом из концов капиллярного вискозиметра 18 могут измерять давление (индивидуально), падение давления вдоль трубки (путем вычитания индивидуальных показаний), а также точно измерять температуру. Использование капиллярного вискозиметра 18, расположенного между двумя капсулами давления, позволяет одновременно проводить измерения вязкости и другое тестирование. Другие типы вискозиметров, такие как ротационные, с движущимся шариком, с падающим элементом, электромагнитные вискозиметры, конфигурированные как индивидуальные блоки измерения вязкости, подобное невозможно. Кроме того, ротационные, с движущимся шариком, с падающим элементом, и электромагнитные вискозиметры, будучи должным образом откалиброванными, могут точно измерить вязкость ньютоновского флюида, а капиллярные вискозиметры также позволяют производить измерения неньютоновских флюидов с непосредственным измерением скорости сдвига и сдвигающей силы.
Оптический блок 22, расположенный между индивидуальными камерами образцов 12A, 12B обеспечивает прохождение света через флюиды, свойства которых измеряются при тестовых температурах и давлениях. Такие оптические блоки коммерчески доступны, например, у Phoenix Instruments, Splendora (Houston), TX.
При использовании оптических кабелей 26 и спектрофотометра (не показан) изменения пропускания света могут отразить изменение свойств флюида внутри анализируемого флюида, например, изменения фазы (газ, жидкость, твердое вещество). Соотнесение позиции границ фазы с объемами флюида, перемещенного в процессе прокачки образца флюида через оптический блок, позволяет выполнить расчет фазовых границ, объемов и/или начальные условия (например, точки росы или точки начала кипения). Использование встроенного оптического блока 22 позволяет в системе 10 обойтись без вставки окон в корпус ячейки для наблюдения ее содержимого, для получения представления о точке начала кипения нефтяных систем, точках росы в системах газового конденсата и фазовых границ, и подсчете удельных объемов образцов путем измерения изменений высоты границы газ/нефть или положения поршня. В некоторых случаях данная конфигурация позволяет использовать систему 10 для приложения чрезвычайно высокого давления (например, больше 103,4 МПа, до 137,9 МПа и/или 172,4 МПа) к образцу.
На Фиг.4A и 4B показаны варианты осуществление оптического блока с «верхним» и «нижним» креплениями 36 для приема и подключения оптоволоконных кабелей 26 и боковых креплений 38 для приема и подключения трубки 16. Термины «верхний» и «нижний» используются для простоты описания чертежей, а не для того, чтобы обозначить какое-либо абсолютное расположение системных компонентов.
В некоторых случаях система 10 конфигурируется для улучшения точности и уменьшения ошибки путем ограничения мертвого объема. Гидравлические соединения между ячейками 12A, 12B высокого давления выполнены укороченными и с малым внутренним объемом для уменьшения емкости фитингов емкости трубопроводов между ячейками высокого давления 12A, 12B. Сборки головки ячейки высокого давления и верхняя часть поршней могут быть конической формы с одинаковым углом раствора для ограничения объема между деталями головки ячейки давления и поверхностями поршней при посадке. Капиллярный трубчатый вискозиметр может быть сконфигурирован с использованием датчиков давления с малым мертвым объемом и малым диаметром трубки для ограничения объема, связанного с трубкой капиллярного вискозиметра. Аналогично, оптический блок системы спектрометра может быть выбран так, чтобы обеспечить малый мертвый объем. Например, использование этих свойств уменьшает мертвый объем системы 10 до приблизительно 5 миллиметров (например, до приблизительно 2,5% общего объема системы).
В некоторых вариантах осуществления камера 14 контроля среды может представлять собой управляемый компьютером термостат, способный обеспечить регулирование температуры (например, от 0°F до 350°F). Термостат может быть запрограммирован для обеспечения постепенного, с заданной скоростью, нагрева или охлаждения. PVT-измерения обычно проводятся при заданных температурах, таких как температура нефтеносного пласта, трубопровода или процесса, поэтому требуется точный контроль температуры. Возможность программирования постепенного изменения температуры позволяет исследовать осаждение твердых частиц или кристаллизацию Выбранная «камера среды» относительно мала и легко может поместиться в камеру мобильной лаборатории, но, в отличие от коммерчески доступных газовых хроматографических термостатов, достаточно велика, чтобы вместить ячейки 12A, 12B высокого давления и связанные с ними периферийные компоненты. В одном из вариантов осуществления размеры устройства составили 0,61 м × 1,12м × 0,66 м, а вес - 136 кг.
Система 10 включает автоматическую систему управления, способную контролировать систему 10, в том числе распознавать равновесные флюиды, точно устанавливать и считывать показатели температуры, давления и объема, каждый из которых может повлиять на получаемые данные. Автоматическая система управления может быть воплощена с использованием аппаратного, программного обеспечения или обоих этих вариантов. Системное программное обеспечение может быть предоставлено как отдельный компьютерный программный продукт (например, на CD), который может быть установлен в систему 10 перед использованием или как сочетание внедренного программного и аппаратного обеспечения. Системное программное обеспечение, исполняемое системой контроля, может быть сконфигурировано для выполнения измерительных процедур с насколько возможно незначительным участием оператора и может полностью отслеживать и контролировать показатели давления, объема и температуры. Программное обеспечение настроено на контроль (например, поддержание и изменение) объема образца при продавливании газа, жидкости и/или твердого вещества из камеры в камеру. В ходе этого процесса фиксируются давление, объем, температура и спектрографические данные, позволяющие рассчитать требуемые PVT-характеристики. Настройка входной логики внутри программы обеспечивает быстрое достижение равновесных условий в системе 10.
Некоторые PVT-эксперименты полностью автоматизированы (например, запрограммированы, так что вмешательство оператора не требуется), остальные же виды анализа заранее запрограммированы на установку паузы в случаях, когда требуется кратковременное вмешательство оператора. Конкретно система 10 может быть сконфигурирована так, чтобы проводить эксперименты при постоянном составе смеси, эксперименты дифференциального выделения, эксперименты по разделению, эксперименты дифференциальной конденсации, эксперименты по определению температуры появления парафинов (WAT) и эксперименты по определению точки начала осаждения асфальтенов с ограниченным вмешательством оператора или без него. Эти программные способы управления и группировка измерительных возможностей позволит получить высококачественные данные за короткое время при низких требованиях к подготовке оператора. Требование минимального объема образца для всего набора PVT-экспериментов также является дополнительным преимуществом.
Автоматическая система управления может уменьшить время измерений; обеспечить воспроизводимые результаты; достичь высокого уровня точности; создать не нуждающуюся в преобразовании цифровую запись каждого эксперимента. Данные свойства могут уменьшить ошибки, связанные с ручным управлением PVT-системами, в которых лаборанты делают субъективные суждения (на основе визуальных наблюдений или в их отсутствие), касающиеся состояния равновесия, уровней жидкостей и других параметров во время измерений. Кроме того, лаборанты должны преобразовать данные в форму сводной лабораторной таблицы. Субъективные суждения и ошибки преобразования являются самым значительным источником ошибок в коммерческих лабораториях и в конечном счете это означает, что многие лаборатории не могут с легкостью повторить или воспроизвести свои результаты.
Автоматические системы управления могут включать одно или более вычислительное устройство, способное получать, передавать, обрабатывать и хранить данные, связанные с системой 10. Понятие «каждый компьютер» обычно включает и понятие «любое устройство обработки». Каждый компьютер может быть любым компьютером или устройством обработки, как, например, блейд-сервер, персональный компьютер общего назначения (PC), Macintosh, рабочая станция, Unix-компьютер или любой другое подходящее устройство. Другими словами, в настоящем описании изобретения рассматриваются и компьютеры, отличные от компьютеров общего назначения, так же как и компьютеры без обычных операционных систем. Каждый компьютер может быть приспособлен под любую операционную систему, включая Linux, UNIX, Windows Server или любую другую операционную систему.
У каждого вычислительного устройства могут быть память и процессор. Память также может быть удаленной или подсоединенной по сети. Память - это считываемый компьютером носитель, подходящий для хранения компьютерных программ, инструкций и данных. Память также может представлять собой любую энергонезависимую память, носители и устройства памяти, включая, например, и оперативное запоминающее устройство (ОЗУ), постоянное запоминающее устройство (ПЗУ), или другие устройства памяти, такие как стираемая программируемая постоянная память, электрически стираемая программируемая постоянная память и устройства флэш-памяти; магнитные диски, например, внутренние жесткие диски или съемные диски, магнитооптические диски CD- и DVD-диски. Память может хранить данные. Память может также хранить программное обеспечение, относящееся и/или исполняемое любым из вычислительных устройств, используемых в системе 10.
Каждое вычислительное устройство системы 10 может содержать процессор, который исполняет инструкции и управляет данными для выполнения операций вычислительного устройства, такого как центральный процессор (ЦП), блейд-сервер, специализированная интегрированная схема (СИС) или программируемая пользователем вентильная матрица (ППВМ). Обычно процессор функционально связан с памятью для получения данных и/или инструкций от или передачи данных в нее. Процессор и некоторые или все данные, хранимые в памяти, могут быть дополнены или встроены в специализированную логическую схему, такую как специализированная интегрированная схема.
Автоматическая система управления может включать или обращаться к локальному, распределенному или серверному программному обеспечению. На высоком уровне компьютерное программное обеспечение является любым приложением, программой, модулем, процессом или другим программным обеспечением, которое может иметь доступ, возвращать, модифицировать, удалять и иным способом управлять какой-либо информацией в памяти. Одним примером компьютерного программного обеспечения может быть компьютерное приложение, выполняющее любой подходящий эксперимент путем осуществления или выполнения множества шагов. Другой пример компьютерного программного обеспечения - приложение, которое обеспечивает взаимосвязь между одним или большим числом подсистем или модулей. Графические интерфейсы пользователя, которые позволяют пользователям вводить данные и взаимодействовать с системой 10 - еще один пример программного обеспечения.
Вне зависимости от конкретного воплощения программное обеспечение может включать программное обеспечение, встроенное программное обеспечение, зашитое или запрограммированное аппаратное обеспечение или, в зависимости от обстоятельств, их комбинацию. В действительности каждое из вышеупомянутых программных приложений может быть написано или описано на любом подходящем языке программирования, включая C, C++, Java, Visual Basic, ассемблер, Perl, любую отвечающую требованиям версию 4GL, так же как и другие. Также один или большее количество процессов, связанных с этими приложениями, может быть сохранен, к нему можно будет обратиться или выполнить удаленно. Помимо этого, каждое из этих программных приложений может быть дочерним или подмодулем другого программного модуля или промышленного приложения (не показано), оставаясь в рамках описания данного изобретения.
Графический интерфейс пользователя располагается на машине-клиенте. Графический интерфейс пользователя включает интерфейс пользователя, позволяющий оператору системы 10 взаимодействовать хотя бы с частью системы 10 с любой подходящей целью, такой как просмотр экспериментальных параметров и других данных. Обычно графический интерфейс пользователя обеспечивает конкретного пользователя эффективным и простым представлением данных, предоставляемых или передаваемых внутри системы 10. Следует понимать, что термин «графический интерфейс пользователя» может быть использован в единственном или множественном числе для описания одного или большего количества графических интерфейсов пользователя и каждого из экранов графического интерфейса пользователя. В действительности ссылка на графический интерфейс пользователя может, в зависимости от обстоятельств, означать и ссылку на интерфейс пользователя или компонент приложения, так же как и на конкретный интерфейс, доступный через машину-клиент, оставаясь в рамках описания данного изобретения. Таким образом, графический интерфейс пользователя предполагает любой графический интерфейс, такой как обычный интернет-браузер или чувствительный к нажатиям экран, который обрабатывает информацию в системе 10 и эффективно представляет результаты пользователю.
С использованием системы 10 могут быть проведены различные измерения. Например, образцы флюидов с нижнего горизонта могут быть собраны во время геофизических работ, перемещены в цилиндры для образцов и переданы вместе с образцами цельного бурового раствора и фильтратом в местную мобильную лабораторию для использования в PVT-исследованиях.
Фиг.5 показывает общий процесс осуществления автоматической системы управления для системы 10. При запуске автоматическая система управления собирает и/или обновляет показатели приборов, включая, например, давления в системе, температуры, объемы, статус спектрометра и насоса (400). Во время операции системные параметры (402) отслеживаются и записываются (404). Для начала измерения (406) оператор выбирает проводимые эксперименты и вводит параметры эксперимента в автоматическую систему управления (408). Например, для эксперимента при постоянном составе смеси оператор вводит оценочное значение давления насыщения, минимальное давление, максимальное расширение. Автоматическая система управления запускает эксперимент (410), приводя систему 10 к рабочим условиям для начальных контрольных измерений. Образцы обычно сначала восстанавливают до состояния однофазного пластового флюида. Например, образец может быть перемещен в ячейки 12A, 12B системы 10 и камера 14 контроля среды может быть использована для нагрева образца до известной температуры нефтеносного пласта. Гидравлические насосы могут сжать образец до давлений, превосходящих давления в пласте, и затем перемешать образец путем его прокачки взад и вперед между ячейками 12A, 12B, пока не будут достигнуты равновесные условия. Это позволяет любому свободному газу, конденсированной жидкости или кристаллизованному твердому веществу «восстановиться» до однофазного пластового флюида.
Затем автоматическая система управления проверяет, находится ли исследуемый образец в равновесном состоянии (412). Прежде чем записывать данные об объеме во время PVT-эксперимента исследуемые флюиды должны быть приведены в состояние термодинамического равновесия. На время уравновешивания образца значительное влияние оказывают его тип (нефть, газ, пластовая вода); температура системы, давление системы и количество фаз. Автоматическая система управления постоянно следит за давлением, объемом и температурой для определения момента, когда флюиды придут в термодинамическое равновесие. Автоматическая система управления вычисляет следовые средние значения для давления и/или объема для определенного количества считываний (например, ?# считывания) и оценивает результаты через предварительно определенное окно времени (например, ?время). Если замеры постоянны (в пределах заданной +/- погрешности, например, %?), система считается равновесной. Данный способ автоматического определения того, достигнуты ли равновесные условия путем задания желаемого максимального давления, или изменения объема в единицу времени, или увеличения перемешивания позволяет избежать месяцев подготовки, необходимых для обучения лаборантов тому, как определять истинное термодинамическое равновесие для широкого диапазона образцов и давлений/температур флюида, а также обеспечивает получение объективных, воспроизводимых результатов.
Если система 10 не достигает термодинамического равновесия, автоматическая система управления проводит цикл перемешивания (414), как описано выше, включая проверку и регулирование позиций поршней в ячейках давления для поддержания постоянного объема образца. Если система 10 достигла термодинамического равновесия, автоматическая система управления записывает данные давление-объем-температура (416).
Автоматическая система управления может непрерывно рассчитывать вязкость образца (418) на основании габаритов трубки, разности давлений в капиллярном вискозиметре 18, измеренного кварцевыми датчиками 20, и скорость потока флюида через капиллярный вискозиметр 18. Автоматическая система управления может записывать вязкость образца (420) через определенные интервалы и/или во время записи данных давление-объем-температура. Ламинарный или близкий к ламинарному поток может повысить точность измерений вязкости (например, если флюиды образца представляют собой турбулентный или вихревой поток, ошибка измерения вязкости может составить до 50%). Во избежание этой ошибки автоматическая система управления рассчитывает во время эксперимента ориентировочные параметры, такие как число Рейнольдса, число Дина и эффективную вязкость, и показывает результаты на экране оператору. Если образец во время эксперимента течет в неправильном режиме, программное обеспечение предупредит оператора и позволит ему поменять скорости насосов или поменяет скорости насосов автоматически. Это может обеспечить более точные измерения вязкости, чем вискозиметры или лаборатории, которые не отслеживают данные характеристики в режиме реального времени.
Автоматическая система управления использует оптическую регистрацию и данные разности давлений для определения момента образования первого пузырька газа в жидкости (точка начала кипения); первой капли жидкого конденсата из газа (точка росы) и/или первых частиц органического твердого вещества (например, парафина или асфальта). Автоматическая система управления использует спектрометр для отслеживания поглощения света в ультрафиолетовой и видимой области спектра. Профиль светопоглощения резко меняется при изменении фазы или формировании органических твердых веществ. Когда происходит изменение фазы, система автоматического управления измеряет фазовые объемы (422), записывает оптические данные (424), и, в зависимости от обстоятельств, удаляет газовую фазу из системы 10 (426).
Автоматическая система управления проверяет, была ли точка последней в эксперименте (428). Если нет, автоматическая система управления переходит к следующей (430) заданной точке и повторяет экспериментальный цикл. Если же была, автоматическая система управления завершает эксперимент (432).
Автоматическая система управления также записывает изменения в разности давлений в капиллярном вискозиметре. Как только разность давлений превысит заданный порог (как при формировании парафинов и асфальта), система остановит эксперимент, возвратит флюиды в контрольную ячейку и восстановит флюид до начального состояния для подготовки к следующему эксперименту. Результатом комбинации оптики и разности давлений для избыточности и использования высокоточных датчиков является высокая степень точности.
С использованием процесса, показанного как пример на Фиг.6, система 10 может быть использована при проведении экспериментов при постоянном составе смеси, в которых пластовые флюиды в ячейках 12A, 12B подвергается постоянному расширению при постоянном составе смеси и известной температуре нефтеносного пласта. CCE-эксперимент проводится при расширении флюида заданными приращениями объема. По мере увеличения объема падает давление флюида. Жидкости, отобранные с нижнего горизонта, содержат «растворенный» газ, то есть газ, растворенный в жидкости при высоких давлении и температуре. Из-за присутствия растворенного газа, использование постоянного приращения объема для увеличения образца не дает оптимального распределения экспериментальных точек. Аналогично ретроградные газовые конденсаты не лучшим образом поддаются анализу при постоянном приращении объема. Для достижения оптимального распределения автом