Оценивание свойств почвы с использованием волновых сигналов сейсмических поверхностных волн

Иллюстрации

Показать все

Настоящее изобретение относится к области геофизической разведки. В частности, это изобретение относится к построению сейсмического изображения с помощью отраженных волн на основании инверсии и миграции для оценивания физических свойств среды, например импеданса, и/или для образования геофизических моделей подземной области/областей. Заявленная группа изобретений включает способ добычи углеводородов из подземной области, способ преобразования трасс сейсмических данных и способ определения относящейся к верхней части разреза геологической среды модели скорости распространения упругой поперечной волны на основании трасс сейсмических данных. В изобретении используют сейсмические данные, предпочтительно регистрируемые с использованием множества источников и приемников, и способ обращения из двух стадий. Сначала вариации волновых сигналов поверхностных волн разлагают (303) в поверхностно-согласованные передаточные функции, предпочтительно для каждого источника, каждого приемника и каждой небольшой области (301) поверхности. Затем передаточные функции для каждой области обращают (308), чтобы определить свойства почвы или свойства верхней части разреза (такие как модуль сдвига) как функцию глубины. Способом можно найти решение при сложном многомодовом характере поверхностных волн для сред с изменениями свойств по вертикали и горизонтали. Технический результат заключается в исключении погрешности и ограничений разрешающей способности традиционных способов, обусловленные ошибочной идентификацией мод поверхностных волн-помех или обусловленные предположением относительно однородности свойств почвы в поперечном направлении, а также в возможности получения упругих свойств почвы, таких как скорость поперечной волны в почве, или модуль сдвига, или затухание поперечной волны. В частности, в получении упругих свойств как функции глубины от поверхности или глубинный разрез свойств. 3 н. и 19 з.п. ф-лы, 15 ил.

Реферат

Перекрестные ссылки на родственные заявки

По этой заявке испрашивается преимущество приоритета предварительной заявки №61/087933 на патент США, которая была подана 11 августа 2008 года.

Область техники, к которой относится изобретение

В общем это изобретение относится к области геофизической разведки, а более конкретно к обработке сейсмических данных. По существу, изобретение представляет собой способ обращения данных о сейсмической поверхностной волне для получения упругих свойств почвы, таких как скорость поперечной волны в почве, или модуль сдвига, или затухание поперечной волны. В частности, можно получать упругие свойства как функцию глубины от поверхности или глубинный разрез свойств. Способ также можно использовать для оценивания местоположений аномалий в почве, таких как пустоты или погребенные объекты.

Предпосылки создания изобретения

Сейсмические поверхностные волны, также называемые поверхностными волнами-помехами, или волнами Релея, или волнами Лява, заключены в области вблизи земной поверхности, и поэтому распространение их зависит от упругих свойств верхней части разреза, особенно от скорости поперечной волны как функции глубины от поверхности. Скорость поперечной волны прямо связана с жесткостью почвы, определяемой модулем сдвига почвы (Скорость поперечной волны равна корню квадратному из модуля сдвига, деленному на плотность). Скорость поперечной волны или профиль модуля упругости и другие упругие характеристики почвы можно непосредственно использовать для инженерных или других целей или можно использовать косвенно для повышения качества геофизической разведки под почвой или областью верхней части разреза. В дополнение к модулю сдвига или скорости волны упругое затухание или спад амплитуды с расстоянием также является полезной информацией, которую можно использовать для инженерных изысканий и геофизической разведки.

Скорость поперечной волны в почве или модуль сдвига можно определять, обращая кривые дисперсии (зависимости фазовой скорости от частоты) поверхностных волн-помех для получения профиля скорости поперечной волны в среде. Вследствие эффектов уплотнения скорости обычно ниже вблизи земной поверхности и возрастают с глубиной. Высокочастотные составляющие поверхностных волн заключены вблизи поверхности и следуют по более медленным слоям почвы. С другой стороны, низкочастотные составляющие следуют по более глубоким, более быстрым слоям. Поэтому скорость поверхностной волны изменяется с частотой, то есть является дисперсионной. В частности, скорость снижается с повышением частоты. Форму дисперсионной кривой как функцию частоты можно сравнивать с расчетными дисперсионными кривыми, вычисленными для многослойного профиля скорости, и после этого свойства профиля, то есть толщину слоя и модуль сдвига, можно обновлять для лучшего соответствия измеренным дисперсионным кривым. Многослойность приводит к резонансным эффектам и захвату различных мод поверхностной волны-помехи. Более высокую точность можно получать, обращая дисперсионные кривые для основной и более высокого порядка мод поверхностной волны-помехи.

После того как поверхностные волны преобразованы в глубинные разрезы скорости поперечной волны в почве или модуля сдвига, затухания поперечной волны или другого свойства, информацию можно использовать непосредственно в качестве важного инженерного параметра при расчете конструкций, таких как здания и мосты. Другие применения, связанные с непосредственным использованием поверхностных волн для определения характеристик верхней части разреза, включают в себя оценивание реакции участка на землетрясение, контроль уплотнения почвы, картирование пологой поверхности, оценивание прочности подземных материалов, оценивание дорожного покрытия, обнаружение погребенных искусственных сооружений или аномалий, оценивание пустот вокруг канализационной сети и обнаружение глубины залегания коренной породы. Профили скорости в верхней части разреза можно косвенно использовать, чтобы повышать качество определения физической структуры или физического свойства более глубоких подземных областей для оценивания запасов или извлечения углеводородов. Поскольку верхняя часть разреза характеризуется низкой скоростью и является неоднородной, она оказывает сильное влияние на сейсмические волны, которые проходят через нее, и может ограничивать возможность определения структуры и свойств глубоких областей. Профиль скорости в верхней части разреза можно использовать для ввода временных поправок и статических поправок за отражения сейсмических волн от более глубоких зон, или информацию о скорости можно использовать для построения изображения, выполнения миграции или для обращения сейсмических данных.

Проблема, связанная со способами из предшествующего уровня техники, в которых используют поверхностные волны, волны Релея или волны Лява, заключается в том, что трудно разрешать или различать разные дисперсионные кривые для различных мод поверхностной волны. Одна характерная трудность обусловлена неопределенностью частоты и скорости, и обращение является компромиссным, когда идентифицируют неверно выбранную моду или неправильно выбирают моду. Вторая трудность обусловлена отсутствием сведений о фазе источника и неопределенностями изменений фазы при значениях выше 2π. Кроме того, в таких способах при анализе используют усредненные свойства поверхностной волны в пределах протяженности расстановки приемников, и это усреднение ограничивает разрешение. Наконец, интерференция между модами и шумом и затухание поверхностных волн могут искажать амплитуды сейсмических волн, что делает трудной идентификацию отдельных дисперсионных кривых. Далее до некоторой степени подробно будут рассмотрены традиционные способы определения модуля сдвига почвы или скорости поперечных волн в почве.

Современные способы использования поверхностных волн для описания характеристик модуля сдвига почвы или скорости волны включают в себя регистрацию сейсмических данных, за которой следуют две стадии обработки: (1) измерение дисперсионных кривых как функции частоты и затем (2) обращение дисперсионных кривых для получения модуля сдвига как функции глубины. Аналогичные способы можно использовать для получения других свойств помимо модуля сдвига, таких как характеристики затухания. Способы измерения дисперсионных кривых сильно различаются по количеству источников и количеству приемников при регистрации. В старых способах используют один источник и одну пару приемников. В новейших способах используют один источник и многочисленные приемники (порядка 20 или больше), разнесенные с образованием регулярных интервалов. В большей части способов используют источник продольных волн, который возбуждает волны Релея, но также можно использовать источник поперечных волн для возбуждения волн Лява. Способ использования волны любого типа является одним и тем же.

Стадия 1: способы с парой приемников

Старые способы с использованием волн Релея для описания модуля сдвига почвы представляют собой «способы установившегося состояния», включающие применение сейсмического вибратора для создания вибрации грунта на одной частоте или на медленно изменяющейся частоте (патент США №3864667, Bahjat, 1975). На каждой частоте измеряют разность фаз между откликами двух геофонов. На основании этих измерений получают свойства верхней части разреза между приемниками. Однако для регистрации таких измерений затрачивают значительное время. В 1980-годах был разработан способ спектрального анализа поверхностных волн (САПВ) (Nazarian et al., “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems”, Transport. Res. Record 930, 38-54 (1983)). В способе определяют дисперсионную кривую, сначала вычисляя взаимный спектр мощности между сигналами, регистрируемыми двумя датчиками, и после этого развертывая фазу.

Для способа спектрального анализа поверхностных волн и способа установившегося состояния характерны одинаковые проблемы. Поскольку в данный момент времени используют только пару приемников, трудно провести различие между влияниями различных мод поверхностной волны и влияниями любого регистрируемого шума. Расстояние между приемниками и между парой приемников и источником изменяют, чтобы минимизировать, но не исключить влияния мод высокого порядка. Характерной проблемой, связанной с этими измерениями, является неоднозначность около фазовой постоянной 2π. Приемники должны находиться достаточно близко друг к другу с тем, чтобы фаза не изменялась больше чем на 2π. Важно суметь провести различие между изменением фазы на Δ и изменением на Δ+π; последнее соответствует более низкой скорости. Иногда используют несколько дополнительных приемников для содействия развертыванию фазы.

Как указывают Holschneider и соавторы в “Characterization of dispersive surface waves using continuous wavelet transforms”, Geophys. J. Int. 163, 463-478 (2005), в последнее время вейвлет-преобразование используют в качестве способа, позволяющего повысить ослабление одной моды поверхностной волны-помехи и минимизировать вклады других мод. Вейвлет-преобразование представляет собой частотно-временное преобразование, которое может обеспечить лучшую локализацию отдельных мод. Способом снижают интерференцию мод, но шум все еще остается проблемой вследствие 2π-неоднозначности фазы. Holschneider и соавторы выполнили построение математической модели эффектов распространения поверхностной волны в области вейвлет-преобразования и использовали ее для нахождения сначала дисперсионных кривых, а затем кривых затухания одной моды за один раз.

Стадия 1: многочисленные приемники

Способ многоканального анализа поверхностных волн (МАПВ) был разработан Kansas Geological Survey. В этом способе размещают 20-65 или большее количество приемников и регистрируют данные от одного импульсного или вибрационного источника (Park et al., “Multichannel analysis of surface wave”, Geophysics 64, 800-808 (1999); и Park et al., “Multichannel analysis of surface waves (MASW) active and passive methods”, The Leading Edge 26, 60-64 (2007)). Данные обрабатывают как одну сейсмограмму общего пункта возбуждения, амплитуды нормируют или масштабируют, а затем преобразуют в частотно-волночисловую (f-k) область или в область частота-медленность (f-p). Затем дисперсионные кривые для одной или нескольких мод выбирают в точках максимальных амплитуд в областях f-k или f-p. Дисперсионные кривые для одной или нескольких мод используют для последующего обращения свойств верхней части разреза (Beaty et al., “Repeatability of multimode Rayleigh-wave dispersion studies”, Geophysics 68, 782-790 (2003)). Регистрацию можно повторять при каждом новом возбуждении, направляемом в новую расстановку приемников, и каждую сейсмограмму общего пункта возбуждения отдельно анализировать, чтобы для каждой расстановки получать одномерный профиль скорости в верхней части разреза. Затем сочетают каждый одномерный профиль со схемой интерполяции для образования двумерного профиля верхней части разреза.

Многоканальный способ является усовершенствованием способа спектрального анализа поверхностных волн. Одно преимущество заключается в том, что при использовании разнесенных на небольшие расстояния приемников происходит минимизация 2π-неоднозначности изменений фазы; однако невозможно оценивать фазу источника по одной сейсмограмме (Hermann and Ammon, “Surface Waves, Receiver Functions, and Crustal Structure: Version 3.3”, in Computer Programs in Seismology, Saint Louis University, http:www.eas.slu.edu/People/RBHermann/CPS330.htl. (2004)). Его второе преимущество заключается в том, что по определению преобразование в f-k- или f-p-области включает в себя объединение или суммирование по трассам, которое повышает разрешающую способность по частоте и уменьшает проблемы, связанные с шумом. Однако взамен этого происходит потеря разрешающей способности в поперечном направлении; при этом невозможно обнаруживать изменения скорости по ширине расстановки. Как и в случае двух каналов, можно выбирать диапазон удалений для подчеркивания или ослабления различных мод (Xia et/ al., “Utilization of high-frequency Rayleigh waves in near-surface geophysics”, The Leading Edge 23, 753-759 (2004)). В дополнение к этому приемники необходимо разносить равномерно, располагая близко друг к другу, чтобы не иметь ложных частот пространственной волны-помехи. Кроме того, поскольку амплитуды пространственной волны-помехи сильно ослабляются, они изменяются от трассы к трассе, и при суммировании амплитуды искажаются. Используют нормализацию или уравновешивание амплитуд, но все же трудно выбирать и различать многочисленные интерферирующие моды поверхностной волны-помехи. Lefebvre и Benhassen (заявка №2005/0143924 А1 на патент США) сообщили об использовании вейвлет-преобразования для повышения возможности различения разных мод. Forbridger (“Inversion of shallow-seismic wavefields: I. Wavefield transformation”, Geophys. J. Int. 153, 719-734 (2003)) указали на трудности, связанные с выделением многомодовых дисперсионных кривых, и проблемы, связанные с последующим обращением, в случае когда дисперсионные кривые неправильно выделены или неправильно идентифицированы. Forbridger, а также Ryden и Park (“Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra”, Geophysics 71, R49-R58 (2006)) исключили выделение дисперсионных кривых, а вместо него выполняют непосредственное обращение результатов f-p-преобразования. Эти способы включают в себя математическую модель распространения поверхностной волны в f-p-области, для которой требуются несколько предположений и приближений.

Стадия 1: многочисленные приемники и многочисленные источники

Одновременное использование многочисленных положений источников и многочисленных приемников для получения кривых изменяющейся в поперечном направлении фазовой скорости рассмотрели Ernst и соавторы в “Tomography of dispersive media”, J. Acoust. Soc. Am. 108, 105-115 (2000) и в “Removal of scattered guided waves from seismic data”, Geophysics 67, 1240-1248 (2002). Применением не является описание характеристик верхней части разреза, а ослабление рассеиваемой поверхностной волны-помехи при сейсмической разведке на нефть. Их способ включает в себя ряд последовательных операций. Сначала они обращают изменяющуюся в поперечном направлении фазовую скорость как функцию частоты, используя томографический способ, основанный на обобщенных временах пробега. Они предполагают, что поперечные изменения являются небольшими и можно получать ослабление одной моды во временном окне. Для справедливости этого последнего предположения требуется, чтобы источник и приемники были на достаточно большом расстоянии друг от друга для хорошего разделения мод во времени, но вследствие сильного затухания мод поверхностной волны трудно или невозможно получать данные для описания характеристик верхней части разреза. Использование обобщенных времен пробега включает вычисление производной фазы данных, и проблемы фазовой неопределенности при определении фазовой скорости поверхностной волны-помехи возрастают.

Стадия 1: затухание в зависимости от кривых частоты

Хотя большинство способов из предшествующего уровня техники сосредоточено на дисперсионных кривых фазовой скорости, использование кривых затухания как функции частоты рассмотрели Xia и соавторы (работа цитировалась). Наряду с модулем сдвига качественный показатель (Q) как функция глубины также является важной технической величиной, но обращение данных о затухании дает меньшую стабильность. Обычно предполагают, что затухание не зависит от частоты (Ernst et al., “Removal of scattered guided waves from seismic data”, Geophysics 67, 1240-1248 (2002); и Kulesh et. al., “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet Based Frequency-Velocity Analysis”, Pure & Applied Geophysics 165, 255-270 (2008)). Однако в случае использования поверхностных волн для описания характеристик верхней части разреза это предположение является ограниченным. Поскольку затухание обычно уменьшается при возрастании глубины почвы, затухание поверхностных волн должно уменьшаться таким же образом в зависимости от частоты, поскольку фазовая скорость является дисперсионной.

Стадия 2: обращение дисперсионных кривых для профилей скорости в верхней части разреза

Имеются несколько алгоритмов, пригодных для нахождения профиля скорости в верхней части разреза на основании дисперсионных кривых, но успех всех таких способов зависит от точности входных дисперсионных кривых. Обращение представляет собой задачу нелинейной оптимизации модели, в которой моделью является профиль скорости в верхней части разреза. Параметры включают в себя глубину слоя и модуль сдвига слоя. Алгоритмы включают в себя линеаризированное обращение методом наименьших квадратов, алгоритм Левенберга-Марквардта, квазиньютоновский, а в последнее время имитированного отжига (Beaty et al., “Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure”, Geophys. J. Int. 151, 622-631 (2002)). Доступное программное обеспечение включает в себя свободно распространяемое программное обеспечение (Hermann and Ammon, “Surface Waves, Receiver Function, and Crustal Structure: Version 3.3”, in Computer Programs in Seismology, Saint Louis University, http:www.eas.slu.edu/People/RBHermann/CPS330.htl. (2004)) и коммерческое программное обеспечение (SeisOpt® ReMi™, http:www.optimsoftware.com; и Kansas Geological Survey: http:/www.kgs.ku.edu/software/surfseis./index.html.).

Остается необходимость в усовершенствованном способе преобразования поверхностных волн в глубинные профили свойств верхней части разреза путем получения высокоразрешающих, изменяющихся в поперечном направлении кривых многомодовой дисперсии и затухания. В частности, в способе должны минимизироваться неоднозначности фазы источника. Настоящее изобретение удовлетворяет этим нуждам.

Краткое изложение сущности изобретения

В одном осуществлении изобретением является способ оценивания модуля сдвига, скорости поперечной волны, затухания поперечной волны или другого физического свойства области верхней части разреза геологической среды на основании трасс сейсмических данных, соответствующих по меньшей мере одному положению источника и множеству положений приемников при сейсмическом исследовании области, содержащий этапы, на которых:

(а) разделяют область верхней части разреза на одну или несколько ячеек;

(b) для каждой трассы и соответствующих мест нахождения сейсмического источника и приемников вычисляют протяженность траектории луча через каждую имеющуюся промежуточную ячейку от места нахождения источника до места нахождения приемника;

(с) для каждой трассы одновременно находят решения для по меньшей мере двух поверхностно-согласованных составляющих, каждая из которых характеризует эффекты фильтрации распространения сейсмических поверхностных волн через ячейку или связь соответствующего сейсмического источника или приемника с грунтом, при этом указанным решением итерационно оптимизируют составляющие, сравнивая спрогнозированную поверхностную волну, вычисленную с использованием предполагаемых или итерационно обновленных составляющих, наряду с информацией о траектории луча из этапа (b), с соответствующей трассой данных из исследования;

(d) выбирают одну или несколько из поверхностно-согласованных составляющих и используют их для вычисления численным обращением модуля сдвига или другого свойства области верхней части разреза.

Краткое описание чертежей

Настоящее изобретение и его преимущества можно лучше понять при обращении к нижеследующему подробному описанию и сопровождающим чертежам, на которых:

Фигуры 1А-В - иллюстрации регистрации сейсмических данных с использованием многочисленных приемников в случае линейного (1А) и площадного (1В) применений;

Фигуры 2А-В - иллюстрации регистрации сейсмических данных с использованием многочисленных источников в случае линейного (2А) и площадного (2В) применений;

Фигуры 3А-В - иллюстрации регистрации сейсмических данных с использованием многочисленных пар источник-приемник при различных удалениях, охватывающей область поверхности в случае линейного (3А) и площадного (3В) применений;

Фиг. 4 - иллюстрация физических процессов, которые влияют на волновой сигнал, когда поверхностные волны распространяются от источника к приемнику вдоль земной поверхности;

Фиг. 5 - схема небольшого участка сейсмического исследования на картографическом виде, показывающая местоположения источников и приемников и разделение на области или ячейки и показывающая примеры траекторий лучей от источников к приемникам через различные области;

Фиг. 6 - блок-схема последовательности основных этапов в одном осуществлении способа настоящего изобретения;

Фиг. 7 - блок-схема последовательности этапов, предназначенных для выполнения части оптимизации модели из фиг. 6 в одном осуществлении изобретения, при этом образуют поверхностно-согласованные составляющие (передаточные функции), определяющие распространение поверхностной волны;

Фиг. 8 - вид четырех трасс для четырех расстояний (удалений) источник-приемник при компьютерной имитации полного волнового уравнения для поверхностных волн в случае единственного тонкого подземного слоя в пределах полупространства;

Фигуры 9A-D - результаты оптимизации модели для примера из фиг. 8, где изменения волновых сигналов разложены в комплексные (амплитудные и фазовые) составляющие источника и составляющие распространения как функции частоты;

Фиг. 10 - спрогнозированные волновые сигналы, вычисленные по составляющим из фигур 9A-D; волновые сигналы можно сравнивать с входными сейсмическими данными из фиг. 8;

Фигуры 11А-В - данные (11А) трасс и f-k-спектр (11В) при компьютерной имитации полного волнового уравнения для поверхностных волн в случае 20 тонких подземных слоев в пределах полупространства, при этом можно видеть интерференцию 6 мод поверхностных волн-помех;

Фиг. 12 - отобранные волновые сигналы для небольшого количества удалений (протяженностей трасс до приемников) из данных трасс на фиг. 11А; при этом волновые сигналы не имеют простой формы, а образованы суперпозицией многочисленных мод;

Фиг. 13 - спрогнозированные волновые сигналы для таких же удалений, как и для фиг. 12; в этом прогнозе использованы параметры для 6 мод;

Фиг. 14A-F - виды одной трассы (14А) данных из фиг. 12 и прогнозов, в которых спрогнозированные волновые сигналы ограничены одной (14В), двумя (14С), тремя (14D), четырьмя (14Е) и шестью (14F) модами; включение дополнительной моды повышает соответствие трассе (14А) данных; и

Фиг. 15 - кривые дисперсии скоростей (скорости как функции частоты) для 6 различных мод поверхностных волн-помех из фигур 11А-В, вычисленные способом настоящего изобретения.

Изобретение будет описано применительно к примерам осуществлений. Однако в том смысле, что нижеследующее описание является специфическим для конкретного осуществления или конкретного использования изобретения, оно предназначено только для иллюстрации и не подразумевается ограничивающим объем изобретения. Наоборот, оно предполагается охватывающим все варианты, модификации и эквиваленты, которые могут быть включены в объем изобретения, определяемый прилагаемой формулой изобретения.

Подробное описание примеров осуществлений

Настоящее изобретение представляет собой способ получения по сейсмическим данным кривых дисперсии скоростей и затухания как функции частоты для поверхностных волн. Предпочтительно регистрировать данные, используя многочисленные источники и многочисленные приемники. После этого кривые или их модификации можно использовать для обращения свойств верхней части разреза, таких как скорость поперечной волны, или модуль сдвига, или затухание поперечной волны как функции глубины, известными численными методами. Оптимизацию модели и избыточность данных используют, чтобы найти решение для параметров поверхностно-согласованной модели, которые наилучшим образом представляют волновые сигналы в зарегистрированных сейсмических данных и изменения волновых сигналов, когда поверхностные волны распространяются вдоль земной поверхности от источников к приемникам. Параметры связаны с отдельными составляющими или передаточными функциями фильтров для каждого местоположения источника, каждого местоположения приемника и распространения через каждую область поверхности. Параметры модели могут включать в себя многочисленные моды поверхностной волны и поверхностно-согласованные поперечные вариации.

Поэтому в изобретении предпочтительно использовать сейсмические данные, регистрируемые при наличии множества источников и приемников, применяя способ обращения из двух стадий. На стадии 1 вариации волновых сигналов поверхностных волн разлагают в поверхностно-согласованные передаточные функции, предпочтительно, для каждого источника, каждого приемника и каждой небольшой области поверхности. В дальнейшем на стадии 2 передаточные функции для каждой области обращают, чтобы определить свойства почвы или свойства верхней части разреза (такие как скорость поперечной волны) как функцию глубины. Способом можно находить решения в случае сложного многомодового характера поверхностных волн для сред с изменениями свойств по вертикали и в поперечном направлении. При этом исключаются погрешности и ограничения разрешающей способности традиционных способов, возникающие вследствие ошибочной идентификации мод поверхностной волны-помехи или вследствие предположения равномерности свойств почвы в поперечном направлении.

Регистрация сейсмических данных

Сначала сейсмические данные должны быть зарегистрированы или получены. Обычно можно использовать сейсмические данные, зарегистрированные для других целей, например для построения изображения геологической среды, см. ниже обсуждение предпочтительных параметров регистрации. Если такие данные отсутствуют, то должно быть проведено специальное исследование для получения свойств поверхностных волн. Если информация о верхней части разреза необходима только вдоль линии поверхности, то данные можно регистрировать при использовании источников и приемников вдоль линии, как при стандартной регистрации двумерных сейсмических данных. Если необходима информация с площади, то источники и приемники должны быть распределены по всей площади, при этом источники и приемники должны охватывать исследуемую площадь. Как и при любой регистрации сейсмических данных, местоположения источников и приемников должны измеряться и должны иметься наряду с зарегистрированной трассой данных. Можно использовать сейсмический источник любого вида, такой как взрывчатое вещество, вибраторы, воздушные пушки, падающий груз, ударные воздействия, сейсмические пушки и т.д. Предпочтительно возбуждать источники среди многочисленных приемников (например десяти или большего количества), как показано на фигурах 1А-В для линейной (фиг. 1А) и площадной (фиг. 1В) регистрации. На фиг. 1А показаны один источник (10) и несколько приемников (11). Понятно, что между источником и каждым приемником имеется траектория (12) прямой волны. На фиг. 1 возможные траектории лучей проведены только в небольшом количестве. Расстояние между источником и приемником называют удалением. С другой стороны, как показано на фигурах 2А и 2В, в динамике во времени, когда источник перемещают на различные места, на каждом приемнике (20) следует регистрировать данные от многочисленных возбуждений (21) (предпочтительно, десяти или большего количества), используя различные траектории (22) лучей. Эти два требования легче всего выполнить, образовав расстановку приемников из большого количества приемников (60-1000) и затем возбуждая источники, один за другим, по всей расстановке. Нет необходимости в том, чтобы количество возбуждений было таким же, как количество приемников. Для снижения затрат количество возбуждений может быть меньше, чем количество приемников, или наоборот. Если имеющимися приборами можно регистрировать только ограниченное количество каналов, то регистрацию можно ограничить приемниками с максимальным расстоянием (максимальным удалением) от каждого источника.

Кроме того, предпочтительно располагать источники и приемники так, чтобы многочисленные траектории лучей приемник-источник (предпочтительно, 10-20 или больше) проходили через каждую исследуемую область в соответствии с различными удалениями, находящимися в диапазоне от заданного минимального удаления до заданного максимального удаления. На фиг. 3А область показана прямоугольником 30. На чертеже показаны некоторые из траекторий (33) лучей, которые проходят через прямоугольник 30 от источника, такого как 31, к приемнику, такому как 32. Имеется некоторое количество таких траекторий лучей (не все показаны), соответствующих различным удалениям. На фиг. 3В показаны те же самые характеристики при площадном исследовании. Минимальное удаление должно быть достаточно большим, чтобы обеспечивалось распространение плоской волны, которое устанавливается на расстоянии около 1/2 длины поверхностной волны. Это расстояние примерно равно глубине проникновения. Предпочтительно, чтобы максимальное удаление было достаточно небольшим для исключения излишнего затухания поверхностных волн. Обычно оно в 2-3 раза больше минимального удаления. Можно выполнять регистрацию на больших и меньших удалениях. Предпочтительно, чтобы разнесение приемников было не больше величины заданного разрешения в поперечном направлении, но, если возможно, целесообразно иметь половину этой величины дискретизации. Источники и приемники можно укладывать согласно регулярной сетке или нерегулярной сетке или можно использовать псевдослучайную выборку. Может возникнуть необходимость планировать исследование с учетом использования дорог для размещения источников или с учетом обхода зданий и сооружений. Кроме того, может быть полезным размещение источников и приемников за пределами заданной площади, подлежащей охвату, чтобы гарантировать достаточную избыточность данных на краях.

Для оптимизации параметров исследования, таких как минимальное удаление, максимальное удаление и дискретизация приемников и источников, полезно иметь информацию о площади. Может оказаться целесообразным выполнение некоторого предварительного испытания для определения частотного диапазона источника и диапазона скоростей поверхностных волн-помех. Это позволит вычислять длины поверхностных волн. Кроме того, может быть полезно выполнять регистрацию в центре площади, возбуждение в двумерный профиль при частой дискретизации приемников, чтобы f-k- или f-p-анализ можно было использовать для получения исходных параметров. Для этого особого профиля дискретизация (то есть разнесение) приемников должно быть меньше, чем максимальная частота, умноженная на наименьшую скорость, чтобы данные не были искажены вследствие недостаточной частоты выборки.

Стадия 1: оптимизация модели

Одна характеристика, помимо различий траекторий лучей, по которой поверхностные волны отличают от других сейсмических волн (таких как нисходящие волны, которые отражаются от границ раздела), представляет собой волновой сигнал. Волновые сигналы поверхностных волн являются высокоамплитудными, низкочастотными и осциллирующими. С другой стороны, сейсмический импульс источника обычно представляет собой высокочастотный импульс или сейсмический импульс небольшой длительности. Физические процессы при таком изменении волнового сигнала пояснены на фиг. 4, на которой показана часть многослойной геологической среды 110. Когда мода поверхностной волны распространяется от источника, расположенного в точке 101 на поверхности, к приемнику, расположенному в точке 102 на поверхности, вдоль земной поверхности (по траектории 103 луча), она подвергается значительной фильтрации средой и при этом изменяется от импульса (104) источника небольшой длительности до более продолжительного, осциллирующего низкочастотного волнового сигнала (105) поверхностной волны. Поверхностная волна задерживается и затухает. Чем больше расстояние (103) распространения, тем больше изменение. При наличии оценки волнового сигнала (104) источника и регистрируемого выходного сигнала (105) это изменение можно выразить количественно, вычислив передаточную функцию для каждой трассы. Ее можно назвать передаточной функцией полной трассы, и она характеризует суммарную фильтрацию средой, которая приводит к изменению волнового сигнала от волнового сигнала, генерируемого на источнике, до волнового сигнала, регистрируемого на геофоне.

Фильтры обычно характеризуют их передаточными функциями или их импульсными характеристиками. Передаточную функцию определяют как результат деления в частотной области выходного сигнала фильтра на входной сигнал фильтра. Для схемы регистрации сейсмических данных из фиг. 4 передаточная функция T(f) имеет вид

T ( f )   =   выходной сигнал( f ) входной сигнал( f )   =   D ( f ) S ( f ) , (1)

где D(f) является преобразованием Фурье трассы 105 данных и S(f) является преобразованием Фурье сейсмического импульса 104 источника. Передаточную функцию можно также получить по взаимной корреляции сейсмического импульса и трассы данных, разделив ее на автокорреляцию сейсмического импульса источника.

T ( f )   =   S ∗ ( f ) D ( f ) S ∗ ( f ) S ( f ) ,   (2)

где звездочка обозначает комплексно сопряженный элемент. Передаточная функция является комплексной; чтобы полностью характеризовать эффекты фильтрации, она должна включать в себя амплитуду и фазу или действительную и мнимую части. Вычисление обратного преобразования Фурье дает импульсную характеристику фильтра. Передаточная функция и импульсная характеристика являются эквивалентными понятиями в частотной и временной области, соответственно.

Хорошо известно, что можно произвести свертку друг с другом отдельных линейных фильтров (или выполнить умножение в частотной области), чтобы получить комбинированный фильтр. На фиг.4 можно видеть, что общее воздействие на волновой сигнал поверхностной волны складывается из различных физических процессов, каждый из которых зависит от местоположения на поверхности или в области. Например, из связи энергии источника, преобразуемой в моду поверхностной волны-помехи в точке 101, распространения через область 106, распространения через область 107 и связи приемника с грунтом в точке 102. Кроме того, фильтрация вследствие распространения через область 106 должна быть функцией расстояния (108), пробегаемого волной по области 106, и фильтрация вследствие распространения через область 107 должна быть функцией расстояния (109), пробегаемого волной по области 107. Фильтрация благодаря действию распространения включает в себя влияние задержки или скорости как функции частоты (дисперсии) и ослабление амплитуд как функции частоты. Поэтому для одной моды поверхностной волны полную передаточную функцию T(f) трассы можно разложить на отдельные передаточные функции или фильтры для каждого из упомянутых выше физических процессов, или

T ( f )   =   T 101 ( f ) T 106 ( f , d 108 ) T 107 ( f , d 109 ) T 102 ( f ) .   (3)

Используя уравнения (1) и (3), можно получить модельное выражен