Способ пространственной количественной оценки уровня загрязнения атмосферного воздуха
Иллюстрации
Показать всеИзобретение относится к области экологии и может быть использовано для контроля чистоты воздуха населенных мест. Сущность: проводят выбор территории, которую необходимо исследовать на предмет состояния уровня загрязнения атмосферного воздуха. На исследуемой территории в точках натурных замеров проводят натурные инструментальные замеры концентраций загрязняющих веществ в атмосферном воздухе. Карту исследуемой территории покрывают регулярной сеткой, выделяют на ней узловые точки и отмечают расположение точек, в которых были проведены натурные замеры. Выявляют все источники загрязнения атмосферного воздуха на исследуемой территории и проводят сбор данных о параметрах выбросов от указанных источников загрязнения атмосферного воздуха. Затем выполняют расчет приземных концентраций загрязняющих веществ в точках натурных замеров и в узловых точках заданной регулярной сетки от указанных источников загрязнения атмосферного воздуха с применением стандартных математических моделей и программных средств. Для каждой точки, где имеются данные и расчета рассеивания, и натурных замеров, определяют коэффициент соответствия как отношение измеренной концентрации к рассчитанной. Далее точки натурных замеров концентраций загрязняющих веществ объединяют на карте непересекающимися отрезками в треугольники, образуя систему треугольников с вершинами в точках натурных замеров. Для каждого треугольника решают уравнение плоскости с установлением коэффициентов уравнения, зависящих от координат вершин треугольника - точек натурных замеров, и значений коэффициентов соответствия в них. Затем относят каждую узловую точку расчетной сетки к какому-либо треугольнику или устанавливают, что она лежит вне указанной системы треугольников. Для каждой узловой точки, лежащей внутри системы треугольников, рассчитывают коэффициент соответствия по уравнению плоскости соответствующего треугольника. А для узловых точек, лежащих вне системы треугольников, расчет коэффициента соответствия выполняют методом экстраполяции. Для этого значения коэффициента соответствия в узловой точке принимают равными коэффициентам соответствия в ближайшей точке, лежащей на внешней границе системы треугольников. Ранее рассчитанные приземные концентрации загрязняющих веществ в узловых точках заданной регулярной сетки умножают на полученные коэффициенты соответствия с получением уточненной концентрации загрязняющих веществ в узловых точках сетки. Затем строят карту пространственного распределения уточненных концентраций загрязняющих веществ, по которой количественно оценивают уровень загрязнения атмосферного воздуха на исследуемой территории. Технический результат: повышение точности пространственной количественной оценки уровня загрязнения атмосферного воздуха. 5 табл., 9 ил.
Реферат
Изобретение относится к охране среды обитания, в частности к определению уровня загрязнения атмосферного воздуха, и может быть использовано при контроле чистоты воздуха населенных мест.
Важнейшей проблемой санитарно-эпидемиологического контроля территорий является получение достоверной документальной количественной информации, привязанной к координатам местности.
Из уровня техники известен ряд технических решений, позволяющих оценивать уровень загрязнения атмосферного воздуха. Они основаны на использовании различных параметров, по которым оценивают указанный уровень загрязнения.
Например, известны способы оценки степени антропогенного загрязнения воздушной среды с использованием фитоиндикации, в частности, по проценту пораженной растительной ткани (1), по количеству содержащихся в ней биохимических индикаторов (2). Главным существенным недостатком этих способов является низкая оперативность, т.к. морфологические и структурные перестройки проявляются в растениях под действием загрязнения не сразу, а через длительный промежуток времени.
Также известны способы экологического зонирования территории путем проведения космической съемки и последующей программной обработки полученного изображения по спектральной яркости (3, 4). Однако указанные известные способы имеют следующие недостатки: неоперативны, отсутствуют количественные характеристики качества атмосферного воздуха, обладают низкой точностью при изучении небольших по площади территорий, имеющих значимые различия уровней поля приземных концентраций атмосферного воздуха.
Из уровня техники известен способ выявления зон химического загрязнения атмосферного воздуха (5), согласно которому исследуемую территорию разбивают на условную сетку квадратов, размер которых определяется в зависимости от того, насколько подробно следует получить границу загрязнения. Проводят отбор пробы в центре квадрата. С использованием биосенсора на основе суспензии подвижных микроорганизмов определяют величину индекса токсичности пробы и при ее величине меньше минимально допустимого или больше максимально допустимого значения естественного природного фона область, характеризуемую пробой, считают принадлежащей загрязненной зоне.
Недостатком известного способа является большая вариабельность получаемых значений, связанная с использованием биосенсора на основе суспензии подвижных микроорганизмов, а также большие временные и финансовые затраты на проведение исследований.
Известен способ определения загрязнения приземного слоя атмосферы путем химического анализа проб воздуха, отобранных в отдельных точках, с последующей интерполяцией на всю площадь контролируемой территории (6). При этом сначала определяют содержание отдельных ингредиентов, затем проводят сопоставление с соответствующими предельно допустимыми концентрациями (ПДК). Использование данного метода при анализе натурных измерений, полученных в процессе мониторинга атмосферного воздуха на территории крупных поселений, вследствие ограниченного числа постов наблюдений не дает целостного пространственного представления о загрязнении воздушной среды и не всегда позволяет корректно оценить экспозицию населения на участках, удаленных от постов наблюдения. К тому же, недостатком этого способа являются большие материальные затраты на содержание сети пунктов наблюдения, ограниченность получаемой информации административными границами контролируемой территории, малая оперативность мониторинга, так как от отбора пробы до представления результатов анализа в бюллетене проходит не менее 1 месяца.
Известен способ определения предельно допустимого выброса (ПДВ) токсических веществ для каждого промышленного предприятия, который устанавливают на уровне, обеспечивающем соблюдение гигиенических нормативов в воздухе населенных мест при наиболее неблагоприятных для рассеивания метеоусловиях (7). Подобные расчетные методики, реализованные в программе "Эфир-5", требуют учета большого числа параметров, которые, как правило, по своей природе нестационарны, ориентированы на средние значения. В результате существенно снижается точность оценки фактического поля приземных концентраций. Внесение дополнительных конкретизирующих данных значительно увеличивает трудоемкость расчетов, а сложности учета всех влияний являются источником систематической ошибки при вычислениях. Таким образом, объективно оценить уровень загрязнения воздуха можно только в местах отбора проб.
Наиболее близким к предлагаемому изобретению является способ контроля качества атмосферного воздуха (8) путем измерения концентрации загрязняющих веществ в точках контроля, сравнение измеренных концентраций с предельно допустимыми значениями (ПДК) и осуществление контрольных операций по анализу влияния на точки контроля источников выброса в атмосферу загрязняющих веществ, концентрации которых превышают величину ПДК, при этом дополнительно измеряют азимут и угол рассеивания загрязнений, а источники выброса, на которых осуществляют контрольные операции, выбирают по измеренным азимуту ветра и угла рассеивания загрязнений.
Однако контроль качества атмосферного воздуха путем многочисленных измерений концентрации загрязняющих веществ требует больших временных и финансовых затрат, пространственная дифференциация значений имеет большую погрешность при удалении от места лабораторного измерения, сами лабораторные измерения зачастую случайны при выборе точек и времени отбора проб. Кроме того, технически очень сложно провести одновременные замеры концентраций нескольких десятков веществ в десятках и сотнях точек лабораторного контроля.
Технический результат, достигаемый предлагаемым изобретением, заключается в повышении точности пространственной количественной оценки уровня загрязнения атмосферного воздуха, в повышении эффективности определения характера, степени и границ распространения загрязняющих веществ от их источников за счет верификации расчетных данных данными натурных замеров. Предлагаемое изобретение позволяет с минимальными временными и финансовыми затратами получить с высокой степенью точности пространственно дифференцированные данные о концентрациях загрязняющих веществ во всех точках расчетной сетки, в том числе в тех, в которых натурные измерения концентраций не проводились. При этом закономерности пространственного распределения концентраций загрязняющих веществ в атмосфере сохраняются, по данным натурных инструментальных исследований корректируются расчетные концентрации в точках расчетной сетки, где натурные исследования не проводились. Таким образом, достигается оптимальное сочетание положительных сторон расчетных методов и натурных измерений.
Указанный технический результат достигается предлагаемым способом пространственной количественной оценки уровня загрязнения атмосферного воздуха, согласно которому проводят выбор территории, которую необходимо исследовать на предмет состояния уровня загрязнения атмосферного воздуха, на исследуемой территории в точках натурных замеров проводят натурные инструментальные замеры концентраций загрязняющих веществ в атмосферном воздухе с фиксированием даты, времени отбора пробы воздуха и метеорологических характеристик атмосферы в момент отбора указанной пробы, при этом новым является то, что карту исследуемой территории покрывают регулярной сеткой, выделяют узловые точки в местах пересечения линий сетки и на указанной карте отмечают расположение точек, в которых были проведены натурные замеры концентраций загрязняющих веществ, выявляют все источники загрязнения атмосферного воздуха на исследуемой территории и проводят сбор данных о параметрах выбросов от указанных источников загрязнения атмосферного воздуха, выполняют расчет приземных концентраций загрязняющих веществ в точках натурных замеров и в узловых точках заданной регулярной сетки от указанных источников загрязнения атмосферного воздуха с применением стандартных математических моделей и программных средств, для каждой точки, где имеются данные и расчета рассеивания, и натурных замеров, определяют коэффициент соответствия как отношение измеренной концентрации к рассчитанной, далее точки натурных замеров концентраций загрязняющих веществ объединяют на карте непересекающимися отрезками в треугольники, образуя систему треугольников с вершинами в точках натурных замеров, для каждого треугольника решают уравнение плоскости с установлением коэффициентов уравнения, зависящих от координат x и y вершин треугольника - точек натурных замеров, и значений коэффициентов соответствия в них, далее относят каждую узловую точку расчетной сетки с координатами xi и yi к какому-либо треугольнику образованной системы треугольников или устанавливают, что она лежит вне указанной системы треугольников, для каждой узловой точки с координатами xi и yi, лежащей внутри системы треугольников, рассчитывают коэффициент соответствия по уравнению плоскости соответствующего треугольника, для узловых точек, лежащих вне системы треугольников, расчет коэффициента соответствия выполняют методом экстраполяции, для этого значение коэффициента соответствия в узловой точке принимают равными коэффициентам соответствия в ближайшей точке, лежащей на внешней границе системы треугольников, ранее рассчитанные приземные концентрации загрязняющих веществ в узловых точках заданной регулярной сетки умножают на полученные коэффициенты соответствия с получением уточненной концентрации загрязняющих веществ в узловых точках сетки, затем строят карту пространственного распределения уточненных концентраций загрязняющих веществ, по которой количественно оценивают уровень загрязнения атмосферного воздуха на исследуемой территории.
Достижение технического результата обеспечивается за счет следующего.
Методы определения загрязнения атмосферного воздуха на большой площади (территории) только путем взятия проб на местности с последующим их анализом трудоемки, по мере удалении от точки измерения надежность оценки уровня загрязнения резко снижается; измерение отражает только конкретные метеорологические условия отбора пробы. Поэтому предложено дополнить этот подход дополнительными операциями, которые позволят получить достоверные результаты. Для этого карту исследуемой территории покрывают регулярной сеткой с выделением узловых точек в местах пересечения линий сетки и нанесением на карту точек натурных измерений (так называемых реперных точек). Этим обеспечивается дробление исследуемой территории на ячейки. Чем меньше величина расчетной ячейки, тем больше расчетных точек, тем точнее могут быть полученные результаты.
Выявление всех источников загрязнения атмосферного воздуха на исследуемой территории и проведение сбора данных о параметрах выбросов от этих источников необходимо для получения полной картины поступления загрязняющих веществ на территории и, в частности, в конкретных ячейках.
Благодаря последующему проведению расчета рассеивания загрязняющих веществ от указанных источников загрязнения атмосферного воздуха с применением стандартных математических моделей и программных средств (например, модель «Методики расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий» - ОНД 86, модель рассеивания Гаусса, программные продукты УПРЗА «Эколог», «Gaussian Dispersion Model Calculator" и др.) обеспечивается получение расчетных концентраций загрязняющих веществ в узловых точках заданной регулярной сетки (каждая ячейка сетки характеризуется одной узловой точкой) и в точках непосредственного измерения качества воздуха. В результате формируется информационная база с пространственно дифференцированными характеристиками уровня загрязнения атмосферы в каждой расчетной точке, в том числе в ячейках регулярной сетки.
На следующем этапе в реперных точках, где имеются данные и расчета рассеивания, и натурных замеров, рассчитываются коэффициенты соответствия как отношение измеренной концентрации к рассчитанной, что позволяет определить уровень различий в натурных и расчетных данных.
Затем производится интерполяция значений коэффициентов соответствия, установленных для реперных точек, на узлы сетки.
Для интерполяции коэффициентов производится процедура триангуляции, которая заключается в выделении на плоскости совокупности объектов треугольной формы путем соединения всех реперных точек непересекающимися отрезками так, чтобы новых отрезков уже нельзя было добавить без пересечения с имеющимися. Данная процедура позволяет разбить пространство внутри постов наблюдения на треугольники и определить принадлежность каждой расчетной точки к одному из получившихся треугольников.
После определения принадлежности точки треугольнику с учетом координат вершин треугольника вычисляется значение коэффициента соответствия в этой точке методом линейной интерполяции.
Данная процедура проводится для всех узловых точек расчетной сетки. В результате получаются значения коэффициентов соответствия в узловых точках, лежащих внутри системы треугольников, образуемого точками натурного наблюдения.
Для оценки значений коэффициента соответствия в узловых точках, лежащих вне системы треугольников, используется алгоритм, основанный на построении проекции расчетной точки на границу области, описанную точками натурных наблюдений (реперными точками). Для этого находится ближайшая точка, лежащая на границе системы треугольников, и значение коэффициента соответствия приравнивается значению в этой точке.
Последовательные расчеты по приведенному алгоритму в каждом узле регулярной сетки позволяют получить оценку скалярного поля, характеризующего распределение коэффициента соответствия на исследуемой территории.
Для получения верифицированных значений концентраций загрязняющих веществ расчетные данные в каждом узле регулярной сетки умножаются на определенный коэффициент соответствия.
Система распределенных в пространстве узловых точек, каждая из которых характеризуется параметром загрязнения, учитывающим расчеты рассеивания и результаты инструментальных измерений, позволяет получить поле концентраций или полноценную пространственную количественную оценку уровня загрязнения атмосферного воздуха на территории.
Объединение точек натурных замеров концентраций загрязняющих веществ с регулярной сеткой в треугольники и последующая процедура интерполяции и экстраполяции коэффициентов соответствия позволила определить параметры коэффициентов соответствия в каждом узле регулярной сетки, которые затем используются для корректировки значений расчетных данных всего изучаемого скалярного поля концентраций загрязняющих веществ в атмосферном воздухе.
Другими словами, моделирование пространственного распределения загрязнения по данным натурных инструментальных исследований методами интер- и экстраполяции с использованием результатов расчетов рассеивания позволяет минимизировать неопределенности каждого метода (только метода натурных измерений или только метода расчетов рассеивания) в отдельности и получить наиболее точные результаты при условии корректной аппроксимации данных при реализации предлагаемого способа.
Предлагаемый способ иллюстрируется рядом чертежей, где на Рис.1 отображено разбиение пространства исследуемой территории с помощью триангуляции Делоне (один из наиболее корректных способов триангуляции), причем жирными точками отмечены координаты точек натурных измерений; на Рис.2 - система треугольников с указанием номеров точек натурных замеров; Рис.3 - иллюстрация к установлению принадлежности каждой узловой точки, расположенной внутри системы треугольников, к одному из ряда получившихся треугольников; Рис.4 - приведен результат интерполяции коэффициентов соответствия для узловых точек, расположенных внутри системы треугольников; Рис.5 - показаны аппроксимированные значения коэффициента соответствия во всех узлах регулярной сетки; Рис.6 - карта-схема пространственного распределения расчетных максимально-разовых концентраций загрязняющих веществ (азота диоксида) на исследуемой территории и коэффициенты соответствия расчетных и натурных данных до проведения процедуры аппроксимации; Рис.7 - карта-схема пространственного распределения расчетных максимально-разовых концентраций загрязняющих веществ (азота диоксида) на исследуемой территории и коэффициенты соответствия расчетных и натурных данных после проведения процедуры аппроксимации; Рис.8 - представлены коэффициенты соответствия в пяти контрольных точках, выбранных для подтверждения точности и достоверности предлагаемого способа, до проведения процедуры аппроксимации (в данном случае - на примере полей распределения максимально-разовых концентраций азота диоксида); на Рис.9 представлены коэффициенты соответствия в пяти контрольных точках, выбранных для подтверждения точности и достоверности предлагаемого способа, после проведения процедуры аппроксимации.
Предлагаемый способ осуществляют следующим образом, реализуя его на конкретном примере.
1. Например, была выбрана территория N площадью почти 800 кв. км, на которой размещены крупные отраслевые комплексы тяжелой промышленности, электроэнергетики, нефтегазопереработки, машиностроения, химии и нефтехимии, деревообработки, полиграфии и прочие, а также ряд крупных автомагистралей.
2. На указанной территории имеется 7 стационарных постов наблюдения, на которых проводят натурные замеры концентраций загрязняющих веществ в атмосферном воздухе с фиксированием даты, времени отбора пробы воздуха и метеорологических характеристик атмосферы в момент отбора указанной пробы.
3. Карту исследуемой территории покрывают регулярной сеткой (Рис.1) с шагом 100×100 м (шаг сетки определяется необходимой конечной точностью результатов анализа). Сетка размером 50,5 км на 34,8 км состоит из 176 594 ячеек и 7 реперных точек.
4. На указанной карте отмечают расположение семи реперных точек, т.е. тех, в которых выполнены инструментальные натурные замеры качества атмосферного воздуха по 23 приоритетным химически опасным веществам. Замеры проводились ежедневно дискретно через равные промежутки времени 3-4 раза в день в 1, 7, 13, 19 часов по местному времени. Необходимым условием корректной оценки уровня среднегодового загрязнения атмосферы является проведение не менее 200 разовых натурных замеров концентрации каждого из установленных приоритетных химически опасных веществ в течение не менее 50 дней в каждой из точек расположения стационарных или передвижных постов наблюдения. В таблице 1 приведен фрагмент измеренных максимально-разовых концентраций в точках расположения постов замеров.
5. На исследуемой территории выявляют все источники загрязнения атмосферного воздуха. Например, на данной территории расположено более 11500 источников, выбрасывающих в атмосферу более 450 химических веществ, и 25 линейных участков улично-дорожной сети.
6. Затем осуществляют сбор данных о метеорологических характеристиках атмосферы мест расположения источников выбросов и параметрах источников выбросов загрязняющих веществ, которые должны содержать следующие сведения (согласно ГОСТ): наименование предприятия, номер или наименование цеха, название источника выброса, номер источника загрязнения атмосферы (ИЗА), тип, высота источниках, диаметр устья, скорость и объем истекающей газовоздушной смеси, температура выброса, координаты X и Y, ширина (для площадного источника), масса выброса каждого загрязняющего вещества по каждому источнику (г/сут и т/год). Например, для источника N были сформированы данные: цех №1, источник слесарно-расточное отделение, номер источника 1, тип источника 1, высота 10,50 м, диаметр устья 0,40 м, скорость 3,00 м/с, объем 0,377 м3/с, температура 18°С, координаты Х - 1795, Y - 3109 (в системе координат изучаемой территории), ширина источника 0,00 м, железа оксид (код 0123) - 0,003 г/с, 8,52202 т/год, масло минеральное нефтяное (код 2735) - 0,005 г/с, 12,83675 т/год, эмульсол (код 2868) - 0,00001 г/с, 0,03534 т/год, корунд белый (код 2930) - 0,0006 г/с, 1,80676 т/год. Участки улично-дорожной сети рассматриваются как линейные стационарные источники.
7. Далее с применением стандартных математических моделей и программных средств выполняют расчет рассеивания загрязняющих веществ от указанных источников загрязнения атмосферного воздуха с получением расчетных концентраций загрязняющих веществ в узлах ячеек заданной регулярной сетки и в реперных точках. В таблице 2 представлен фрагмент результатов расчетов концентрации распространения ряда химических загрязняющих веществ на исследуемой территории.
8. В 7 реперных точках (точках натурных замеров) определяют коэффициент соответствия Ki как отношение измеренной (фактической) концентрации к рассчитанной:
K i = C i f C i r
где i - номер поста;
C i f - фактические концентрации загрязняющего вещества на i-м посту наблюдений;
C i r - расчетные концентрации загрязняющего вещества на i-м посту наблюдений;
В таблице 3 приведен фрагмент рассчитанных коэффициентов соответствия в точках расположения постов замеров.
9. Для интерполяции коэффициента соответствия на основании данных в точках постов наблюдения проводят процедуру триангуляции. Для этого точки натурных замеров концентраций загрязняющих веществ объединяют на карте с регулярной сеткой в треугольники, на базе которых, используя, например, метод триангуляции Делоне (или другой адекватный метод триангуляции), определяют коэффициенты соответствия во всех узлах регулярной расчетной сетки. Более подробно это определение осуществляют следующим образом.
Методом триангуляции Делоне соединяют все точки натурного мониторинга (точки натурных замеров) непересекающимися отрезками в треугольники так, чтобы новый отрезок уже нельзя было добавить без пересечения с имеющимися отрезками, получая при этом на карте многоугольник (систему треугольников), состоящий из семи треугольников с вершинами в точках натурных замеров (Рис.2).
Данная процедура позволяет разбить пространство внутри постов наблюдения на треугольники, и благодаря свойствам триангуляции Делоне расстояние между вершинами этих треугольников будет минимальным. В итоге применения данного метода получаем один из вариантов разбиения на треугольники пространства между точками постов натурного мониторинга.
Для каждого треугольника решают уравнение плоскости с установлением коэффициентов уравнения, зависящих от координат x и y вершин треугольника (точек натурных замеров) и значений коэффициентов соответствия в них. Уравнение плоскости представляет собой непрерывную линейную функцию двух переменных, которая может быть записана в следующем виде (2):
K ( x , y ) = a 0 + a 1 x + a 2 y , ( 2 )
где
-a 0, a 1, a 2 - произвольные постоянные коэффициенты;
- K(x,y) - коэффициент соответствия для точки с координатами x, y;
- значения функции в вершинах треугольника, соответствующие значению коэффициента соответствия на постах образующих этот треугольник, обозначают, как k1, k2, k3;
- с помощью координат вершин треугольника и значений k1, k2, k3 вычисляются неизвестные постоянные коэффициенты a 0, a 1, a 2.
- получают систему трех линейных алгебраических уравнений относительно неизвестных коэффициентов a 0, a 1, a 2 (3):
k i ≡ K ( x i , y i ) = a 0 + a 1 x i + a 2 y i , i = 1,3, ¯ ( 3 )
где i - номер вершины треугольника.
- решив систему (3), получают однозначное выражение функции (2) через ее узловые значения (значения в узлах сетки) для каждого треугольника.
Определяют принадлежность каждой узловой точки, расположенной внутри указанной системы треугольников, к одному из ряда семи получившихся треугольников по следующему алгоритму:
Указанная точка, расположенная внутри указанной системы треугольников, соединяется отрезками с вершинами каждого из треугольников с образованием в свою очередь трех треугольников с площадью S1, S2, S3 (Рис.3).
При этом, если площадь исходного треугольника S равна сумме площадей образовавшихся трех треугольников S=S1+S2+S3, где S1 - площадь треугольника 1; S2 - площадь треугольника 2; S3 - площадь треугольника 3, то считается, что точка принадлежит данному треугольнику. Если же S<(S1+S2+S3), то данная точка не принадлежит данному треугольнику.
Площадь треугольников вычислялась по следующим формулам:
S = | ( x 2 − x 1 ) ( y 3 − y 1 ) − ( x 3 − x 1 ) ( y 2 − y 1 ) | 2 ;
S 1 = | ( x t − x 1 ) ( y 3 − y 1 ) − ( x 3 − x 1 ) ( y t − y 1 ) | 2 ;
S 2 = | ( x 2 − x t ) ( y 3 − y t ) − ( x 3 − x t ) ( y t − y t ) | 2 ;
S 3 = | ( x 2 − x 1 ) ( y t − y 1 ) − ( x t − x 1 ) ( y 2 − y 1 ) | 2 .
Затем рассчитывают значения коэффициента соответствия во всех точках (узлах регулярной сетки), внутри каждого треугольника по уравнению (2) с использованием полученных коэффициентов для соответствующего треугольника.
На Рис.4 приведен результат интерполяции коэффициентов соответствия для узловых точек, расположенных внутри системы треугольников (более интенсивный цвет отражает более высокие значения коэффициентов соответствия).
10. Проводят экстраполяцию значений коэффициента соответствия для узловых точек, лежащих вне полученной системы треугольников. Значения коэффициента для этих точек принимают равными коэффициентам в ближайшей точке, лежащей на границе системы треугольников, образуемого точками натурных замеров (реперными точками).
11. В результате этих действий получают аппроксимированные значения коэффициента соответствия во всех узлах регулярной сетки (Рис.5).
В таблице 4 представлен фрагмент аппроксимированных значений коэффициента соответствия ряда химических загрязняющих веществ на исследуемой территории.
12. Производят расчет уточненных концентраций загрязняющих веществ в каждой узловой точке расчетной сетки на исследуемой территории согласно формуле (4):
C u ( x , y ) = K ( x , y ) ⋅ C r ( x , y ) , г д е ( 4 )
Cu - уточненные концентрации загрязняющего вещества в расчетной точке (x,y),
K - коэффициент соответствия в расчетной точке (x,y);
Cr - расчетные концентрации загрязняющего вещества в расчетной точке (x,y).
В таблице 5 представлен фрагмент результатов аппроксимированных полей концентраций ряда химических загрязняющих веществ на исследуемой территории.
13. Полученные результаты представляют собой приземные концентрации загрязняющих веществ в точках регулярной сетки, покрывающей системно всю исследуемую территорию.
14. Затем строят карту-схему пространственного распределения уточненных концентраций загрязняющих веществ, по которой количественно оценивают уровень загрязнения атмосферного воздуха на исследуемой территории.
На Рис.6 приведены карта-схема пространственного распределения расчетных максимально-разовых концентраций загрязняющих веществ (азота диоксида) на исследуемой территории и коэффициенты соответствия расчетных и натурных данных до проведения процедуры аппроксимации.
На Рис.7 приведены карта-схема пространственного распределения расчетных максимально-разовых концентраций загрязняющих веществ (азота диоксида) на исследуемой территории и коэффициенты соответствия расчетных и натурных данных после проведения процедуры аппроксимации.
На Рис.6 видно, что до аппроксимации при анализе соответствия расчетных и натурных данных в точках расположения постов лабораторного мониторинга выявлены различия результатов, о чем свидетельствуют вариации коэффициентов соответствия для анализируемого химического вещества (в данном случае азота диоксида) в интервале 0,85-10,48.
После проведения процедуры аппроксимации, как видно на Рис.7, картина распределения полей концентраций загрязняющих веществ изменяется, при этом в точках натурного мониторинга (постах) коэффициенты соответствия становятся равными 1, а в ряде контрольных точек, которые были выбраны на исследуемой территории для подтверждения достоверности полученных результатов, сходимость расчетных и натурных данных возросла до 70-95% при ранее отмечаемых 8-50% (Рис.8, 9).
На рисунке 8 представлены коэффициенты соответствия в 5 контрольных точках, выбранных для подтверждения точности и достоверности предлагаемого способа, до проведения процедуры аппроксимации (в данном случае - на примере полей распределения максимально-разовых концентраций азота диоксида), на рисунке 9 представлены коэффициенты соответствия в 5 контрольных точках, выбранных для подтверждения точности и достоверности предлагаемого способа, после проведения процедуры аппроксимации.
Другими словами, доказательством того, что предлагаемый способ пространственной количественной оценки уровня загрязнения атмосферного воздуха является точным и достоверным, является факт, что после всей поэтапной процедуры аппроксимации полученные результаты в контрольных точках стали близкими по значению, а коэффициенты соответствия с 0,76-10,58 достигли значений 0,82-1,12, т.е. значительно выросла сходимость натурных и полученных в результате аппроксимации данных. Следовательно, верифицирующие измерения подтвердили корректность оценки качества приземного слоя атмосферного воздуха в узловых точках сетки.
Таким образом, заявляемый способ позволяет:
- максимально учесть все источники загрязнения атмосферного воздуха при интер- и экстраполяции данных сети постов натурного наблюдения на всю исследуемую территорию;
- максимально нивелируя недостатки и используя достоинства расчетного и натурного методов, добиться повышения соответствия данных о загрязнении атмосферного воздуха, полученных с помощью расчетов рассеивания по методике ОНД-86 и данных по реальным концентрациям загрязняющих веществ, полученных с помощью лабораторных замеров на местности;
- использовать верифицированные данные для точной характеристики качества атмосферного воздуха, определять зоны повышенного загрязнения атмосферного воздуха вредными химическими веществами, выделять проблемы и приоритеты в вопросе качества атмосферного воздуха на исследуемой территории.
Таблица 1 | ||||||||
Фрагмент измеренных максимально-разовых концентраций в точках расположения постов замеров | ||||||||
Координаты поста, м | Концентрации веществ, мг/м3 | |||||||
N поста | X | Y | Азота диоксид | Аммиак | Углерода оксид | Фенол | Формальдегид | Взвешенные вещества |
1 | 8781 | 9801 | 0,120 | 0,120 | 12,000 | 0,008 | 0,065 | 0,400 |
2 | 3274 | 1080 | 0,390 | 0,470 | 6,000 | 0,012 | 0,162 | 0,400 |
3 | 1439 | -3189 | 0,610 | 0,160 | 32,000 | 0,020 | 0,137 | 0,500 |
4 | -1022 | -1671 | 0,380 | 0,200 | 6,000 | 0,009 | 0,113 | 0,600 |
5 | -3919 | -6228 | 0,310 | 0,200 | 5,000 | 0,020 | 0,086 | 0,500 |
6 | -18425 | -764 | 0,410 | 0,190 | 4,000 | 0,012 | 0,164 | 0,400 |
7 | 3578 | -2062 | 0,130 | 0,310 | 14,000 | 0,015 | 0,109 | 0,400 |
Таблица 2 | |||||||
Фрагмент результатов расчетов концентрации распространения ряда химических загрязняющих веществ на исследуемой территории | |||||||
Координаты узлов сетки | Концентрации веществ, мг/м3 | ||||||
Х | Y | Азота диоксид | Аммиак | Углерода оксид | Фенол | Формальдегид | Взвешенные вещества |
-25540 | -16543 | 0,01586119 | 0,00323080 | 0,15707225 | 0,00007355 | 0,00165417 | 0,00135560 |
-25440 | -16543 | 0,01593381 | 0,00325589 | 0,15720700 | 0,00007394 | 0,00166386 | 0,00136710 |
-25340 | -16543 | 0,01600856 | 0,00328130 | 0,15788955 | 0,00007432 | 0,00167335 | 0,00137880 |
-25240 | -16543 | 0,01608345 | 0,00330702 | 0,15779110 | 0,00007469 | 0,00168264 | 0,00139069 |
-25140 | -16543 | 0,01615838 | 0,00333307 | 0,15859545 | 0,00007505 | 0,00169182 | 0,00140277 |
-25040 | -16543 | 0,01624157 | 0,00335944 | 0,15870280 | 0,00007553 | 0,00170350 | 0,00141505 |
-24940 | -16543 | 0,01632229 | 0,00338614 | 0,15919865 | 0,00007603 | 0,00171500 | 0,00142754 |
-24840 | -16543 | 0,01640275 | 0,00341317 | 0,15950485 | 0,00007652 | 0,00172629 | 0,00144024 |
-24740 | -16543 | 0,01648380 | 0,00344054 | 0,15970675 | 0,00007702 | 0,00173773 | 0,00145316 |
-24640 | -16543 | 0,01656397 | 0,00346825 | 0,16020445 | 0,00007750 | 0,00174863 | 0,00146693 |
-24540 | -16543 | 0,01664390 | 0,00349629 | 0,16012680 | 0,00007798 | 0,00175929 | 0,00148099 |
-24440 | -16543 | 0,01672359 | 0,00352468 | 0,16080810 | 0,00007844 | 0,00176972 | 0,00149530 |