Совмещенный способ получения биотоплив из различных типов сырья и родственных продуктов

Иллюстрации

Показать все

Изобретение относится к способу получения биогорючих или биотопливных смесей, пригодных для использования в различных окружающих условиях и в различных видах систем или двигателей, в которых они должны использоваться. Способ включает следующие основные операции: a) получение смесей алкиловых эфиров жирных кислот и глицерина переэтерификацией, исходя из растительных или животных материалов липидной основы и из низших спиртов или биоспиртов, взятых в избытке; b) разделение смесей, полученных в указанной операции a) переэтерификации, на фазу на основе сырого глицерина и фазу, содержащую указанные смеси алкиловых эфиров жирных кислот и избыточного количества низших спиртов или биоспиртов. При этом способ характеризуется тем, что указанные исходные растительные или животные материалы на основе липидов включают один или несколько из следующих ингредиентов: i) сырое растительное масло; ii) рафинированное растительное масло; iii) использованное пищевое масло и/или животные жиры, и тем, что указанные ингредиенты подвергают следующим предварительным обработкам до указанной операции переэтерификации a): 1) указанный ингредиент i), сырое растительное масло, подвергают предварительным очистке и рафинированию для того, чтобы удалить загрязнения и чтобы нейтрализовать и фракционировать масло охлаждением, и последующей осушке полученного таким образом рафинированного масла; 2) указанный ингредиент ii), рафинированное растительное масло, подвергают предварительной осушке; 3) указанный ингредиент iii), использованное пищевое масло и/или животные жиры, подвергают предварительной очистке, осушке и затем этерификации содержащихся в нем свободных жирных кислот добавлением низших спиртов или биоспиртов; и полученный продукт на основе алкиловых эфиров жирных кислот смешивают в доле не более 20% с осушенным рафинированным маслом, полученным при вышеописанных обработках 1) или 2). Причем указанные предварительные обработки выполняют в соответствующих трех секциях предварительной обработки сырья, которые (секции) могут использоваться либо вместе, либо альтернативно друг другу. Также изобретение относится к биогорючей или биотопливной смеси. Предложенный способ является крайне гибким в отношении обеспечения сырьем и, в то же время, обеспечивает высокую гибкость в отношении характеристик применимости получаемого продукта. 2 н. и 13 з.п. ф-лы, 1 пр., 1 табл., 3 ил.

Реферат

Настоящее изобретение относится к совмещенному способу получения биотоплив и биогорючих из различных типов сырья и родственных материалов. Более конкретно, изобретение относится к способу, предоставляющему новые биотопливные смеси обработкой рафинированных или сырых растительных масел, включая масла, экстрагированные из водорослей и/или микроводорослей, или морских водорослей или других разновидностей, полученные в аквакультуре или в термических биореакторах, и обработкой животных жиров и использованных жарочных масел, а также посредством добавки калиброванных долей спиртов или биоспиртов с низким молекулярным весом в смесь на основе масел, для того, чтобы получить горючие продукты и экологичные топлива, пригодные для различных окружающих условий и для различных видов систем или двигателей, в которых они должны быть использованы.

Как известно, потребность в восстанавливаемых экологически совместимых источниках энергии увеличивается более настоятельно ввиду постепенного уменьшения запасов ископаемого топлива и опасностей для окружающей среды, возникающих в результате возрастающего загрязнения атмосферы и парникового эффекта. В связи с этим, изучение и разработка топлив и горючих биологического происхождения значительно возросли за последние несколько десятилетий. Двумя наиболее распространенными и утвердившимися способами получения энергии из биомассы являются производство биоэтанола и биодизельного топлива.

В общем случае, биомасса означает любое органическое вещество или материал, прямо или косвенно полученный в результате фотосинтеза хлорофилла. В ходе этого процесса растения поглощают воду и диоксид углерода из окружающей их среды, и при использовании солнечной энергии и питательных веществ, присутствующих в почве, вода и диоксид углерода затем превращаются в органический материал, используемый для роста растения. С точки зрения производства наиболее важными типами биомассы являются остатки лесоводства, отходы лесоперерабатывающей и бумажной промышленности, отходы зоотехнических хозяйств и муниципальных твердых отходов, но также растительные материалы, полученные специальным культивированием, такие как сахарная свекла и сахарный тростник, зерновые и их отходы, водоросли и/или микроводоросли, полученные в аквакультуре и/или в термических биореакторах, и маслянистые семена растений, таких как соя, рапс и подсолнечник. Ясно, что если материалы, полученные прямо или косвенно в результате этой сельскохозяйственной активности, используют для применения в энергетике, включающего сжигание, то, с одной стороны, полученная энергия не будет затрагивать ресурсы ископаемого топлива, и, с другой стороны, диоксид углерода, полученный при сгорании, будет компенсироваться в общем энергетическом балансе диоксидом углерода, потребленным производящим растением при синтезе хлорофилла.

Биоэтанол получают анаэробной ферментацией биомасс, содержащих сахара и/или крахмалы, таких как различные зерновые и их отходы, различные отходы переработки сельскохозяйственных пищевых продуктов и культивации и производства сахарного тростника и сахарной свеклы. В частности, сахарный тростник специально выращивают в целях получения биоэтанола для моторных транспортных средств. Это особенно распространено в Бразилии, где этиловый спирт является основным источником топлива, широко используемого в двигателях внутреннего сгорания. В Европе также биоэтанол рассматривается как возможный заменитель бензина, даже если выход энергии у него ниже, чем у бензина, и полная замена будет требовать использования специально разработанных двигателей. Согласно действующим законам Европейского Союза биоэтанол должен использоваться в количестве 1% в смеси с бензином. Это процентное содержание планируется поднять до 5%, что не потребует изменений существующих двигателей. Кроме того, в некоторых странах, подобных Франции и Испании, этил-трет-бутиловый эфир (ETBE, ЭТБЭ), третичный бутиловый эфир из биоэтанола, используют в настоящее время в виде 15%-ной смеси с бензином. Наконец, в северных европейских странах, подобных Швеции, заново спроектированные автомобили уже переходят на топливную смесь из 85% биоэтанола и 15% бензина.

Биодизельное топливо предназначается для замены дизельного топлива в автомобилях и отопительных системах и получается из широко распространенных, специально выращиваемых масличных растений, подобных рапсу и подсолнечнику. Другие исходные материалы включают соевое, кукурузное, хлопковое, кокосовое, пальмовое или льняное масла или даже масла, полученные из морских или других водорослей и/или микроводорослей, полученные или в аквакультуре, или в термических биореакторах, или отработавшие пищевые масла, такие как использованные жарочные масла, и животные жиры. Масла, содержащиеся в этих продуктах (обычно известные как "горючее растительное масло" или "чистое растительное масло"), являются триглицеридами жирных кислот, в которых спиртовые цепи жирных кислот, присоединенные к молекуле глицерина, обычно содержат 12-18 атомов углерода. Вследствие своей высокой вязкости эти продукты должны быть обработаны для того, чтобы разделить молекулы триглицерида на три отдельных молекулы, полученные из жирной кислоты, и на молекулу глицерина. Фактически, обработка заменяет глицериновый триэфир тремя моноэфирами низшего спирта, обычно метанола или этанола, согласно следующей реакции, где R, R' и R” представляют насыщенные или ненасыщенные спиртовые цепи, обычно с 12-22 атомами углерода, и в показанном случае спиртом, замещающим глицерин, является метанол.

Существуют три основных пути получения алкиловых эфиров для биотоплив, исходя из масел и жиров биологического происхождения (биолипидов):

- прямая переэтерификация биолипида, катализируемая основанием;

- прямая переэтерификация биолипида, катализируемая кислотой;

- превращение биолипида вначале в жирные кислоты и затем в низшие алкиловые эфиры.

Переэтерификация, которая практически является алкоголизом триглицерида посредством монофункционального спирта с короткой цепью, главным образом, метанола или этанола, является наиболее распространенным способом превращения. В частности, катализируемая основанием переэтерификация (с гомогенным катализатором, т.е. в растворе в реакционной смеси) является самым дешевым и в настоящее время наиболее широко распространенным способом. Обычно она требует температур в диапазоне 70-130°C и давлений 1-1,5 бар при конверсии примерно 85%.

Биодизельное топливо, получаемое переэтерификацией из горючего растительного масла, таким образом, состоит из смеси алкиловых эфиров, в частности, метиловых или этиловых эфиров жирных кислот, и имеет более однородный общий состав, чем состав ископаемого дизельного топлива; оно также имеет более высокую биоразлагаемость и большее содержание кислорода, так как каждая молекула содержит сложноэфирную функциональную группу -О-СО-.

Как будет более ясно ниже, использование биодизельного топлива, по сравнению с использованием ископаемого топлива, делает возможным уменьшение газовых выбросов двигателей, которые считаются вредными для здоровья. Кроме того, как уже отмечалось, такое использование позволяет придти к нулевому балансу образующегося диоксида углерода, способствуя, тем самым, ограничению общего парникового эффекта в атмосфере. Это происходит вследствие того, что СО2, образовавшийся при сгорании определенного количества биодизельного топлива, количественно соответствует количеству, использованному при фотосинтезе в культурах для производства растительных масел, предназначенных для биотоплив.

Согласно современному европейскому законодательству биодизельное топливо используют в количествах 1% в смеси с обычным дизельным топливом для автомобилей, но эти количества должны вскоре достичь и превысить 5%. Большие количества, даже 30%, уже используют в некоторых автомобилях, таких как автобусы общественного транспорта. В этом случае также использование до 30% биодизельного топлива в дизельных двигателях не требует какой-либо особой технической модификации, в то время как недавно разработанные двигатели могут даже питаться 100% чистым биодизельным топливом.

Более старые установки получения биодизельного топлива, с использованием горючих растительных масел в качестве сырья, основаны на периодических способах. В них обычно используют только один вид сырья, и переэтерификация происходит в одной фазе. Как уже отмечалось, на традиционных производственных установках переэтерификация осуществляется при относительно высокой температуре (такой как 130°С) и происходит ограниченное извлечение катализатора и извлечение метанола только на конечной стадии способа. Необходимо с особой тщательностью контролировать количество воды и свободных жирных кислот в исходном биолипиде. Если уровень свободных жирных кислот или влажности слишком высок, то в конце способа могут иметь место процессы омыления и отделения глицерина.

На традиционных производственных установках конечным продуктом является смесь метиловых сложных эфиров с высокой влажностью и высоким содержанием глицерина; глицерин, полученный в качестве побочного продукта, имеет чистоту в интервале между 75% и 80%.

Более современные технологические установки работают в непрерывном режиме и при более низкой температуре (около 70°С), и в этом случае переэтерификация происходит в несколько стадий с извлечением как метанола, так и этанола, которые могут быть рециркулированы в процесс. Для ускорения процесса, кроме использования подходящих катализаторов, повышающих скорость и эффективность реакции, используют избыток спирта (обычно 1:6 в мольном выражении, т.е. удвоенное стехиометрическое соотношение), и образовавшийся глицерин удаляют.

Спирт в алкилэфирном растворе может быть отделен дистилляцией, в то время как небольшая часть остается в водном растворе, из которого она также может быть извлечена.

Пример непрерывного способа получения алкиловых эфиров (в частности, метиловых эфиров) жирных кислот из растительных масел и использования гомогенного катализа с растворимыми основаниями в качестве катализаторов, таких как гидроксид натрия и метилат натрия, в котором реакцию проводят по меньшей мере в две последовательные стадии, описан в европейском патенте ЕР 0523767 (Metallgesellschaft AG).

Топливо биологического происхождения, называемое в настоящее время "биодизель", которое было кратко описано выше, не обладает подходящими характеристиками для некоторых конечных областей применения, включая использование при низких температурах. Это происходит, например, в случае использования в авиации, где двигатель должен быть работоспособен при температурах в области -70°С.

Как известно, турбинные двигатели используют как для получения энергии, так и в авиационной промышленности. Их положительные свойства заключаются в быстром запуске агрегатов и, следовательно, в немедленной доступности мощности, а также в хорошей функциональной стабильности. С другой стороны, они вызывают значительный расход энергии и значительное загрязнение воздуха, особенно при максимальных уровнях мощности. В случае использования в авиации требование максимальной мощности самолета имеет место при взлете и посадке, и это увеличивает загрязнение воздуха.

По своей характеристике турбинные энергостанции должны быть активированы только для того, чтобы покрыть время пиковых энергетических нагрузок и аварий, но в странах, где потребность в энергии превышает ее доступность, эти электростанции используют в течение очень длительных периодов.

В том, что касается использования в авиации и на электростанциях, кроме снижения потребления топлива, было бы чрезвычайно выгодно иметь топлива, которые могут снизить выбросы токсичных веществ, и, следовательно, вот почему также в этих областях доступность подходящих топлив или горючих биологического происхождения является крайне важным. Возможность разбавления обычного авиационного топлива биосовместимым продуктом биодизельного типа, но который может быть калиброван для получения функциональных характеристик, пригодных для использования в таких экстремальных условиях, как условия в двигателях самолетов, должна удовлетворять важным критериям экономии и защиты окружающей среды.

Принимая во внимание вышесказанное, целью настоящего изобретения является предложить производственный способ для получения биотопливных смесей, который может, с одной стороны, быть крайне гибким в отношении обеспечения сырьем, так как для способа пригоден любой материал на основе животного или растительного масла или жира, включая отходы приготовления пищи и использованные жарочные масла, в то же время, с другой стороны, обеспечивать такую же высокую гибкость в отношении характеристик применимости получаемого продукта. В частности, такой продукт должен быть способен выдерживать такие же условия, как любое обычное биодизельное топливо, или в чистом состоянии, или разбавленным установленными количествами ископаемого топлива, но он должен также быть доступным для использования (в более подходящих количествах и пропорциях своих компонентов) как топливо или как разбавитель обычных топлив в экстремальных условиях и, в частности, при низких температурах, или в ситуациях, где чрезвычайная чистота выхлопа является критическим требованием.

Для этой цели настоящим изобретением предлагается способ, основанный по существу на переэтерификации растительных масел различного происхождения, как сырых, так и рафинированных масел, или биолипидов животного происхождения, или даже отходов приготовления пищи липидной основы, таких как использованные жарочные масла. Перед тем, как подвергнуться переэтерификации, эти материалы соответствующим образом предварительно обрабатывают в соответствии с видом исходного материала и его происхождением и затем соответствующим образом сушат для того, чтобы получить осушенное рафинированное масло, которое, насколько возможно, пригодно для переэтерификации и воспроизводимо. После переэтерификации в способе, предложенном согласно настоящему изобретению, низший спирт, который использовали в избытке для переэтерификации, может быть полностью отделен от реакционной смеси и извлечен, или может быть извлечен частично, или даже может быть введен в конечную смесь с количеством дополнительного спирта, того же самого или другого типа, для того, чтобы получить в конечном продукте калиброванное количество одного или нескольких различных низших спиртов в смеси с алкиловыми эфирами жирных кислот, полученными в результате переэтерификации.

Новый продукт, получаемый по вышеуказанному способу, является синтетическим, названным "Bio-oil", чтобы отличить его (как в показателях характерного состава, так и в рабочих характеристиках) от обычного биодизельного топлива «Биодизель».

Таким образом, настоящее изобретение предлагает способ получения биогорючих или биотопливных смесей, пригодных для различных условий использования, включающий следующие основные операции:

a) получение смесей алкиловых эфиров жирных кислот и глицерина переэтерификацией, исходя из растительных или животных материалов липидной основы и низших спиртов или биоспиртов, взятых в избытке;

b) разделение смесей, полученных указанной переэтерификацией a), на фазу на основе сырого глицерина и фазу, содержащую указанные смеси алкиловых эфиров жирных кислот и избыточного количества низших спиртов или биоспиртов,

отличающийся тем, что указанные исходные растительные или животные материалы на основе липидов включают один или несколько из следующих ингредиентов:

i сырое растительное масло;

ii рафинированное растительное масло;

iii использованное пищевое масло и/или животные жиры,

и тем, что указанные ингредиенты подвергают следующим предварительным обработкам до указанной переэтерификации a):

1) указанный ингредиент i), сырое растительное масло, подвергают предварительной очистке и рафинированию для того, чтобы удалить загрязнения и нейтрализовать и фракционировать масло охлаждением, и последующей осушке полученного таким образом рафинированного масла;

2) указанный ингредиент ii), рафинированное растительное масло, подвергают предварительной осушке;

3) указанный ингредиент iii), использованное пищевое масло и/или животные жиры, подвергают предварительной очистке для осушки и затем этерификации содержащихся в нем свободных жирных кислот добавлением низших спиртов или биоспиртов; полученный продукт на основе алкиловых эфиров жирных кислот смешивают в доле не более 20% с осушенным рафинированным маслом, полученным в результате вышеописанных обработок 1) или 2).

Указанная доля предпочтительно составляет 15%.

Согласно настоящему изобретению после разделения b) реакционной смеси, поступающей с переэтерификации, фаза, содержащая смеси алкиловых эфиров жирных кислот и избыточного количества низших спиртов или биоспиртов, может быть подвергнута дополнительной обработке для отделения количества в интервале от 0 до 100%, предпочтительно от 10 до 100%, спиртов или биоспиртов, присутствующих после указанного разделения b). На практике указанная фаза может не обязательно подвергаться дополнительному разделению, оставляя, таким образом, все избыточное количество низших спиртов или биоспиртов в конечном продукте.

Альтернативно, в соответствии с предполагаемым применением продукта и окружающими условиями его использования, к фазе, содержащей смесь алкиловых эфиров жирных кислот и избытка низших спиртов или биоспиртов, может быть добавлено дополнительное количество низших спиртов или биоспиртов.

Из вышесказанного следует, что Bio-oil является новым биотопливом, полученным из подходящих комбинаций процентных содержаний своих основных компонентов - этерифицированных масел и спиртов/биоспиртов.

Оно может быть использовано самостоятельно или как основной ингредиент смеси, или как биогорючий разбавитель с различным процентным содержанием в зависимости от характеристик и вида аппарата, в котором оно используется, и соответствующих окружающих условий использования (таких как низкие температуры), будь то турбогазовый двигатель, двигатель внутреннего сгорания, топливный элемент, горелка, для применения при транспортировке по суше, по морю или по воздуху, при выработке механической или электрической энергии или в системах обогрева.

Предпочтительно, указанные низшие спирты или биоспирты выбирают из метанола, этанола, биометанола, биоэтанола и их смесей, но определение низших спиртов включает спирты с числом атомов углерода до 4.

Предпочтительно, указанную переэтерификацию a) проводят со щелочным катализатором, согласно тому, что уже использовалось при получении биодизеля, таким как гидроксид натрия или калия, или метилат натрия. Согласно некоторым предпочтительным вариантам осуществлениям настоящего изобретения эту операцию проводят в три последовательных стадии, в которых указанные спирты или биоспирты и указанный катализатор дозированы и возвращаются в цикл на каждом проходе. Это техническое решение является выгодным в отношении выхода, поскольку оно обеспечивает дальнейшую переэтерификацию.

В способе согласно настоящему изобретению переэтерификация происходит непрерывно, предпочтительно при максимальной температуре 50°С и избыточном (относительном) давлении 0,5 бар. Как уже отмечалось, извлечение избытка спирта происходит непрерывно. Более конкретно, нежелательный спирт в растворе алкиловых эфиров может быть удален дистилляцией. Небольшая его часть остается в водном растворе сырого глицерина, из которого она может быть удалена позже.

В свете вышесказанного, если сырье не является уже рафинированным маслом, совмещенный способ, предложенный согласно настоящему изобретению, предусматривает предварительную обработку очисткой и рафинированием исходного масла для того, чтобы добиться осушенного рафинированного масла независимо от того, начат ли процесс с сырого растительного масла первого отжима или с использованного жарочного масла и/или животных жиров. Если сырьем является уже чистое, уже рафинированное растительное масло, единственной предварительной обработкой, предусмотренной до переэтерификации, является осушка.

Вышеуказанные предварительные обработки предназначены для удаления посторонних веществ (белков, каучуков, смол, фосфатов, кетонов, альдегидов), которые могут присутствовать или в суспензии, или в растворе, и которые могут отрицательно влиять на переэтерификацию или горение. Более конкретно, при предварительном рафинировании масла важно удалить весь лецитин и все свободные жирные кислоты для того, чтобы получить исходный материал с приемлемыми характеристиками.

Согласно предпочтительному варианту осуществления настоящего изобретения указанная предварительная обработка 1) очисткой ингредиента i), т.е. сырого растительного масла, включает центрифугирование, фильтрацию и удаление смолистых веществ. Обработка очисткой удаляет наибольшую часть воды, суспендированные примеси и смолистые вещества, которые могут образовывать каучуки. В частности, центрифугированием удаляются водные остатки, крупные загрязнения, фрагменты семян, мука, углеродистые остатки и тормозится начало ферментных реакций. Фильтрация, осуществляемая на фильтр-прессах, удаляет все суспендированные вещества, не удаленные центрифугированием. Удаление смолистых веществ или обессмоливание удаляет гидратируемые полярные липиды (фосфолипиды, липопротиды, гликолипиды), смолы и каучуки.

Согласно еще одному предпочтительному варианту осуществления настоящего изобретения указанная предварительная обработка 1) очисткой сырого растительного масла включает операции нейтрализации и фракционирования масла охлаждением. При рафинировании происходит, прежде всего, нейтрализация или деацидофикация исходного масла, позволяющая удалить свободные жирные кислоты, которые образуются в сырье за счет липазной активности. Эту обработку проводят добавлением к сырому маслу подходящих количеств оснований, в частности, гидроксида натрия. Нейтрализация свободных жирных кислот частично приводит к образованию мыл, которые могут составлять значительную часть нейтрального масла.

Как уже отмечалось, в совмещенном способе согласно настоящему изобретению можно использовать биометанол вместо метанола или биоэтанол вместо этанола для того, чтобы получить продукт с наибольшей экологической совместимостью. Смешение Bio-oil с обычным топливом в подходящих процентных соотношениях согласно типу использования и аппаратуре дает возможность определить (в тех же процентах) характеристики экологической совместимости Bio-oil с получаемой в результате смесью.

Согласно своему дополнительному аспекту настоящее изобретение также предлагает новую биотопливную или биогорючую смесь, состоящую из переменных количеств:

I) алкиловых эфиров жирных кислот, получаемых переэтерификацией, исходя из растительных или животных материалов липидной основы, подвергнутых предварительной обработке, включающей осушку, и из низших спиртов или биоспиртов;

II) низших спиртов или биоспиртов, или их смесей.

Согласно первой возможности указанное количество II) низших спиртов или биоспиртов соответствует избытку спиртов или биоспиртов, изначально обнаруживаемых при указанной переэтерификации. В этом случае нет необходимости в отделении спирта от алкилэфирной фазы, полученной переэтерификацией.

В зависимости от требований к использованию количество II) низших спиртов или биоспиртов может быть также меньше, чем избыток спирта или биоспирта, первоначально присутствующий в указанной переэтерификации, и это означает, что при получении должно иметь место по меньшей мере частичное отделение спирта, содержащегося в полученной алкилэфирной смеси, такое как быстрое испарение (однократное испарение) спирта, который является наиболее легкокипящим компонентом смеси продуктов.

Альтернативно, когда смесь согласно настоящему изобретению должна быть использована, например, в экстремальных условиях в авиации, для того, чтобы сохранить текучесть Bio-oil и избежать разделений, количество II) низших спиртов или биоспиртов может быть больше, чем избыток спирта или биоспирта, первоначально присутствующий в указанной переэтерификации. В этом случае, как отмечалось, конечную смесь получают добавлением дополнительного спирта или биоспирта после переэтерификации.

Как должно быть очевидно из данных, приведенных ниже, способ согласно настоящему изобретению обеспечивает продукт более высокого качества и чистоты по сравнению с обычными способами, с более низким остаточным содержанием глицерина и более низкой влажностью, дающий напрямую побочный продукт глицерин чистотой 95-98%.

Конкретные характерные признаки настоящего изобретения, а также его преимущества и сравнительные действующие модальности будут более ясны со ссылкой на подробное описание, представленное ниже в целях пояснения способов относительно одного из его предпочтительных вариантов осуществления. То же проиллюстрировано в прилагаемых рисунках, где:

На фигуре 1 показана общая блок-схема совмещенного способа получения биотоплив и биогорючих согласно настоящему изобретению.

На фигуре 2 показана блок-схема только той части способа фигуры 1, относящейся к предварительной обработке использованного жарочного масла и животных жиров.

На фигуре 3 показана блок-схема той части способа фигуры 1, относящейся к получению смеси согласно настоящему изобретению, начиная с предварительно обработанного и осушенного масла.

Как показано на блок-схеме фигуры 1, способ согласно настоящему изобретению состоит, главным образом, из трех секций предварительной обработки сырья. Эти три секции являются взаимосвязанными и могут быть использованы или вместе, или альтернативно друг другу, в зависимости от типа сырья, подлежащего переработке, и требуемых характеристик конечного продукта. Согласно настоящему изобретению масло, используемое для переэтерификации, получают из сырых, рафинированных или использованных (жарочных) растительных масел или из масел животного происхождения. Сырые растительные масла экстрагируют из масличных видов растений (рапс, подсолнечник, конопля, сорго, кокосовый орех, соя, пальма и т.д.) или из водорослей и/или микроводорослей, полученных в аквакультуре или в термических биореакторах.

Третья секция способа, которая относится к переработке отработанных пищевых масел, также показана более подробно на блок-схеме фигуры 2.

Производственные линии всех трех секций сливаются в пункте, обозначенном как "осушенное рафинированное масло", с которого начинается переэтерификация, с последующими операциями разделения и извлечения различных потоков и возможного добавления низшего спирта к Bio-oil, полученному в данном способе.

Идентичность и предпочтительные дозы различных реагентов показаны на фигуре 1, в то время как центральная секция способа, которая обеспечивает переэтерификацию, разделение полученных потоков и любое смешение с дополнительными спиртами или биоспиртами, также показана более подробно на блок-схеме фигуры 3.

ПРИМЕР

Для получения суммарно 1000 кг Bio-oil способом по настоящему изобретению предварительную обработку проводили следующим образом.

Сырое растительное масло

Если в качестве сырья используют сырое растительное масло прямого отжима, при исходном количестве 1040 кг методика является следующей:

a) предварительная обработка очисткой;

b) предварительная обработка нейтрализацией с использованием Н3РО4 и NaOH для того, чтобы извлечь мыла и сухое вещество;

c) обработка осушкой, которая дает осушенное рафинированное масло.

Осушенное рафинированное масло является узловым пунктом (в центре диаграммы фигуры 1) способа получения Bio-oil, который является пунктом прибытия для всех исходных материалов, принятых к рассмотрению.

Сырое растительное масло и использованное жарочное масло

Исходя из 1039 кг сырья, состоящего из 907 кг сырого растительного масла, смешанного со 132 кг использованного жарочного масла (UFO, ИЖМ) или масла, полученного из животных жиров, методика является следующей:

a) для ИЖМ и масла из животных жиров предварительная обработка центрифугированием и фильтрацией, осушка и этерификация с использованием H2SO4 и метанола/биометанола или этанола/биоэтанола;

b) для сырого растительного масла предварительная обработка нейтрализацией с использованием Н3РО4 и NaOH, чтобы извлечь мыла и сухое вещество;

c) осушка, дающая осушенное рафинированное масло.

Рафинированное растительное масло и использованное жарочное масло

Исходя из 1009 кг сырья, состоящего из 877 кг рафинированного растительного масла, смешанного со 132 кг использованного жарочного масла (ИЖМ) или масла, полученного из животных жиров, методика является следующей:

a) для ИЖМ и масла из животных жиров предварительная обработка центрифугированием и фильтрацией, осушка и этерификация с использованием H2SO4 и метанола/биометанола или этанола/биоэтанола;

b) осушка, дающая осушенное рафинированное масло.

Рафинированное растительное масло

Исходя из 1005 кг рафинированного растительного масла в качестве сырья, методика является следующей:

a) осушка, дающая осушенное рафинированное масло.

В процессе производства, исходя из различных комбинаций вышеуказанных исходных материалов, после описанных выше предварительных обработок проводят переэтерификацию. Затем осуществляют технологические обработки очистки и экстракции нежелательных компонентов, добавление компонентов, необходимых для конкретных применений (метанола и/или биометанола, этанола и/или биоэтанола), чтобы в конце придти к биотопливу Bio-oil, как показано на схеме способа.

Для получения 1000 кг Bio-oil, рассматривая весь способ, используют следующие химикаты в следующих относительных количествах:

Химикаты Минимум (кг) Максимум (кг)
Биометанол 0* 450
Метанол 0* 450
Биоэтанол 0* 450
Этанол 0* 450
Метилат натрия 5,0 10,5
Лимонная кислота 0,5 1,5
96% серная кислота 0,5 1,7
36% хлорид натрия 13,0 15,5
80% фосфорная кислота 1,5 3,00
50% каустическая сода 10,5 13,7
* Четыре продукта объединяют в соответствии с оптимальным процентным соотношением, требуемым для типа исходного материала и для типа получаемого Bio-oil. Для минимального воздействия на окружающую среду в способе необходимо использовать биометанол и биоэтанол в подходящих пропорциях.

В таблице 1 ниже приведены некоторые характеристики биодизельного топлива Biodiesel для моторов автомобилей согласно спецификациям UNI EN 14 424 в сравнении с характеристиками Bio-oil, полученного согласно методике настоящего изобретения.

Таблица 1СРАВНЕНИЕ СВОЙСТВ BIODIESEL И BIO-OIL
БИОДИЗЕЛЬ BIO-OIL
Свойства Единицы Пределы Пределы Метод испытаний
Мин. Макс. Мин. Макс.
Содержание эфира % (масс.) 96,5 98,5 EN 14103
Объемная масса при 15°C кг/м3 860 900 860 900 EN ISO 3675 EN ISO 12185
Вязкость при 40°C мм2 3,50 5,00 1,50 4,00 EN ISO 3104
Температура вспышки °C 120 - >110 - prEN ISO 3679
Содержание серы мг/кг - 10,0 - ≤10,00 EN ISO 20846 EN ISO 20884
Углеродистый остаток (на 10% остаток перегонки) % (масс.) - 0,30 - ≤0,30 EN ISO 10370
Кетоновое число 51,0 EN ISO 5165
Содержание сульфатированной золы % (масс.) - 0,02 ISO 3987
Содержание воды мг/кг - 500 - ≤500 EN ISO 12937
Суммарные твердые загрязнения мг/кг - 24 - ≤20 EN 12662
Коррозия на медной пластине (3 ч при 50°C) классификация класс 1 класс 1 EN ISO 2160
Окислительная стабильность, 110°C часы 6,0 - 6,0 - EN 14112
Кислотное число мг KOH/г 0,50 EN 14104
Йодное число г йода/100 г 120 110 EN 14111
Метиловый эфир линоленовой кислоты % (масс.) 12,0 11,0 EN 14103
Полиненасыщенные метиловые эфиры линоленовой кислоты (≥4 двойных связей) % (масс.) 1 1
Содержание метанола % (масс.) 0,20 45,0 EN 14110
Содержание биометанола % (масс.) 45,0
БИОДИЗЕЛЬ BIO-OIL
Свойства Единицы Пределы Пределы Метод испытаний
Мин. Макс. Мин. Макс.
Содержание этанола % (масс.) 45,0
Содержание биоэтанола % (масс.) 45,0
Содержание моноглицеридов % (масс.) 0,80 0,70 EN 14105
Содержание диглицеридов % (масс.) 0,20 0,19 EN 14105
Содержание триглицеридов % (масс.) 0,20 0,20 EN 14105
Свободный глицерин % (масс.) 0,02 0,02 EN 14105EN 14106
Содержание моноглицеридов % (масс.) 0,80 0,80 EN 14105
Содержание диглицеридов % (масс.) 0,20 0,20 EN 14105
Содержание триглицеридов % (масс.) 0,20 0,20 EN 14105
Свободный глицерин % (масс.) 0,02 0,02 EN 14105EN 14106
Суммарный глицерин % (масс.) 0,25 0,23 EN 14105
Металлы I группы (Na+K) мг/кг 5,0 5,0 EN 14108EN 14109
Металлы II группы (Ca+Mg) мг/кг 5,0 5,0 prEN 14538
Содержание фосфора мг/кг 10,0 10,0 EN 14107

Из приведенных выше данных, а также из того, что уже известно в области горючих/топлив, получаемых из биомасс, ясно, что смеси согласно настоящему изобретению (Bio-oil) представляют биотопливо с очень низким воздействием на окружающую среду. Даже смешанное с ископаемым топливом оно не теряет свою биосовместимость, но сама смесь улучшает свои положительные характеристики в функциональной зависимости от процентного содержания использованного Bio-oil.

Прямые и косвенные преимущества биотоплива включают безопасность использования вследствие его высокой температуры вспышки (выше 110°С) и его высокой биоразлагаемости в почве или в воде, которая сохраняется в соответствующем процентном отношении, даже когда биотопливо смешано с ископаемым топливом.

Кроме того, биотопливная смесь согласно настоящему изобретению позволяет уменьшить почти все уровни выброса также по отношению к биодизелю, который уже имеет значительные преимущества в этом отношении. В частности, уменьшается количество диоксида углерода и несгоревших остатков, так как использование спирта снижает температуру горения, а присутствие кислорода в молекуле алкилового эфира способствует лучшему горению.

Диоксид углерода, продуцируемый Bio-oil, благодаря его растительному происхождению, компенсируется диоксидом углерода, поглощенным растениями, выращенными для производства исходного масла. Что касается полезного эффекта, имеется, например, среднее уменьшение в 2,5 тонны выброса СО2 на каждую тонну замещенного ископаемого дизельного топлива.

Как и для других биотоплив, растительн