Конструктивно-технологический модельный ряд центробежных насосов горизонтального типа
Иллюстрации
Показать всеИзобретение относится к насосостроению, а именно к конструкциям пульповых центробежных насосов горизонтального типа, предназначенных для перекачивания различных абразивных жидкостей с твердыми включениями. Конструктивно-технологический модельный ряд центробежных насосов горизонтального типа включает совокупность насосов с производительностью от 10 до 1000 м3/ч и напором от 10 до 75 м. Каждый репрезентативный насос ряда содержит корпус и вал ротора с рабочим колесом, смонтированный в корпусе. Корпус насоса имеет ходовую и проточную часть. Проточная часть включает всасывающий патрубок, проточную полость с рабочим колесом и спиральный отвод, сообщенный с напорным патрубком. Рабочее колесо выполнено в виде крыльчатки с многозаходной системой лопаток с угловой закруткой, выполненной с постоянным или переменным радиусом кривизны. Лопатки разделены межлопаточными каналами, диффузорно расширяющимися в направлении от оси вала к периферии. Вал ротора насоса имеет консольные оконечности и ходовую часть, опертую на корпус ходовой части насоса через подшипниковые опоры, и снабженную гидравлически непрозрачным, предпочтительно, сальниковым уплотнением. Тыльная стенка проточной полости выполнена в виде бронедиска. Боковая стенка проточной полости образует спиральный отвод. Напорный патрубок выполнен диффузорным с превышением площади поперечного сечения на выходе в 1,2÷5,6 раза относительно аналогичной площади на входе в упомянутый патрубок. Технический результат, достигаемый изобретением, состоит в разработке конструктивно-технологического модельного ряда центробежных насосов горизонтального типа с широким диапазоном производительности и напоров перекачиваемой жидкой среды, наделенных повышенными ресурсом, долговечностью, надежностью и эффективностью перекачивания жидких сред с высоким содержанием твердых частиц. 11 з.п. ф-лы, 7 ил.
Реферат
Изобретение относится к насосостроению, а именно к конструкциям пульповых центробежных насосов горизонтального типа, предназначенных для перекачивания различных абразивных жидкостей с твердыми включениями размером до 8 мм.
Известен центробежный насос для перекачивания абразивных жидкостей, содержащий корпус с отводом, имеющим периферийную стенку и сопряженные с ней боковые переднюю и заднюю стенки, перпендикулярные оси рабочего колеса, размещенного в корпусе. Рабочее колесо выполнено с постоянной шириной меридионального сечения, а периферийная стенка отвода выполнена наклонной внутрь отвода в сторону задней стенки (RU 1247582 С, опубл. 27.01.1995).
Известен центробежный горизонтальный насос, содержащий корпус с входным и напорным патрубками, рабочее колесо одностороннего входа, расположенное на валу, опирающемся на подшипники. Насос содержит направляющий аппарат, а рабочее колесо размещено между подшипниками (RU 97452 U1, опубл. 10.09.2012).
Известен центробежный насос, содержащий корпус с всасывающим и напорным отверстиями, рабочее колесо, электропривод. Рабочее колесо выполнено закрытого типа. Верхний и нижний диски рабочего колеса выполнены плоскими и размещены на расстоянии друг от друга. Лопатки рабочего колеса выполнены расширяющими от наружного края дисков к центру. Поверхности лопаток в горизонтальном сечении представляют собой часть дуги окружности (RU 69586 U1, опубл. 27.12.2007).
Недостатками известных решений являются повышенные сложность конструкции, материалоемкость и относительно невысокая эффективность работы насоса вследствие повышенных энергозатрат, снижающих КПД перекачивания жидкой среды, и неоптимальной диффузорности межлопаточных каналов рабочего колеса и отвода.
Задача настоящего изобретения заключается в разработке конструктивно-технологического модельного ряда центробежных насосов горизонтального типа с широким диапазоном производительности и напоров перекачиваемой жидкой среды, наделенных повышенными ресурсом, долговечностью, надежностью и эффективностью перекачивания жидких сред с высоким содержанием твердых частиц.
Поставленная задача решается тем, что конструктивно-технологический модельный ряд центробежных насосов горизонтального типа, согласно изобретению, включает совокупность насосов, выполненных с возможностью перекачивания жидких сред, в основном гидросмесей с включениями твердых частиц, производительностью от 10 до 1000 м3/ч и напором от 10 до 75 м, при этом каждый репрезентативный насос ряда выполнен по однотипной конструктивной системе, в соответствии с которой, по меньшей мере, один насос из указанной совокупности содержит корпус, включающий ходовую и проточную части, вал ротора с рабочим колесом, смонтированный в корпусе и выполненный с возможностью соединения с приводом, предпочтительно, в виде электродвигателя для передачи крутящего момента на рабочее колесо; при этом проточная часть корпуса насоса включает последовательно расположенные по потоку всасывающий патрубок, проточную полость с тыльной и боковой стенками и объемом для размещения рабочего колеса и сообщенного на выходе с напорным патрубком отвода, выполненного спиральным с градиентом диффузорности G, определяемым из выражения
где Sвых и Sвx - площадь выходного и входного поперечных сечений отвода, lотв - длина спирального канала отвода;
причем вал ротора насоса имеет консольные оконечности и ходовую часть, опертую на корпус ходовой части насоса через подшипниковые опоры, и снабженную со стороны, примыкающей к проточной части, гидравлически непрозрачным, предпочтительно, сальниковым уплотнением, а рабочее колесо насоса выполнено в виде крыльчатки закрытого типа и содержит жестко установленные на валу основной и покрывной диски и расположенную между ними многозаходную систему лопаток с угловой закруткой, выполненной с постоянным или переменным радиусом кривизны в проекции на условную плоскость, нормальную к оси вала; лопатки разделены диффузорными межлопаточными каналами, расширяющимися в направлении от оси вала к периферии, кроме того, тыльная стенка проточной полости выполнена в виде бронедиска, боковая стенка упомянутой полости образует спиральный отвод, а напорный патрубок выполнен диффузорным с превышением площади поперечного сечения на выходе в 1,2÷5,6 раза относительно аналогичной площади на входе в упомянутый патрубок.
При этом межлопаточные каналы могут диффузорно расширяться с угловой закруткой в направлении от оси вала к периферии с градиентом диффузорности G, выраженным в виде разности площадей поперечных сечений, нормальных спиральной медиане канала, отнесенной к медиальной длине канала между указанными сечениями, причем средняя величина градиента для насосов ряда определена в диапазоне значений G=0,26÷0,7 м2/м.
Активный объем динамического заполнения совокупности межлопаточных каналов для репрезентативных насосов ряда с номинальной производительностью 100÷200 м3/ч может быть выполнен с возможностью выброса на проток за один оборот рабочего колеса (30÷600)×10-5 м3/об перекачиваемой жидкой среды.
Для вариантных решений насоса с подачей 8÷250 м3/ч средние значения градиента диффузорности спирального отвода могут быть определены в диапазоне 0÷10-3 м2/м.
Покрывной диск может содержать заходную горловину с радиусом, частично перекрывающим в проекции на условную плоскость, нормальную к оси вала, оконечности лопаток, обращенные к указанной оси и не доходящие до нее на большую часть проекции радиуса горловины всасывающего патрубка на упомянутую условную плоскость.
Преимущественно, оба, основной и покрывной диски рабочего колеса репрезентативного насоса ряда могут быть снабжены с внешней стороны гидродинамическим уплотнением в виде импеллера, образованного системой не менее чем из пяти равноудаленных лопаток лучевидной формы с дополнительной функцией внешних ребер жесткости диска, конструктивно выполненных с шириной не менее высоты в поперечном сечении.
Вал ротора репрезентативного насоса ряда может быть оперт на подшипники, имеющие каждый сборный корпус с крышкой, и кроме того упомянутое гидравлически непрозрачное сальниковое уплотнение вала заключено в кольцевой корпус, причем корпус насоса выполнен сборным и состоит из корпуса ходовой части и корпуса проточной части, которые объединены бронедиском, замыкающим проточную полость корпуса проточной части насоса, причем к бронедиску с другой стороны прикреплены корпус ходовой части насоса и размещенный внутри него корпус сальникового уплотнения, а упомянутые корпуса подшипников, охватывающие приконцевой и внутренний участки вала, размещены в корпусе ходовой части насоса, при этом, по меньшей мере, один из указанных подшипников выполнен упорно-радиальным и крышкой неподвижно прикреплен к корпусу ходовой части насоса с обеспечением осевой и радиальной фиксации положения вала ротора в корпусе насоса.
Корпус сальникового уплотнения может быть выполнен охватывающим участок вала ротора и состоит, по меньшей мере, из двух конгруэнтных кольцевых частей, одна из которых выполнена с внутренним радиусом, превышающим радиус охватываемого участка вала на величину, необходимую и достаточную для заведения в кольцевую пазуху и радиальной фиксации сальникового уплотнения в проектном положении, для чего снабжена у торца, обращенного к бронедиску, кольцевым уширением до величины, превышающей внутренний радиус опертой на него стенки корпуса ходовой части насоса, и через последнюю и бронедиск прикреплена к упомянутым внешним частям корпуса насоса, а другая из упомянутых кольцевая часть корпуса сальникового уплотнения выполнена с внешним радиусом, конгруэнтно соответствующим внутреннему радиусу первой из них с возможностью частичного заведения в нее для осевого поджатия сальникового уплотнения.
Гидравлически непрозрачное уплотнение вала ротора репрезентативного насоса ряда может быть размещено на участке вала ротора с промежуточным диаметром, примыкающем к бронедиску, при этом выполнено, предпочтительно, в виде колец из терморасширяющегося материала и дополнительно снабжено системой охлаждения вала с проточным кольцом и щелевым бесконтактным приемником воды указанной системы охлаждения вала.
Корпус ходовой части центробежного насоса может быть снабжен проемом, соосным с аналогичным в корпусе сальникового уплотнения, для введения через него штуцера для подвода к сальниковому уплотнению охлаждающей жидкости системы охлаждения вала ротора.
Бронедиск может быть выполнен в форме круговой пластины, применяемой в качестве бронированного участка торцевой стенки полости проточной части, при этом пластина бронедиска выполнена с проемом в центральной части, обеспечивающем возможность пропуска через него ступицы основного диска рабочего колеса, а по контуру ограничена радиусом, обеспечивающем возможность конгруэнтного заведения в ответный проем проточной части корпуса насоса, и дополнена не менее чем двумя внешними, последовательно превышающими указанный радиус ступенчато смещенными в направлении проходной части корпуса насоса кольцевыми выступами, по форме обеспечивающими конгруэнтное совмещение с кольцевым уступом и наложение на торец стенки проточной полости проточной части корпуса насоса.
Насосы ряда могут быть предназначены для перекачивания абразивных жидкостей - суспензий руд, пульпы, промышленных стоков, загрязненной технической воды, пластовой воды, гидросмесей с песком с плотностью до 2200 кг/м, с температурой от 3 до 80°С, водородным показателем до 10 рН и твердыми включениями в виде дискретных абразивных частиц до 8 мм, с микротвердостью до 9 ГПа и объемной концентрацией микрочастиц до 50% включительно.
Технический результат, достигаемый приведенной совокупностью признаков, состоит в разработке конструктивно-технологического модельного ряда центробежных насосов горизонтального типа, наделенных повышенными ресурсом, долговечностью, надежностью и эффективностью перекачивания абразивных жидких сред с высоким процентным содержанием твердых частиц и динамическим воздействием последних на конструкции и материалы проточной части насосов ряда. Это достигают совокупностью разработанных в изобретении конструктивных решений и технологических параметров центробежных насосов ряда, позволяющих варьировать в широких пределах производительность и напор перекачиваемой жидкой среды, а именно, за счет найденных в изобретении параметров всасывающего и напорного патрубков, системы рабочего колеса, выполненного в виде крыльчатки закрытого типа с конструктивным решением лопаток, их количеством, формой и заявленными параметрами покрывного, основного дисков и отвода, обеспечивающими в совокупности принятые в изобретении повышающие производительность и КПД насоса - эффективную диффузорность межлопаточных каналов и спирального отвода.
Технический результат выражается, кроме того, в повышенной износостойкости наиболее изнашиваемых частей проточной части предлагаемой конструкции насосов ряда, в частности, за счет выполнения тыльной стенки корпуса проточной части в виде бронедиска, разработанной в изобретении полифункциональной конструкции, обеспечивающей силовое сопряжение примыкающих к нему конструктивных частей корпуса насоса.
Сущность изобретения поясняется чертежами, где:
на фиг.1 - конструктивная схема центробежного насоса, продольный разрез;
на фиг.2 - проточная часть центробежного насоса, продольный разрез;
на фиг.3 - рабочее колесо центробежного насоса, в сборе;
на фиг.4 - конструкция рабочего колеса, заключенного в корпус насоса, поперечный разрез;
на фиг.5 - система охлаждения вала центробежного насоса, схема подключения затворной воды на сальниковое уплотнение;
на фиг.6 - бронедиск центробежного насоса, вид сбоку, продольный разрез;
на фиг.7 - бронедиск центробежного насоса, вид спереди.
Конструктивно-технологический модельный ряд центробежных насосов горизонтального типа включает совокупность насосов, выполненных с возможностью перекачивания жидких сред, в основном гидросмесей с включениями твердых частиц, производительностью от 10 до 1000 м3/ч и напором от 10 до 75 м.
Каждый репрезентативный насос ряда выполнен по однотипной конструктивной системе, в соответствии с которой, по меньшей мере, один насос из указанной совокупности содержит корпус 1, включающий ходовую и проточную части 2 и 3 соответственно, вал 4 ротора с рабочим колесом 5, смонтированный в корпусе 1. Вал 4 ротора выполнен с возможностью соединения с приводом, предпочтительно, в виде электродвигателя для передачи крутящего момента на рабочее колесо 5.
Проточная часть 3 корпуса 1 насоса включает последовательно расположенные по потоку всасывающий патрубок 6, проточную полость 7 с тыльной и боковой стенками 8 и 9 и объемом 10 для размещения рабочего колеса 5 и сообщенного на выходе с напорным патрубком 11 отвода 12. Отвод 12 выполнен спиральным с градиентом диффузорности G, определяемым из выражения
где Sвых и Sвx - площадь выходного и входного поперечных сечений отвода, lотв - длина спирального канала отвода.
Вал 4 ротора насоса имеет консольные оконечности 13 и ходовую часть 14, опертую на корпус 1 ходовой части 2 насоса через подшипниковые опоры 15, и снабженную со стороны, примыкающей к проточной части 3, гидравлически непрозрачным, предпочтительно, сальниковым уплотнением 16.
Рабочее колесо 5 насоса выполнено в виде крыльчатки закрытого типа и содержит жестко установленные на валу основной и покрывной диски 17 и 18 соответственно и расположенную между ними многозаходную систему лопаток 19 с угловой закруткой, выполненной с постоянным или переменным радиусом кривизны в проекции на условную плоскость, нормальную к оси вала 4. Лопатки 16 разделены диффузорными межлопаточными каналами 20, расширяющимися в направлении от оси вала 4 к периферии.
Тыльная стенка 8 проточной полости 7 выполнена в виде бронедиска. Боковая стенка 9 проточной полости 7 образует спиральный отвод 12.
Напорный патрубок 11 выполнен диффузорным с превышением площади поперечного сечения на выходе в 1,2÷5,6 раза относительно аналогичной площади на входе в упомянутый патрубок 11.
Межлопаточные каналы 20 диффузорно расширяются с угловой закруткой в направлении от оси вала 4 к периферии с градиентом диффузорности G, выраженным в виде разности площадей поперечных сечений, нормальных спиральной медиане канала 20, отнесенной к медиальной длине канала 20 между указанными сечениями. Средняя величина градиента для насосов ряда определена в диапазоне значений G=0,26÷0,7 м2/м.
Активный объем динамического заполнения совокупности межлопаточных каналов 20 для репрезентативных насосов ряда с номинальной производительностью 100÷200 м3/ч выполнен с возможностью выброса на проток за один оборот рабочего колеса (30÷600)×10-5 м3/об перекачиваемой жидкой среды.
Для вариантных решений насоса с подачей 8÷250 м3/ч средние значения градиента диффузорности спирального отвода 12 определены в диапазоне 0÷10-3 м2/м.
Покрывной диск 18 содержит заходную горловину 21 с радиусом, частично перекрывающим в проекции на условную плоскость, нормальную к оси вала 4, оконечности лопаток 19, обращенные к указанной оси и не доходящие до нее на большую часть проекции радиуса горловины всасывающего патрубка 6 на упомянутую условную плоскость.
Преимущественно оба, основной и покрывной диски 17 и 18 рабочего колеса 5 репрезентативного насоса ряда снабжены с внешней стороны гидродинамическим уплотнением в виде импеллера 22. Импеллер 22 образован системой не менее чем из пяти равноудаленных лопаток 23 лучевидной формы с дополнительной функцией внешних ребер жесткости диска, конструктивно выполненных с шириной не менее высоты в поперечном сечении.
Вал 4 ротора репрезентативного насоса ряда оперт на подшипники 24, имеющие каждый сборный корпус 25 с крышкой 26. Гидравлически непрозрачное сальниковое уплотнение 16 вала 4 заключено в кольцевой корпус 27.
Корпус 1 насоса выполнен сборным и состоит из корпуса 28 ходовой части 2 и корпуса 29 проточной части 3, которые объединены бронедиском 8, замыкающим проточную полость 7 корпуса проточной части 3 насоса. К бронедиску 8 с другой стороны прикреплены корпус 28 ходовой части 2 насоса и размещенный внутри него корпус 27 сальникового уплотнения 16. Корпуса 25 подшипников 24, охватывающие приконцевой и внутренний участки вала 4, размещены в корпусе 28 ходовой части 2 насоса. По меньшей мере, один из указанных подшипников 24 выполнен упорно-радиальным и крышкой 26 неподвижно прикреплен к корпусу 28 ходовой части 2 насоса с обеспечением осевой и радиальной фиксации положения вала 4 ротора в корпусе насоса.
Корпус 27 сальникового уплотнения 16 выполнен охватывающим участок вала 4 ротора и состоит, по меньшей мере, из двух конгруэнтных кольцевых частей 30 и 31. Одна часть 30 корпуса 27 выполнена с внутренним радиусом, превышающим радиус охватываемого участка вала 4 на величину, необходимую и достаточную для заведения в кольцевую пазуху и радиальной фиксации сальникового уплотнения 16 в проектном положении, для чего снабжена у торца, обращенного к бронедиску 8, кольцевым уширением 32 до величины, превышающей внутренний радиус опертой на него стенки корпуса 28 ходовой части 2 насоса, и через последнюю и бронедиск 8 прикреплена к упомянутым внешним частям корпуса насоса. Другая часть 31 корпуса 27 сальникового уплотнения 16 выполнена с внешним радиусом, конгруэнтно соответствующим внутреннему радиусу первой из них с возможностью частичного заведения в нее для осевого поджатия сальникового уплотнения 16.
Гидравлически непрозрачное уплотнение 16 вала 4 ротора репрезентативного насоса ряда размещено на участке вала 4 ротора с промежуточным диаметром, примыкающем к бронедиску 8. Гидравлически непрозрачное уплотнение 16 вала выполнено, предпочтительно, в виде колец 33 из терморасширяющегося материала и дополнительно снабжено системой охлаждения вала с проточным кольцом 34 и щелевым бесконтактным приемником 35 воды указанной системы охлаждения вала 4.
Корпус 28 ходовой части 2 насоса снабжен проемом 36, соосным с аналогичным в корпусе 27 сальникового уплотнения 16, для введения через него штуцера 37 для подвода к сальниковому уплотнению 16 охлаждающей жидкости системы охлаждения вала 4 ротора.
Бронедиск 8 выполнен в форме круговой пластины, применяемой в качестве бронированного участка торцевой стенки проточной полости 7. Пластина бронедиска 8 выполнена с проемом 38 в центральной части, обеспечивающим возможность пропуска через него ступицы 39 основного диска 17 рабочего колеса 5. По контуру пластина бронедиска 8 ограничена радиусом, обеспечивающим возможность конгруэнтного заведения в ответный проем корпуса 29 проточной части 3 насоса, и дополнена не менее чем двумя внешними, последовательно превышающими указанный радиус ступенчато смещенными в направлении проточной части 3 корпуса 1 насоса кольцевыми выступами 40, по форме обеспечивающими конгруэнтное совмещение с кольцевым уступом и наложение на торец 41 стенки проточной полости 7 корпуса 29 проточной части 3 насоса.
Насосы ряда предназначены для перекачивания абразивных жидкостей - суспензий руд, пульпы, промышленных стоков, загрязненной технической воды, пластовой воды, гидросмесей с песком с плотностью до 2200 кг/м, с температурой от 3 до 80°С, водородным показателем до 10 рН и твердыми включениями в виде дискретных абразивных частиц до 8 мм, с микротвердостью до 9 ГПа и объемной концентрацией микрочастиц до 50% включительно.
Работа предлагаемого насоса из модельного ряда осуществляется следующим образом.
Пуск насоса производят в следующей последовательности: открывают на трубопроводе 41 подачу затворной воды к узлу сальникового уплотнения 16 вала 4. Открывают задвижку (на чертежах не показано) и заполняют насос 4 перекачиваемой жидкостью. Затем регулируют давление и расход затворной воды, подаваемой в сальниковое уплотнение 16.
Перекачиваемая жидкая среда через всасывающий патрубок 6, попадая на вход во вращающееся центробежное рабочее колесо 5, перемещается от центра к периферии под действием центробежных сил и диффузного расширения в межлопаточных каналах 20 рабочего колеса 5, приобретая при этом кинетическую энергию и получая закрутку в направлении вращения рабочего колеса 5.
После выхода из рабочего колеса 5 поток переходит в диффузорный спиральный отвод 12, расширяющийся к напорному патрубку 11 в режиме соблюдения равенства скоростей потока на протяжении отвода 12. Из отвода 12 жидкая среда попадает в напорный патрубок 11, выполненный диффузорным со снижением скорости при прохождении в патрубке в 3,4 раза и одновременным переходом части кинетической энергии потока в потенциальную, и поступает в трубопровод для транспортирования к следующему объекту.
Во избежание запульповывания рабочего колеса 5 отстоем перекачиваемой жидкости, промывают проточную полость 7 насоса чистой водой через штуцера на всасывающем и напорном трубопроводах (на чертежах не показано).
Таким образом, за счет разработанных в изобретении конструктивных решений и технологических параметров основных агрегатов, а именно, технического решения конструкции вала ротора с радиально-упорной системой подшипниковых опор и конструкцией гидродинамически непрозрачного уплотнения вала, разработанной системы рабочего колеса, конструктивного решения и формы спирального отвода и напорного патрубка, а также полифункциональной конструкции бронедиска повышаются ресурс, надежность и эффективность перекачивания абразивных жидких сред, что позволяет варьировать в широких пределах производительность и напор перекачиваемой жидкой среды.
1. Конструктивно-технологический модельный ряд центробежных насосов горизонтального типа, характеризующийся тем, что включает совокупность насосов, выполненных с возможностью перекачивания жидких сред, в основном гидросмесей с включениями твердых частиц, производительностью от 10 до 1000 м3/ч и напором от 10 до 75 м, при этом каждый репрезентативный насос ряда выполнен по однотипной конструктивной системе, в соответствии с которой, по меньшей мере, один насос из указанной совокупности содержит корпус, включающий ходовую и проточную части, вал ротора с рабочим колесом, смонтированный в корпусе и выполненный с возможностью соединения с приводом, предпочтительно, в виде электродвигателя для передачи крутящего момента на рабочее колесо; при этом проточная часть корпуса насоса включает последовательно расположенные по потоку всасывающий патрубок, проточную полость с тыльной и боковой стенками и объемом для размещения рабочего колеса и сообщенного на выходе с напорным патрубком отвода, выполненного спиральным с градиентом диффузорности G, определяемым из выражения где Sвых и Sвх - площадь выходного и входного поперечных сечений отвода, lотв - длина спирального канала отвода;причем вал ротора насоса имеет консольные оконечности и ходовую часть, опертую на корпус ходовой части насоса через подшипниковые опоры, и снабженную со стороны, примыкающей к проточной части, гидравлически непрозрачным, предпочтительно, сальниковым уплотнением, а рабочее колесо насоса выполнено в виде крыльчатки закрытого типа и содержит жестко установленные на валу основной и покрывной диски и расположенную между ними многозаходную систему лопаток с угловой закруткой, выполненной с постоянным или переменным радиусом кривизны в проекции на условную плоскость, нормальную к оси вала; лопатки разделены диффузорными межлопаточными каналами, расширяющимися в направлении от оси вала к периферии, кроме того, тыльная стенка проточной полости выполнена в виде бронедиска, боковая стенка упомянутой полости образует спиральный отвод, а напорный патрубок выполнен диффузорным с превышением площади поперечного сечения на выходе в 1,2÷5,6 раза относительно аналогичной площади на входе в упомянутый патрубок.
2. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что межлопаточные каналы диффузорно расширяются с угловой закруткой в направлении от оси вала к периферии с градиентом диффузорности G, выраженным в виде разности площадей поперечных сечений, нормальных спиральной медиане канала, отнесенной к медиальной длине канала между указанными сечениями, причем средняя величина градиента для насосов ряда определена в диапазоне значений G=0,26÷0,7 м2/м.
3. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что активный объем динамического заполнения совокупности межлопаточных каналов для репрезентативных насосов ряда с номинальной производительностью 100÷200 м3/ч выполнен с возможностью выброса на проток за один оборот рабочего колеса (30÷600)×10-5 м3/об перекачиваемой жидкой среды.
4. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что для вариантных решений насоса с подачей 8÷250 м3/ч средние значения градиента диффузорности спирального отвода определены в диапазоне 0÷10-3 м2/м.
5. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что покрывной диск содержит заходную горловину с радиусом, частично перекрывающим в проекции на условную плоскость, нормальную к оси вала, оконечности лопаток, обращенные к указанной оси и не доходящие до нее на большую часть проекции радиуса горловины всасывающего патрубка на упомянутую условную плоскость.
6. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что, преимущественно, оба основной и покрывной диски рабочего колеса репрезентативного насоса ряда снабжены с внешней стороны гидродинамическим уплотнением в виде импеллера, образованного системой не менее чем из пяти равноудаленных лопаток лучевидной формы с дополнительной функцией внешних ребер жесткости диска, конструктивно выполненных с шириной не менее высоты в поперечном сечении.
7. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что вал ротора репрезентативного насоса ряда оперт на подшипники, имеющие каждый сборный корпус с крышкой, и, кроме того, упомянутое гидравлически непрозрачное сальниковое уплотнение вала заключено в кольцевой корпус, причем корпус насоса выполнен сборным и состоит из корпуса ходовой части и корпуса проточной части, которые объединены бронедиском, замыкающим проточную полость корпуса проточной части насоса, причем к бронедиску с другой стороны прикреплены корпус ходовой части насоса и размещенный внутри него корпус сальникового уплотнения, а упомянутые корпуса подшипников, охватывающие приконцевой и внутренний участки вала, размещены в корпусе ходовой части насоса, при этом, по меньшей мере, один из указанных подшипников выполнен упорно-радиальным и крышкой неподвижно прикреплен к корпусу ходовой части насоса с обеспечением осевой и радиальной фиксации положения вала ротора в корпусе насоса.
8. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что корпус сальникового уплотнения выполнен охватывающим участок вала ротора и состоит, по меньшей мере, из двух конгруэнтных кольцевых частей, одна из которых выполнена с внутренним радиусом, превышающим радиус охватываемого участка вала на величину, необходимую и достаточную для заведения в кольцевую пазуху и радиальной фиксации сальникового уплотнения в проектном положении, для чего снабжена у торца, обращенного к бронедиску, кольцевым уширением до величины, превышающей внутренний радиус опертой на него стенки корпуса ходовой части насоса, и через последнюю и бронедиск прикреплена к упомянутым внешним частям корпуса насоса, а другая из упомянутых кольцевая часть корпуса сальникового уплотнения выполнена с внешним радиусом, конгруэнтно соответствующим внутреннему радиусу первой из них с возможностью частичного заведения в нее для осевого поджатия сальникового уплотнения.
9. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что гидравлически непрозрачное уплотнение вала ротора репрезентативного насоса ряда размещено на участке вала ротора с промежуточным диаметром, примыкающем к бронедиску, при этом выполнено, предпочтительно, в виде колец из терморасширяющегося материала и дополнительно снабжено системой охлаждения вала с проточным кольцом и щелевым бесконтактным приемником воды указанной системы охлаждения вала.
10. Конструктивно-технологический модельный ряд центробежных насосов по п.1, отличающийся тем, что бронедиск выполнен в форме круговой пластины, применяемой в качестве бронированного участка торцевой стенки полости проточной части, при этом пластина бронедиска выполнена с проемом в центральной части, обеспечивающим возможность пропуска через него ступицы основного диска рабочего колеса, а по контуру ограничена радиусом, обеспечивающим возможность конгруэнтного заведения в ответный проем проточной части корпуса насоса, и дополнена не менее чем двумя внешними, последовательно превышающими указанный радиус ступенчато смещенными в направлении проходной части корпуса насоса кольцевыми выступами, по форме обеспечивающими конгруэнтное совмещение с кольцевым уступом и наложение на торец стенки проточной полости проточной части корпуса насоса.
11. Конструктивно-технологический модельный ряд центробежных насосов по п.9, отличающийся тем, что корпус ходовой части центробежного насоса снабжен проемом, соосным с аналогичным в корпусе сальникового уплотнения, для введения через него штуцера для подвода к сальниковому уплотнению охлаждающей жидкости системы охлаждения вала ротора.
12. Конструктивно-технологический модельный ряд по п.1, отличающийся тем, что насосы ряда предназначены для перекачивания абразивных жидкостей - суспензий руд, пульпы, промышленных стоков, загрязненной технической воды, пластовой воды, гидросмесей с песком с плотностью до 2200 кг/м, с температурой от 3 до 80°С, водородным показателем до 10 рН и твердыми включениями в виде дискретных абразивных частиц до 8 мм, с микротвердостью до 9 ГПа и объемной концентрацией микрочастиц до 50% включительно.