D1451 способы составления отверждаемых облучением суперпокрытий для оптического волокна

Иллюстрации

Показать все

Изобретение относится к суперпокрытиям на оптические волокна, отверждаемым облучением. Технический результат изобретения заключается в снижении микроизгибов волокна и затухания сигнала. Суперпокрытие содержит первичное покрытие и вторичное покрытие. Первичное покрытие после первоначального отверждения и по меньшей мере после одного месяца старения при 85°С и относительной влажности 85% имеет следующие свойства: 1) % RAU от 84% до 99%; 2) модуль упругости от 0,15 МПа до 0,60 МПа; 3) Tg трубки от -25°С до -55°С. Вторичное покрытие после первоначального отверждения и по меньшей мере после одного месяца старения при 85°С и относительной влажности 85% имеет следующие свойства: 1) % RAU от 80% до 98%; 2) модуль упругости от 0,060 ГПа до 1,90 ГПа; 3) Tg трубки составляет от 50°С до 80°С. Первоначально определяют требования к максимальному допустимому увеличению затухания для телекоммуникационной сети, где будут прокладывать оптическое волокно. Затем определяют условия эксплуатации суперпокрытий. Составляют композицию первичного и вторичного покрытий в жидком, неотвержденном состоянии. Тестируют первичное и вторичное покрытия для определения свойств суперпокрытий. Если необходимые свойства суперпокрытий не получены, пересоставляют первичное и/или вторичное покрытия для достижения заданных свойств. 1 з.п. ф-лы, 6 пр., 13 ил.

Реферат

Родственные патентные заявки

По настоящей патентной заявке испрашивается приоритет предварительной патентной заявки США 61/272596, поданной 9 октября 2009 года, и предварительной патентной заявки США 61/250329, поданной 9 октября 2009 года, предварительной патентной заявки США 61/287567, поданной 17 декабря 2009 года, и предварительной патентной заявки США 61/363965, поданной 13 июля 2010 года, которые все в полном объеме включены в качестве ссылки.

Область изобретения

Настоящее изобретение относится к отверждаемым облучением покрытиям для оптического волокна.

Уровень техники, предшествующий изобретению

Оптическое волокно представляет собой стекловолокно, проводящее свет по своей длине. Оптические волокна широко используют в оптоволоконных коммуникациях, которые обеспечивают передачу на большие расстояния и с более высокими полосами пропускания (скоростями передачи данных), чем другие формы коммуникаций. Волокна применяют вместо металлических проводов, так как сигналы проходят по ним с меньшими потерями, а также они устойчивы к электромагнитным помехам.

Свет остается в сердцевине оптического волокна вследствие полного внутреннего отражения. Это позволяет волокну действовать в качестве волновода. Волокна, которые поддерживают несколько путей распространения или поперечных мод, называют многомодовые волокна (MMF), тогда как волокна, которые могут поддерживать только одну моду, называют одномодовые волокна (SMF). Как правило, MMF имеют больший диаметр сердцевины, и их применяют для каналов связи на короткие расстояния и для применений, где необходима передача с большой мощностью. SMF применяют для большинства каналов связи, более 550 метров (1800 футов).

В настоящей патентной заявке затухание в волоконной оптике, также известное как потери при передаче, определено как снижение интенсивности светового луча (или сигнала) по отношению к расстоянию, преодолеваемому по передающей среде. Коэффициенты потерь на затухание в оптических волокнах, как правило, описывают с использованием единиц в децибелах на километр, сокращаемых как дБ/км.

Затухание является важным фактором, ограничивающим передачу цифрового сигнала на большие расстояния. Таким образом, в области ограничения затухания и максимизации усиления оптического сигнала проведены большие исследования. Практические исследования показали, что затухание в оптическом волокне преимущественно обусловлено рассеянием и поглощением.

В 1965 году Charles K. Kao {один из трех лауреатов Нобелевской премии 2009 года по физике за "значительные достижения в области передача света через волокна в оптической связи"} и George A. Hockham из британской компании Standard Telephones and Cables (STC) были первыми кто выдвинул идею, что затухание в оптических волокнах можно снизить ниже 20 децибел на километр (дБ/км), позволяя оптическим волокнам служить в качестве практической среды для связи. Они предполагали, что затухание в волокнах, существующее в тот период, вызывалось загрязнениями, которые можно удалить, на не фундаментальными физическими явлениями, такими как рассеяние. Ключевого уровня затухания 20 дБ/км впервые достигли в 1970 году исследователи Robert D. Maurer, Donald Keck, Peter C. Schultz и Frank Zimar, работавшие в американском производителе стекла Corning Glass Works, в настоящее время Corning Incorporated. Они продемонстрировали волокно с затуханием 17 дБ/км, смешивая кварцевое стекло с титаном. Несколько лет спустя они получили волокно с затуханием всего лишь 4 дБ/км с применением в качестве примеси в сердцевину диоксида германия. Достижение таких низких величин затухания стало началом оптоволоконных телекоммуникаций и обеспечило возможность интернета.

Следующий патент США в полном объеме включен в настоящую заявку в качестве ссылки: патент США номер 6014488, выданный 11 января 2000 года.

Микроизгибы представляют собой резкие, но микроскопические изгибы в оптическом волокне, влекущие за собой локальные осевые смещения на несколько микрометров и пространственные волны длиной несколько миллиметров. Микроизгибы могут быть вызваны термическими напряжениями и/или механическими поперечными силами. В случае их присутствия микроизгибы снижают способность оптического волокна с покрытием к передаче сигнала. Таким образом, известно, что для исправного функционирования телекоммуникационной сети каждая телекоммуникационная система обладает пределом уровня допустимого увеличения затухания для оптического волокна и что во избежание достижения этого предела следует снижать общий уровень микроизгибов, так как снижение уровня микроизгибов снижает увеличение затухания.

Одной из ключевых движущих сил для разработки технологии покрытия оптического волокна является возрастающий пользовательский спрос на видео. Существующая технология покрытия оптического волокна достаточно для применения сети 2G. Однако сети будущего, такие как 3G, 4G и IPTV, телевидение высокой четкости (HDTV), видеоконференции и другие широкополосные приложения предъявляют более высокие требования к эффективности функционирования оптического волокна, таким образом, требования к эффективности функционирования покрытия оптического волокна становятся все выше и выше.

Для обеспечения больших требований для передачи видеоприложений в интернете телекоммуникационная сеть нового поколения должна поддерживать передачу большего объема, на большую дистанцию и более широкого спектрального диапазона, а производительность оптических волокон G652 текущего поколения рассчитана на дальнее прямолинейное использование; таким образом, G562 не подходят для удовлетворения требований к волокну для домашних (FTTH) задач.

Так как оптическая передача коммуникационных сигналов переходит в частные дома и MDU (многоквартирные дома), оптическое стекловолокно испытывает сильные изгибы, требующие от производителей оптического волокна обеспечивать волокна G657 с устойчивостью к макроизгибам. В то же время, возрастающие потребности в полосе пропускания вызывают напряжение доступных резервов в развертываемых сетях.

Отверждаемые облучением суперпокрытия первого поколения, Supercoatings™ (торговая марка DSM IP Assets B.V.) DeSolite, для оптического волокна описаны и заявлены в приведенных ниже патентных заявках США, которые, таким образом, в полном объеме включены в настоящую заявку в качестве ссылки: патентная заявка США 11/955935, поданная 13 декабря 2007 года, опубликованная как US 20080226916 19 сентября 2008 года; патентная заявка США 11/955838, поданная 13 декабря 2007 года, опубликованная как US 20080241535 23 октября 2008 года; патентная заявка США 11/955547, поданная 13 декабря 2007 года, опубликованная как US 20080226912 19 сентября 2008 года; патентная заявка США 11/955614, поданная 13 декабря 2007 года, опубликованная как US 20080226914 19 сентября 2008 года; патентная заявка США 11/955604, поданная 13 декабря 2007 года, опубликованная как US 20080226913 19 сентября 2008 года; патентная заявка США 11/955721, поданная 13 декабря 2007 года, опубликованная как US 20080233397 25 сентября 2008 года; патентная заявка США 11/955525, поданная 13 декабря 2007 года, опубликованная как US 20080226911 19 сентября 2008 года; патентная заявка США 11/955628, поданная 13 декабря 2007 года, опубликованная как US 20080226915 19 сентября 2008 года; и патентная заявка США 11/955541, поданная 13 декабря 2007 года, опубликованная как US 20080226909 19 сентября 2008 года.

В патентной заявке США с серийным номером 11/955541, поданной 13 декабря 2007 года, опубликованной 18 сентября 2009 года в качестве опубликованной патентной заявки США 20080226909, озаглавленной "ОТВЕРЖДАЕМЫЕ ОБЛУЧЕНИЕМ СУПЕРПОКРЫТИЯ D1381 ДЛЯ ОПТИЧЕСКОГО ВОЛОКНА" описаны и заявлены отверждаемые облучением суперпокрытия для оптического волокна, как указано ниже:

Суперпокрытия, подходящие для покрытия оптического волокна;

где суперпокрытия содержат по меньшей мере два слоя, где первый слой представляет собой первичное покрытие, находящееся в контакте с внешней поверхностью оптического волокна, а второй слой представляет собой вторичное покрытие в контакте с внешней поверхностью первичного покрытия,

где отвержденное первичное покрытие на оптическом волокне после первоначального отверждения и после одного месяца старения при 85°C и относительной влажности 85% имеет следующие свойства:

A) % RAU приблизительно от 84% до приблизительно 99%;

B) модуль упругости in situ приблизительно от 0,15 МПа и приблизительно 0,60 МПа; и

C) Tg трубки приблизительно от -25°C до приблизительно -55°C;

где отвержденное вторичное покрытие на оптическом волокне после первоначального отверждения и после одного месяца старения при 85°C и относительной влажности 85% имеет следующие свойства:

A) % RAU приблизительно от 80% до приблизительно 98%;

B) модуль упругости in situ приблизительно от 0,60 ГПа до приблизительно 1,90 ГПа; и

C) Tg трубки, приблизительно от 50°C до приблизительно 80°C.

Сообщалось, что с недавним запуском DSM Desotech линии суперпокрытий DeSolite (DeSolite Supercoatings™), отверждаемых облучением суперпокрытий для оптического волокна, смотрите www.Supercoatings.com, использование суперпокрытий оказывает большое положительное воздействие на характеристики микроизгибов оптического волокна. Таким образом, известно, что использование суперпокрытий снижает количество микроизгибов в оптическом волокне, а снижение количества микроизгибов снижает величину затухания в телекоммуникационной сети.

Поскольку становится очевидной необходимость в постоянно увеличивающейся пропускной способности интернета и современных телекоммуникационных устройств, также увеличится необходимость в оптическом волокне, устойчивом к затуханию. Таким образом, увеличивается необходимость в отверждаемых облучением суперпокрытиях. Поскольку возрастает необходимость в оптическом волокне, устойчивом к затуханию, и в отверждаемых облучением суперпокрытиях желательно разработать способ выбора и составления отверждаемых облучением суперпокрытий для оптического волокна.

Сущность изобретения

Первый аспект настоящего изобретения, описываемого в заявке, представляет собой способ составления отверждаемых облучением суперпокрытий для нанесения на оптическое волокно, используемое в телекоммуникационной сети, где указанные суперпокрытия содержат по меньшей мере два слоя, где первый слой представляет собой первичное покрытие, находящееся в контакте с поверхностью внешнего слой оптического волокна, а второй слой представляет собой вторичное покрытие в контакте с внешней поверхностью первичного покрытия, где отвержденное первичное покрытие на оптическом волокне после первоначального отверждения и по меньшей мере после одного месяца старения при 85°C и относительной влажности 85% имеет следующие свойства:

1) % RAU приблизительно от 84% до приблизительно 99%;

2) модуль упругости in situ приблизительно от 0,15 МПа и приблизительно 0,60 МПа; и

3) Tg трубки, приблизительно от -25°C до приблизительно -55°C;

и где отвержденное вторичное покрытие на оптическом волокне после первоначального отверждения и по меньшей мере после одного месяца старения при 85°C и относительной влажности 85% имеет следующие свойства:

4) % RAU приблизительно от 80% до приблизительно 98%;

5) модуль упругости in situ приблизительно от 0,060 ГПа и приблизительно 1,90 ГПа; и

6) Tg трубки приблизительно от 50°C до приблизительно 80°C;

где указанный способ включает этапы:

a) определения требований для максимального допустимого увеличения затухания для телекоммуникационной сети, где будут прокладывать оптическое волокно;

b) определения условий эксплуатации суперпокрытий, включающее:

i) выбор типа стекла, используемого в оптическом волокне;

ii) принятие решение о том, следует ли вторичное покрытие суперпокрытий наносить на первичное покрытие суперпокрытий способом "влажное на сухое" или "влажное на влажное";

iii) выбор типа, количества источников света и расположения источников света вдоль производственной линии с вытяжной колонной, которую применяют для отверждения суперпокрытий на оптическом волокне; и

iv) выбор линейной скорости при которой наносят суперпокрытия;

c) составления композиция первичного покрытия в жидком, неотвержденном состоянии;

d) составления композиция вторичного покрытия в жидком, неотвержденном состоянии;

e) использования способа трехмерного связывания, как показано на фиг.2, 3 и 4, состоящего из

i) тестирования первичного покрытия и вторичного покрытия суперпокрытий для определения получения свойств суперпокрытий от 1) до 6); где

- если каждое и все свойства суперпокрытий от 1) до 6) получены, тогда переходят к этапу f); и

- если каждое и все свойства суперпокрытий от 1) до 6) не получены, пересоставляют какое-либо или оба из первичного покрытия или вторичного покрытия суперпокрытий и повторяют этап ii) до получения каждого и всех свойств суперпокрытий от 1) до 6); а затем

ii) подтверждения работоспособности измененного состава первичного покрытия и вторичного покрытия суперпокрытий, оценивая изменения каждого состава относительно другого состава и в отношении всех свойств суперпокрытий от 1) до 6);

f) использования результатов этапа e)i) и этапа e)ii) для завершения выбора суперпокрытий для достижения максимального допустимого увеличения затухания покрытого оптического волокна.

Второй аспект настоящего изобретения, описываемого в заявке, представляет собой способ по первому аспекту, в котором способ трехмерного связывания включает использование способа нанесения многослойного покрытия для оценки комбинированных склеенных слоя первичного покрытия и слоя вторичного покрытия отверждаемых облучением суперпокрытий.

Третий аспект настоящего изобретения, описываемого в заявке, представляет собой способ нанесения многослойного покрытия, включающий этапы:

a) выбора субстрата для тестирования;

b) нанесения на субстрат первичного покрытия с использованием наносящего аппликатора с определенной толщиной;

c) необязательного отверждения первичного покрытия;

d) нанесения на первичное покрытие вторичного покрытия с использованием наносящего аппликатора с определенной толщиной, где определенная толщина у наносящего аппликатора для нанесения вторичного покрытия больше, чем определенная толщина у наносящего аппликатора, используемого для нанесения первичного покрытия;

e) использования облучения для многослойного покрытия в достаточной степени для проведения отверждения первичного и вторичного покрытий в склеенное комбинированное покрытие;

f) удаления покрытия с субстрата; и

g) оценки функциональных свойств отвержденного покрытия.

Четвертый аспект настоящего изобретения, описываемого в заявке, представляет собой одномодовое оптическое волокно, покрытое суперпокрытиями, где указанные суперпокрытия содержат,

слой первичного покрытия и слой вторичного покрытия;

где композиция слоя первичного покрытия до отверждения выбрана из группы, состоящей из составов из примеров 1PA2, 1PB3, 1PC1, 1PD5, 2альфа и 2бета;

где композиция слоя вторичного покрытия до отверждения выбрана из группы, состоящей из составов из примеров 2SA4 и 2SB3 и 3SA1 и 5SA1.

Пятый аспект настоящего изобретения, описываемого в заявке, представляет собой многомодовое оптическое волокно, покрытое отверждаемыми облучением покрытиями, содержащими слой первичного покрытия и слой вторичного покрытия,

где композиция слоя первичного покрытия до отверждения выбрана из группы, состоящей из состава из примера 1PD5; и

где композиция слоя вторичного покрытия до отверждения выбрана из группы, состоящей из составов из примеров 2SA4 и 2SB3 и 3SA1 и 5SA1.

Краткое описание рисунков

Фиг.1 представляет собой диаграмму исторического изображения диаграммы состава того, как осуществляли характерное составление для покрытий оптического волокна, иллюстрирующую известный уровень техники. Она представляет собой сравнительный пример, не являющийся примером настоящего изобретения, описываемого в заявке.

Фиг.2 представляет собой первый вариант осуществления, иллюстрирующий способ трехмерного связывания для составления отверждаемых облучением суперпокрытий для оптического волокна.

Фиг.3 представляет собой второй вариант осуществления, иллюстрирующий способ трехмерного связывания для составления отверждаемых облучением суперпокрытий для оптического волокна.

Фиг.4 представляет собой третий вариант осуществления, иллюстрирующий способ трехмерного связывания для составления отверждаемых облучением суперпокрытий для оптического волокна.

Фиг.5 представляет собой иллюстрацию результатов способа нанесения многослойного покрытия, демонстрирующую цветную фотографию первичного слоя суперпокрытий, наносимого аппликатором с 38,1 мкм, затем кандидата для вторичного слоя суперпокрытий, видимого как коричневый слой, наносимого поверх первичного покрытия аппликатором с 76,2 мкм, и целую отвержденную плату.

Фиг.6 представляет собой спектры "все", демонстрируя 4 спектра со сравнимым видом для двух наборов двух покрытий одно сверху другого.

Фиг.7 представляет собой спектры "коричневого", демонстрируя только окрашенную часть вторичного покрытия, и верх части двойного нанесения. Два спектра довольно хорошо соответствуют.

Фиг.8 представляет собой спектры "для первичного слоя суперпокрытий из примера 1PC1", демонстрируя двойной слой со стороны стекла и поверхность со стороны стекла одиночного слоя 76,2 мкм, пример 1PC1 нанесение первичного слоя суперпокрытий. Снова спектры очень хорошо соответствуют.

Фиг.9 представляет собой график DMA нанесения плоского покрытия кандидата для первичного покрытия суперпокрытия PMoct, это представляет собой сравнительный пример, а не пример заявляемого способа тестирования по настоящему изобретению.

Фиг.10 представляет собой график DMA нанесения плоского покрытия кандидата для вторичного покрытия суперпокрытий PMoct, это представляет собой сравнительный пример, а не пример заявляемого способа тестирования по настоящему изобретению.

Фиг.11 представляет собой график DMA трубки кандидата для вторичного покрытия суперпокрытий PMoct поверх первичного покрытия суперпокрытий PMoct, как наносят на кабель с использованием имитатора вытяжной колонны; это представляет собой сравнительный пример, а не пример заявляемого способа тестирования по настоящему изобретению.

Фиг.12 представляет собой график динамомеханического анализа ("DMA") комбинированного покрытия первичного PMoct (пример 1PB3) покрытого вторичным PMoct (пример 2SB3), наносимых способом "влажное на влажное" (сокращаемым как В-Н-В).

Фиг.13 представляет собой график DMA комбиринованного покрытия первичного PMoct (пример 1PB3) покрытого вторичным PMoct (пример 2SB3) наносимых способом "влажное на сухое" (сокращаемым как В-Н-С).

Подробное описание изобретения

Первый аспект настоящего изобретения, описываемого в заявке, представляет собой способ составления отверждаемых облучением суперпокрытия для нанесения на оптическое волокно, используемое в телекоммуникационной сети, где указанные суперпокрытия содержат по меньшей мере два слоя, где первый слой представляет собой первичное покрытие, находящееся в контакте с поверхностью внешнего слоя оптического волокна, а второй слой представляет собой вторичное покрытие в контакте с внешней поверхностью первичного покрытия, где отвержденное первичное покрытие на оптическом волокне после первоначального отверждения и по меньшей мере после одного месяца старения при 85°C и относительной влажности 85% имеет следующие свойства:

1) % RAU приблизительно от 84% до приблизительно 99%;

2) модуль упругости in situ приблизительно от 0,15 МПа и приблизительно 0,60 МПа; и

3) Tg трубки, приблизительно от -25°C до приблизительно -55°C;

и где отвержденное вторичное покрытие на оптическом волокне после первоначального отверждения и по меньшей мере после одного месяца старения при 85°C и относительной влажности 85% имеет следующие свойства:

4) % RAU приблизительно от 80% до приблизительно 98%;

5) модуль упругости in situ приблизительно от 0,060 ГПа и приблизительно 1,90 ГПа; и

6) Tg трубки приблизительно от 50°C до приблизительно 80°C;

где указанный способ включает этапы:

a) определения требований для максимального допустимого увеличения затухания для телекоммуникационной сети, где будут прокладывать оптическое волокно;

b) определения условий эксплуатации суперпокрытий, включающего:

i) выбор типа стекла, используемого в оптическом волокне;

ii) принятие решение о том, следует ли вторичное покрытие суперпокрытий наносить на первичное покрытие суперпокрытий способом "влажное на сухое" или "влажное на влажное";

iii) выбор типа, количества источников света и расположения источников света вдоль производственной линии с вытяжной колонной, которую применяют для отверждения суперпокрытий на оптическом волокне; и

iv) выбор линейной скорости при которой наносят суперпокрытия;

c) составления композиция первичного покрытия в жидком, неотвержденном состоянии;

d) составления композиция вторичного покрытия в жидком, неотвержденном состоянии;

e) использования способа трехмерного связывания, как показано на фиг.2, 3 и 4, состоящего из

i) тестирования первичного покрытия и вторичного покрытия суперпокрытий для определения получения свойств суперпокрытий от 1) до 6); где

- если каждое и все свойства суперпокрытий от 1) до 6) получены, тогда переходят к этапу f); и

- если каждое и все свойства суперпокрытий от 1) до 6) не получены, пересоставляют какое-либо или оба из первичного покрытия или вторичного покрытия суперпокрытий и повторяют этап ii) до получения каждого и всех свойств суперпокрытий от 1) до 6); а затем

ii) подтверждения работоспособности измененного состава первичного покрытия и вторичного покрытия суперпокрытий, оценивая изменения каждого состава относительно другого состава и в отношении всех свойств суперпокрытий от 1) до 6);

f) использования результатов этапа e)i) и этапа e)ii) для завершения выбора суперпокрытий для достижения максимального допустимого увеличения затухания покрытого оптического волокна.

Первый этап в способе представляет собой определение требований для максимального допустимого увеличения затухания для телекоммуникационной сети, где будут прокладывать оптическое волокно. Определение требований для затухания для телекоммуникационной сети включает критерии проектирования оптоволоконной сети. Определенные факторы при проектировании включают: понимание того, какая часть сети представляет собой прямолинейная прокладка многомодового оптического волокна по сравнению с тем, какая часть сети представляет собой прокладку волокна в домах (сокращенно FFTH) в виде одномодового оптического волокна. Существует множество других критериев проектирования для оптоволоконной сети, которые известны специалистам в области проектирования оптоволоконных сетей.

Конкретные факторы при проектировании оптоволоконные сети включают следующее:

В настоящее время известно, что в отличие от традиционных сетей дальней связи из прямолинейного оптического волокна, приложения FTTH должны работать по меньшей мере при трех длинах волн:

1310 нм (входящий поток данные/голос)

1490 нм (исходящий поток данные/голос)

1550 нм (видеосигнал).

В традиционных оптоволоконных сетях использовали стандартные одномодовые длины волн от 1310 нм до 1550 нм, с доступной для тестирования системы длиной волны 1625 нм. В настоящее время в связи с возрастающими требованиями к передаче сигнала полагают, что оптоволоконные сети будущего должны быть способны передавать сигнал, содержащий фактические данные, при 1310 нм, 1550 нм и 1625 нм. Известно, что оптоволоконные сети, включающие волокно, которое может передавать все эти три длины волн, являются более чувствительными к макроизгибам и микроизгибам. Известно, что микроизгибы наносят больший ущерб передаче при длине волны 1625 нм.

В телекоммуникационной индустрии существуют три источника стандартизации затухания. Одной такой организацией, устанавливающей стандарты, является The Telecommunications Industry Association (TIA), которая является лидирующей торговой ассоциацией, представляющей индустрию глобальных информационно-коммуникационных технологий (ICT) посредством такой деятельности, как: разработка стандартов, обеспечение исследования рынка, руководство по взаимодействию с государственными структурами, сертификация оптического волокна и сетей, содержащих оптическое волокно, и консультации в отношении соответствия мировым экологическим нормативным документам. Технические консультативные группы Соединенных Штатов Америки (USTAG) TIA также принимают участие в международных организациях по установлению стандартов, таких как международная электротехническая комиссия (IEC).

Другим источником стандартов для затухания в телекоммуникационной индустрии является IEC. Международная электротехническая комиссия (IEC) представляет собой лидирующую глобальную организацию, подготавливающую и публикующую международные стандарты для всех электрических, электронных и связанных технологий. Они служат в качестве основы для национальной стандартизации и для справки при составлении международных тендеров и контрактов.

Telcordia представляет собой основанную в США корпорацию, предоставляющую оптоволоконные средства и анализ компонентов, и консалтинговые услуги. Она также записывает и хранит библиотеку обобщенных требований для оптического волокна.

Все эти организации имеют общедоступные литературу, отчеты и стандарты, которые применяют специалисты в области проектирования оптоволоконных сетей.

Способы, используемые для тестирования на чувствительность к микроизгибам, описаны в IEC TR 62221, First Edition 10-2001. В настоящее время существует четыре способа тестирования, используемые для определения чувствительности к микроизгибам, которую описывают в единицах затухания дБ/км.

Способ A - раздвижного барабана - требует по меньшей мере 400 м волокна, с минимальным натяжением намотанного вокруг раздвижного барабана с материалом с установленной шероховатостью на поверхности барабана. Способ B - барабана с фиксированным диаметром - требует по меньшей мере 400 м волокна, намотанного с натяжением 3 Н вокруг барабана с фиксированным диаметром с материалом с установленной шероховатостью на поверхности барабана. Способ C - проволочного каркаса - требует применения для тестируемого волокна проволочного каркаса (под нагрузкой). Способ D - переплетения - требует 2,5 км волокна, наматываемого на барабан с фиксированным диаметром посредством обмотки "переплетением".

Из этих четырех способы тестирования, только способ D, конкретно описывает процедуру для измерения чувствительности волокон к микроизгибам как функцию температуры и обеспечивает чувствительность к микроизгибам на широком диапазоне температур и допускает, что циклические изменения температуры могут включать такие низкие температуры, как -60°C.

В данной патентной заявке чувствительность к микроизгибам с использованием способа тестирования D - переплетения - указан в единицах величины дБ/км, при указанной длине волны и температуре.

Существуют по меньшей мере четыре различных типа тестов используемых в настоящее время для тестирования чувствительности к микроизгибам с результатами тестирования, указываемыми в единицах затухания дБ/км. В IEC TR 62221, First Edition 10-2001 описаны четыре конкретных способа тестирования чувствительности к микроизгибам.

Они представляет собой следующее:

Способ A раздвижного барабана: требует по меньшей мере 400 м волокна, с минимальным натяжением намотанного вокруг раздвижного барабана с материалом с установленной шероховатостью на поверхности барабана.

Способ B барабана с фиксированным диаметром: требует по меньшей мере 400 м волокна, намотанного с натяжением 3 Н вокруг барабана с фиксированным диаметром с материалом с установленной шероховатостью на поверхности барабана.

Способ C проволочного каркаса: требует применения для тестируемого волокна проволочного каркаса (под нагрузкой).

Способ D переплетения: требует 2,5 км волокна, наматываемого на барабан с фиксированным диаметром посредством обмотки "переплетением"

На всем протяжении настоящей патентная заявка, способ D, измеряющий чувствительность к микроизгибам, описывают и указывают в единицах затухания, которые указаны в единицах величины дБ/км, при указанной длине волны и температуре. Следует понимать, что какую бы чувствительность к микроизгибам не приводили, приведенный номер представляет собой максимальное допустимое увеличение затухания, допустимое для данного оптического волокна в данной телекоммуникационной сети.

Из этих четырех способов тестирования, только способ D, конкретно описывает процедуру для измерения чувствительности к микроизгибам волокон как функцию температуры и обеспечивает чувствительность к микроизгибам на широком диапазоне температур и допускает, что циклические изменения температуры могут включать такие низкие температуры, как -60°C.

В данной области промышленности понимают, что то, что оптические волокна в телекоммуникационной сеть будут регулярно подвергаться воздействию таких низких температур как -60°C, является маловероятным. Однако после недавних эксплуатационных отказов в Китае, также начинают понимать, что наличия спецификации для чувствительности к микроизгибам для оптического волокна в телекоммуникационной сети при комнатной температуре приблизительно 25°C является недостаточным для защиты телекоммуникационной сети от развития "темного волокна" в течение зимы, где температура в течение продолжительных периодов времени является отрицательной (0°C или 32°F).

Заявители выбрали указание чувствительности к микроизгибам в виде изменения затухания от исходного уровня в соответствии со способом IEC; этот способ требует указания изменения затухания при конкретных длинах волн и температуре -60°C. Заявители полагают, что указание данных чувствительности к микроизгибам при этих экстремальных температурных условиях обеспечат модель возможности "самого неблагоприятного сценария" для чувствительности к микроизгибам покрытого оптического волокна на практике.

Позиция заявителей состоит в том, что если свойства чувствительности к микроизгибам оптического волокна при уровне -60°C считаются приемлемыми, тогда логично предположить, что производительность оптического волокна при комнатной температуре, допуская тот же уровень механического напряжения, будет также приемлемым.

В дополнение к этому пункту при тестировании чувствительности к микроизгибам при комнатной температуре различие в чувствительности к микроизгибам у оптического волокна, покрытого стандартным, "не являющимся суперпокрытиями" покрытием, можно идентифицировать или нет, так как ни суперпокрытия, ни не являющиеся суперпокрытиями покрытия при комнатной температуре не находятся приблизительно при их температуре стеклования (Tg) для слоя первичного покрытия.

Различие между оптическим волокном, покрытым стандартными "не являющимся суперпокрытиями" покрытием, и оптическим волокном, покрытым суперпокрытиями, проявляется при тестировании чувствительности к микроизгибам при экстремально низких температурах, так как стандартный "не являющийся суперпокрытиями" первичный слой при экстремально низких температурах превышает его температуру стеклования и, таким образом, происходит переход от эластичного состояния к стекловидному состоянию. Известно, что наличие первичного слоя покрытия оптического волокна в стекловидном состоянии вызывает увеличение чувствительности к микроизгибам. В отличие от этого, Tg первичного слоя суперпокрытий является намного меньшей и, таким образом, первичный слой суперпокрытий остается в эластичной фазе, что является лучшим для чувствительности к микроизгибам.

Другим способом объяснения различия между стандартными "покрытиями, не являющимися отверждаемыми облучением суперпокрытиями" для оптического волокна и отверждаемыми облучением суперпокрытиями для оптического волокна является то, что комбинация полностью отвержденных, низкомодульных и с низкой Tg покрытий в слое первичного покрытия и полностью отвержденных, с большим модулем, с высокой Tg покрытий в слое вторичного покрытия суперпокрытий приводит к приемлемой эффективности функционирования при напряжении вследствие экстремальной температуры или механического напряжения или и температуры, и механического напряжения с приемлемой эффективностью функционирования, оцениваемой по низкому уровню чувствительности к микроизгибам, что приводит к волокну с приемлемым увеличением регистрируемого затухания.

В современной практике полагают, что для телекоммуникационной сети в основном необходимо, чтобы оптическое волокно обеспечивало известный максимум затухания при 1310 нм и комнатной температуре. Этот наибольший допустимый уровень затухания известен специалистам в области критериев проектирования телекоммуникационных сетей.

Для оптических волокон, покрытых отверждаемыми облучением суперпокрытиями, возможно и желательно указывать чувствительность к микроизгибам при трех различных длинах волн и при очень холодной (-60°C) температуре. Затем эти данные может использовать конструктор сети для понимания ее ограничений и для того, чтобы иметь возможность предсказать режимы отказа для сети. Позиция заявителей состоит в том, что сеть, содержащая оптические волокна, покрытые стандартными, "не являющимися суперпокрытиями" покрытиями имеет намного меньшую устойчивость к напряжению, возникающему из среды кабеля в виде экстремальных температур и механических сил, чем сеть, содержащая оптические волокна, покрытые отверждаемыми облучением суперпокрытиями. Полагают, что другой фактор состоит в том, что использование отверждаемых облучением суперпокрытий для покрытия оптического волокна обеспечит телекоммуникационной сети достаточно данных, чтобы иметь возможность проектирования без необходимости такого же "предела безопасности", как предусматривают при использовании для покрытия оптического волокна стандартных "покрытий, не являющихся отверждаемыми облучением суперпокрытиями".

Следующий этап в процессе представляет собой определение требований условий эксплуатации суперпокрытий для телекоммуникационной сети, где будут прокладывать оптическое волокно. Условия эксплуатации включают понимание четырех факторов:

i) тип стекла, используемого в оптическом волокне;

ii) следует ли наносить вторичный слой суперпокрытий на первичный слой суперпокрытий способом "влажное на сухое" или "влажное на влажное";

iii) тип, количество источников света и расположение источников света вдоль производственной линии с вытяжной колонной, которую применяют для отверждения суперпокрытий на оптическом волокне; и

iv) линейная скорость при которой наносят суперпокрытия.

Относительно элемента i): известно, что оптическое волокно имеет стандартные категории для прокладки прямолинейного кабеля большой протяженности. Недавние различные категории "устойчивого к изгибам" оптического волокна разработаны производителями оптического волокна, такими как Corning, и Draka, и OFS, и YOFC, и другие. Эти устойчивые к изгибам оптические волокна используют для применений оптоволокна до сетевого узла (FTTX) и волокна для дома (FTTH).

Подробности об оптических волокнах стандартных категорий и устойчивых к микроизгибам доступны в собственной литературе и на веб-сайтах поставщиков.

Современное коммерческое оптическое волокно, доступное для продажи, включает: оптические волокна Corning® InfiniCor®, многомодовое оптическое волокно Corning® ClearCurve® OM2/OM3/OM4, одномодовое оптическое волокно Corning® ClearCurve®, оптическое волокно Corning® SMF-28e® XB, оптическое волокно Corning® SMF-28® ULL, оптическое волокно Corning® LEAF®, оптические волокна Corning® Vascade® и Corning® Specialty Fiber, Draka BendBright SingleMode (BB), Draka TeraLight Singlemode (TM), Draka TeraLight Ultra Singlemode (TU), Draka BendBright-XS (BX), Draka Enhanced Single Mode, Draka NZDSF-LA Singlemode (LA), OFS AllWave® Zero Water Peak (ZWP) и недавно представленные OFS AllWave FLEXZWP Fibers, OFS LaserWave® Fibers, OFS Access ADVANTAGE™ System. OFS HCS®, OFS FiberWire® и фирменные технологии OFS PYROCOAT®, волокно YOFC HiBand GIMM, серия высокотемпературных волокон (HTF) YOFC, многомодовое оптическое волокно YOFC HiBand Graded-Index (50/125 и 62,5/125 мкм) и другие.

Как п