Композиция и способ извлечения углеводородных флюидов из подземного месторождения

Группа изобретений относится к композициям и способам добычи нефти с искусственным поддержанием энергии пласта, изменения проницаемости подземных пластов и увеличения подвижности и/или темпа добычи углеводородных флюидов, присутствующих в пластах. Композиция для повышения степени извлечения углеводородных флюидов из подземного пласта включает, по меньшей мере, два различных типа сильносшитых расширяемых полимерных микрочастиц, имеющих различную химическую структуру и средний диаметр частиц неувеличенного объема от примерно 0,05 до примерно 5000 мкм. Содержание сшивающих агентов составляет от примерно 100 до примерно 200000 частей на млн лабильных сшивающих агентов и от 0 до примерно 300 частей на млн нелабильных сшивающих агентов. Закачивают в подземный пласт указанную композицию, что позволяет повысить эффективность изоляции зон поглощения. 2 н. и 18 з.п. ф-лы, 1 табл., 10 пр.

Реферат

Уровень техники

На первой стадии добычи углеводородов источники пластовой энергии обеспечивают продвижение нефти, газа, конденсата и т.д. к эксплуатационной(ым) скважине(нам), откуда они могут вытекать или их можно выкачивать на наземные погрузочно-разгрузочные устройства. Относительно небольшую часть углеводородов в месторождении обычно можно извлекать этими средствами. Наиболее широко используемое решение проблемы поддержания энергии в месторождении и обеспечения уверенности в том, что углеводороды перемещаются к эксплуатационной(ым) скважине(нам), состоит в закачивании флюидов вниз по расположенным поблизости скважинам. Это широко известно как вторичная добыча.

Обычно используемые флюиды представляют собой воду (такую, как вода из водоносного слоя, речная вода, морская вода или попутно добываемая вода) или газ (такой, как добываемый газ, диоксид углерода, дымовой газ и различные другие газы). Если флюид способствует движению обычно неподвижной остаточной нефти или другого углеводорода, способ обычно называют третичной добычей.

Очень распространенная проблема с планированием вторичной и третичной добычи связана с неоднородностью пластов коллекторской породы. Подвижность закачиваемого флюида обычно отличается от подвижности углеводорода, и когда он является более подвижным, используют различные способы регулирования подвижности для получения более однородного охвата месторождения и последующей более эффективной добычи углеводородов. Такие способы имеют ограниченную ценность, когда внутри коллекторской породы существуют зоны высокой проницаемости, обычно называемые зонами поглощения или прожилками. Закачиваемый флюид течет по пути наименьшего сопротивления от места закачивания до эксплуатационной скважины. В таких случаях нагнетаемый флюид не охватывает эффективно углеводородные флюиды из примыкающих зон с более низкой проницаемостью. Когда добытый флюид используют повторно, это может привести к циклическому движению флюида через зону поглощения с малой пользой и с большими затратами на топливо и на поддержание системы нагнетания.

Множество физических и химических способов использовали для отвода закачиваемых флюидов от зон поглощения в эксплуатационные и нагнетательные скважины или в близкие к ним области. Когда эксплуатационную скважину подвергают обработке, такую обработку обычно называют изолирование водоносного (или газоносного и т.д.) горизонта. Когда обработке подвергают нагнетательную скважину, эту обработку называют регулированием профиля или выравниванием профиля приемистости.

В случаях, когда зона(ы) поглощения изолированы от прилегающих зон с более низкой проницаемостью, и когда заканчивание скважины образует подходящее уплотнение с барьером (таким, как слой глинистого сланца, или «пропласток»), вызывающим изоляцию, механические уплотнения или «цементировочные пробки» можно расположить в скважине для блокирования входа закачиваемого флюида. Если флюид входит ил и покидает пласт со дна скважины, также можно использовать цемент для заполнения ствола скважины до уровня выше зоны проникновения.

Когда заканчивание скважины допускает проникновение нагнетаемого флюида как в зоны поглощения, так и в прилегающие зоны, так, например, когда обсадные трубы цементируют вокруг продуктивной зоны и цементирование плохо выполнено, нагнетание цемента под давлением часто является подходящим средством изолирования зоны прорыва воды в скважину.

Некоторые случаи не поддаются таким способам в силу таких фактов, что сообщения существуют между слоями коллекторской породы вне зоны, доступной для цемента. Типичными образцами этого являются трещины или зоны обломочных россыпей, или размытые полости, существующие позади обсадных труб. В таких случаях применяют химические гели, способные проникать через поры в коллекторской породе для закупоривания опустошенных зон.

Когда такие способы терпят неудачу, остаются только альтернативные способы эксплуатации скважины с низкой величиной нефтеотдачи, зарезкой нового ствола скважины из преждевременно опустошенной зоны, или консервация скважины. Иногда эксплуатационную скважину преобразуют в нагнетательную скважину для флюида для увеличения скорости нагнетания в залежь выше чистого темпа добычи углеводородов и увеличения давления в месторождении. Это может привести к улучшенной общей добыче, однако следует отметить, что закачиваемый флюид в основном поступает в зону поглощения в новой нагнетательной скважине и, вероятно, вызывает похожие проблемы в ближайших скважинах. Все эти варианты являются дорогостоящими.

Способы выравнивания профиля приемистости околоскважинного пространства всегда терпят неудачу, когда зона поглощения обширно контактирует с прилегающими зонами с более низкой проницаемостью, содержащими углеводороды. Причина этого состоит в том, что закачиваемые флюиды могут обходить обработку и поступать обратно в зону поглощения, контактируя только с очень небольшой частью, или даже не контактируя вообще с оставшимися углеводородами. Специалистам хорошо известно, что такая обработка в околоскважинном пространстве значительно не улучшает добычу из месторождений, имеющих переток закачиваемых флюидов между зонами.

Было разработано несколько способов с целью уменьшения проницаемости существенной части зоны поглощения и, или на значительном расстоянии от скважин нагнетания и эксплуатационных скважин. Одним таким примером является способ Deep Diverting Gel (гель глубинного отклонения), запатентованный Morgan et al. (1). Его используют на практике и его недостатком является чувствительность к неизбежным изменениям качества реагентов, которая приводит к плохому распространению. Гелеобразующая смесь представляет собой двухкомпонентный состав и полагают, что это вносит вклад в плохое распространение обработки в пласте.

Использование набухающих сшитых полимерных микрочастиц сверхабсорбентов для изменения проницаемости подземных пластов описано в патентах US 5465792 и 5735349. Однако описанное в них набухание микрочастиц сверхабсорбентов вызывают путем замены углеводородного флюида-носителя на водный, или воды высокой солености на воду низкой солености.

Сшитые, расширяемые полимерные микрочастицы и их применение для изменения проницаемости подземных пластов и увеличения подвижности и/или темпа добычи углеводородных флюидов, присутствующих в пласте, описаны в патентах US 6454003 B1, 6709402 B2, 6984705 B2 и 7300973 B2 и в опубликованной заявке на патент US 2007/0204989 A1.

Описание изобретения

Обнаружены новые полимерные микрочастицы, в которых конформация микрочастиц ограничена обратимыми (лабильными) внутренними поперечными связями. Свойства микрочастиц, такие как распределение частиц по размерам и плотность микрочастиц с ограниченной конформацией, задают таким образом, чтобы обеспечить эффективное распространение в пористой структуре вмещающей породы углеводородного месторождения, такой как песчаник. При нагревании до температуры месторождения и/или при заранее определенном рН, обратимые (лабильные) внутренние поперечные связи начинают разрушаться, обеспечивая расширение частиц посредством поглощения закачиваемого флюида (обычно воды).

Способность частицы увеличивать свой первоначальный размер (в точке нагнетания) зависит только от наличия условий, которые вызывают разрушение лабильного сшивающего агента. Она не зависит от природы флюида-носителя или солености пластовой воды. Частицы по этому изобретению могут распространяться в пористой структуре месторождения без использования заданного флюида или флюида более высокой солености, чем соленость флюида месторождения.

Расширенные частицы рассчитывают таким образом, чтобы распределение частиц по размерам и их физические характеристики, например реология частиц, позволяли препятствовать течению закачиваемого флюида в пористой структуре. При этом обеспечивают возможность отклонять прогоняемый флюид в менее тщательно охваченные зоны месторождения.

Реологию и размер расширенной частицы можно разрабатывать в соответствии с целевым месторождением, например, путем подходящего выбора главной цепи мономеров или отношения сомономеров в полимере, или степени обратимого (лабильного) и необратимого поперечного сшивания, закладываемого в процессе изготовления.

В одном воплощении настоящее изобретение направлено на композиции, включающие по меньшей мере два различных типа сильносшитых расширяемых полимерных микрочастиц, имеющих различную химическую структуру и средний диаметр частиц неувеличенного объема от примерно 0,05 до примерно 5000 мкм, и содержание сшивающих агентовот примерно 100 до примерно 200000 частей на млн лабильных сшивающих агентов и от 0 до примерно 300 частей на млн нелабильных сшивающих агентов.

В другом воплощении настоящее изобретение направлено на композиции, включающие сильносшитые расширяемые полимерные микрочастицы, имеющие различную химическую структуру и средний диаметр частиц неувеличенного объема от примерно 0,05 до примерно 5000 мкм, и содержание сшивающих агентов от примерно 100 до примерно 200000 частей на млн лабильных сшивающих агентов и от 0 до примерно 300 частей на млн нелабильных сшивающих агентов, и загущенный водный раствор.

В еще одном воплощении настоящее изобретение направлено на композиции, включающие сильносшитые расширяемые полимерные микрочастицы, имеющие различную химическую структуру и средний диаметр частиц неувеличенного объема от примерно 0,05 до примерно 5000 мкм и содержание сшивающих агентов от примерно 100 до примерно 200000 частей на млн лабильных сшивающих агентов и от 0 до примерно 300 частей на млн нелабильных сшивающих агентов, и по меньшей мере одну обработку подземного месторождения.

В еще одном воплощении настоящее описание направлено на композиции, включающие по меньшей мере два различных типа сильносшитых расширяемых полимерных микрочастиц, имеющих средний диаметр частиц неувеличенного объема от примерно 0,05 до примерно 5000 мкм и содержание сшивающих агентов от примерно 100 до примерно 200000 частей на млн лабильных сшивающих агентов и от 0 до примерно 300 частей на млн нелабильных сшивающих агентов, где по меньшей мере два различных типа сильносшитых расширяемых полимерных микрочастиц имеют различное содержание сшивающих агентов.

В альтернативных воплощениях также обеспечивают способы применения приведенных выше композиций.

Дополнительные признаки и преимущества описаны здесь, и они будут ясны из следующего подробного описания.

Подробное описание изобретения

«Амфотерная полимерная микрочастица» означает сшитую полимерную микрочастицу, содержащую как катионные заместители, так и анионные заместители, хотя необязательно в одинаковых стехиометрических соотношениях. Типичные амфотерные полимерные микрочастицы включают определенные здесь тройные сополимеры неионных мономеров, анионных мономеров и катионных мономеров. Предпочтительные амфотерные полимерные микрочастицы имеют молярное отношение анионного мономера к катионному мономеру более 1:1.

«Мономер с амфолитной ионной парой» означает кислотно-основную соль основных азотсодержащих мономеров, таких как диметиламиноэтилакрилат (ДМАЭА), диметиламиноэтилметакрилат (ДМАЭМ), 2-метакрилоилоксиэтилдиэтиламин и подобные соединения, и кислотных мономеров, таких как акриловая кислота и сульфоновые кислоты, такие как 2-акриламид-2-метилпропансульфоновая кислота, 2-метакрилоилоксиэтансульфоновая кислота, винилсульфоновая кислота, стиролсульфоновая кислота и подобные соединения.

«Анионный мономер» означает определенный здесь мономер, который обладает кислотной функциональной группой, и его соли присоединения основания. Типичные анионные мономеры включают акриловую кислоту, метакриловую кислоту, малеиновую кислоту, итаконовую кислоту, 2-пропеновую кислоту, 2-метил-2-пропеновую кислоту, 2-акриламид-2-метилпропансульфоновую кислоту, сульфопропилакриловую кислоту и другие растворимые в воде формы этих или других полимеризуемых карбоновых или сульфоновых кислот, сульфометилированный акриламид, аллилсульфоновую кислоту, винилсульфоновую кислоту, четвертичные соли акриловой кислоты и метакриловой кислоты, такие как акрилат аммония и метакрилат аммония, и подобные соединения. Предпочтительные анионные мономеры включают натриевую соль 2-акриламид-2-метилпропансульфоновой кислоты, натриевую соль винилсульфоновой кислоты и натриевую соль стиролсульфоновой кислоты. Более предпочтительной является натриевая соль 2-акриламид-2-метилпропансульфоновой кислоты.

«Анионная полимерная микрочастица» означает сшитую полимерную микрочастицу, имеющую суммарный отрицательный заряд. Типичные анионные полимерные микрочастицы включают сополимеры акриламида и 2-акриламид-2-метилпропансульфоновой кислоты, сополимеры акриламида и акрилата натрия, тройные полимеры акриламида, 2-акриламид-2-метилпропансульфоновой кислоты и акрилата натрия и гомополимеры 2-акриламид-2-метилпропансульфоновой кислоты. Предпочтительные анионные полимерные микрочастицы получают из неионных мономеров в количестве от примерно 95 до примерно 10 мольн.% и анионных мономеров в количестве от примерно 5 до примерно 90 мольн.%. Более предпочтительные анионные полимерные микрочастицы получают из акриламида в количестве от примерно 95 до примерно 10 мольн.% и 2-акриламид-2-метилпропансульфоновой кислоты в количестве от примерно 5 до примерно 90 мол. %.

«Бетаинсодержащая полимерная микрочастица» означает сшитую полимерную микрочастицу, полученную полимеризацией мономера бетаина и одного или более неионных мономеров.

«Бетаиновый мономер» означает мономер, содержащий в равных частях функциональные группы, заряженные катионным и анионным образом, так что мономер является суммарно нейтральным. Типичные бетаиновые мономеры включают N,N-диметил-N-акрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-метакрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N,N-диметил-N-акрилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N-3-сульфопропилвинилпиридинаммоний бетаин, 2-(метилтио)этилметакрилоил-3-(сульфопропил)сульфоний бетаин, 1-(3-сульфопропил)-2-винилпиридиний бетаин, N-(4-сульфобутил)-N-метилдиаллиламинаммоний бетаин (МДАБС), N,N-диаллил-M-метил-N-(2-сульфоэтил)аммоний бетаин и подобные соединения. Предпочтительным бетаиновым мономером является N,N-диметил-N-метакрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин.

«Катионный мономер» означает определенное здесь звено мономера, которое обладает суммарным положительным зарядом. Типичные катионные мономеры включают четвертичные или кислые соли диалкиламиноалкилакрилатов и метакрилатов, такие как четвертичная соль диметиламиноэтилакрилат-метилхлорида (ДМАЕАМХЧ), четвертичная соль диметиламиноэтилметакрилат-метилхлорида (ДМАЕММХЧ), солянокислая соль диметиламиноэтилакрилата, сернокислая соль диметиламиноэтилакрилата, четвертичная соль диметиламиноэтилакрилат-бензилхлорида (ДМАЕАБХЧ) и четвертичная соль диметиламиноэтилакрилат-метилсульфата, четвертичные или кислые соли диалкиламиноалкилакриламидов и метакриламидов, такие как солянокислая соль диметиламинопропилакриламида, сернокислая соль диметиламинопропилакриламида, солянокислая соль диметиламинопропилметакриламид и сернокислая соль диметиламинопропилметакриламида, метакриламидопропилтриметиламмоний хлорид и акриламидопропилтриметиламмоний хлорид, и N,N-диаллилдиалкиламмоний галогениды, такие как диаллилдиметиламмоний хлорид (ДАДМАХ). Предпочтительные катионные мономеры включают четвертичную соль диметиламиноэтилакрилат-метилхлорида, четвертичную соль диметиламиноэтилметакрилат-метилхлорида и диаллилдиметиламмоний хлорид. Более предпочтительным является диаллилдиметиламмоний хлорид.

«Сшивающий мономер» означает этилен-ненасыщенный мономер, содержащий по меньшей мере два участка этилен-ненасыщенных связей, который добавляют для ограничения конформации полимерных микрочастиц этого изобретения. Степень сшивания, используемую в этих полимерных микрочастицах, выбирают так, чтобы обеспечить поддержание твердой нерасширяемой конфигурации микрочастицы. Сшивающие мономеры по этому изобретению включают как лабильные сшивающие мономеры, так и нелабильные сшивающие мономеры.

«Эмульсия», «микроэмульсия» и «обратная эмульсия» означает полимерную эмульсию типа «вода в масле», включающую полимерные микрочастицы по этому изобретению в водной фазе, углеводородное масло для масляной фазы, и один или более эмульгаторов для эмульсий типа «вода в масле». Эмульсионные полимеры представляют собой непрерывную углеводородную фазу с растворимыми в воде полимерами, диспергированными в углеводородной матрице. Эмульсионный полимер при необходимости «обращают» или преобразуют в форму непрерывной водной фазы, используя сдвиг, разбавление и, обычно, инвертирующее поверхностно-активное вещество. См. US 3734873, все содержание которого включено в этот документ путем ссылки.

«Подвижность флюида» означает отношение, которое определяет, насколько легко флюид перемещается в пористой среде. Это отношение известно как подвижность и выражено в виде отношения коэффициента проницаемости пористой среды к вязкости для данного флюида:

1. λ=kxx для одного флюида x, протекающего в пористой среде.

Когда через конечную точку протекает более чем один флюид, необходимо подставить относительные коэффициенты проницаемости вместо абсолютного коэффициента проницаемости, используемого в уравнении 1.

2. λx=krxx для флюида x, протекающего в пористой среде в присутствии одного или более других флюидов.

Когда протекают два или более флюидов, подвижности флюидов можно использовать для определения отношения подвижности:

3. М=λxyykrxxkry

Отношение подвижности применяют при изучении вытеснения флюида, например при заводнении нефтяного месторождения, где x представляет собой воду, а у представляет собой нефть, так как с ним может быть связана эффективность процесса вытеснения. В качестве общего принципа при отношении подвижности, равном 1, фронт флюида движется почти подобно «течению поршневого режима» и охват месторождения является хорошим. Когда подвижность воды в десять раз выше, по сравнению с нефтью, возникают нестабильности вязкости, известные как «образование языков», и охват месторождения является плохим. Когда подвижность нефти в десять раз выше по сравнению с водой, охват месторождения является почти полным.

«Полимерная микрочастица с ионной парой» означает сшитую полимерную микрочастицу, полученную полимеризацией мономера с амфолитной ионной парой и еще одного анионного или неионного мономера.

«Лабильный сшивающий мономер» означает сшивающий мономер, который можно разлагать при определенных условиях тепла и/или рН, после того как он введен в полимерную структуру, чтобы уменьшить степень сшивания в полимерной микрочастице этого изобретения. Вышеупомянутые условия таковы, что они могут разрушать связи в «сшивающем мономере» без существенного разложения остальной основной цепи полимера. Характерные лабильные сшивающие мономеры включают диакриламиды и метакриламиды диаминов, такие как диакриламид пиперазина, акрилатные или метакрилатные сложные эфиры ди-, три-, тетрагидроксисоединений, включая этиленгликольдиакрилат, полиэтиленгликольдиакрилат, триметилпропантриметакрилат, этоксилированный триметилолтриакрилат, этоксилированный пентаэритритолтетракрилат и подобные соединения, дивиниловые или диаллиловые соединения, разделенные посредством азогруппы, такие как диаллиламид 2,2'-азобис(изобутировой кислоты) и сложные виниловые или аллиловые эфиры ди- или трифункциональных кислот. Предпочтительные лабильные сшивающие мономеры включают растворимые в воде диакрилаты, такие как диакрилат PEG 200 и диакрилат PEG 400, и многофункциональные винильные производные многоатомных спиртов, такие как этоксилированный (9-20) триметилолтриакрилат.

В одном воплощении лабильные сшивающие агенты присутствуют в количестве от примерно 100 до примерно 200000 частей на млн. по отношению к общей массе мономера. В другом воплощении лабильные сшивающие агенты присутствуют в количестве от примерно 1000 до примерно 200000 частей на млн. В другом воплощении лабильные сшивающие агенты присутствуют в количестве от примерно 9000 до примерно 200000 частей на млн. В другом воплощении лабильные сшивающие агенты присутствуют в количестве от примерно 9000 до примерно 100000 частей на млн. В другом воплощении лабильные сшивающие агенты присутствуют в количестве от примерно 20000 до примерно 60000 частей на млн. В другом воплощении лабильные сшивающие агенты присутствуют в количестве от примерно 500 до примерно 50000 частей на млн. В другом воплощении лабильные сшивающие агенты присутствуют в количестве от примерно 1000 до примерно 20000 частей на млн.

«Мономер» означает полимеризуемое аллильное, винильное или акрильное соединение. Мономер может быть анионным, катионным, неионным или цвиттер-ионным. Виниловые мономеры являются предпочтительными, акриловые мономеры являются более предпочтительными.

«Неионный мономер» означает определенный здесь мономер, который является электрически нейтральным. Типичные неионные мономеры включают N-изопропилакриламид, N,N-диметилакриламид, N,N-диэтилакриламид, диметиламинопропилакриламид, диметиламинопропилметакриламид, акрилоилморфолин, гидроксиэтилакрилат, гидроксипропилакрилат, гидроксиэтилметакрилат, гидроксипропилметакрилат, диметиламиноэтилакрилат (ДМАЭА), диметиламиноэтилметакрилат (ДМАЭМ), малеиновый ангидрид, N-винилпирролидон, винилацетат и N-винилформамид. Предпочтительные неионные мономеры включают акриламид, N-метилакриламид, N,N-диметилакриламид и метакриламид. Более предпочтительным является акриламид.

«Нелабильный сшивающий мономер» означает сшивающий мономер, который не разлагается при условиях температуры и/или рН, которые могли бы вызвать разложение лабильного сшивающего мономера. Нелабильный сшивающий мономер добавляют к лабильному сшивающему мономеру для регулирования расширенной конформации полимерной микрочастицы. Типичные нелабильные сшивающие мономеры включают метиленбисакриламид, диаллиламин, триаллиламин, дивинилсульфон, диаллиловый эфир диэтиленгликоля и подобные соединения. Предпочтительным нелабильным сшивающим мономером является метиленбисакриламид.

В одном воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0 до примерно 300 частей на млн по отношению к общей массе мономера. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0 до примерно 200 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0 до примерно 100 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 5 до примерно 300 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 2 до примерно 300 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0,1 до примерно 300 частей на млн. В отсутствие нелабильного сшивающего агента полимерная частица, после полного разложения лабильного сшивающего агента, превращается в смесь линейных полимерных нитей. Дисперсия частиц посредством этого превращается в полимерный раствор. Этот полимерный раствор, благодаря своей вязкости, изменяет подвижность флюида в пористой среде. В присутствии небольшого количества нелабильного сшивающего агента превращение частиц в линейные молекулы является неполным. Частицы становятся слабо связанной сеткой однако сохраняют определенную «структуру». Такие «структурированные» частицы могут блокировать устья пор пористых сред и вызывать запирание потока.

В одном аспекте настоящего изобретения полимерные частицы по изобретению получают, используя способ обратной эмульсии или микроэмульсии для обеспечения определенного диапазона размера частиц, В одном воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от примерно 0,05 до примерно 5000 мкм. В одном воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от примерно 0,1 до примерно 3 мкм. В другом воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от 0,1 до примерно 1 мкм. В еще одном воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от примерно 0,05 до примерно 50 мкм.

Типичные способы получения сшитых полимерных микрочастиц с использованием микроэмульсионного способа описаны в патентах US 4956400, 4968435, 5171808, 5465792 и 5737349.

В способе обратной эмульсии или микроэмульсии водный раствор мономеров и сшивающих агентов добавляют к углеводородной жидкости, содержащей подходящее поверхностно-активное вещество или смесь поверхностно-активных веществ, для образования обратной микроэмульсии мономера, состоящей из небольших водных капель, диспергированных в непрерывной углеводородной жидкой фазе, и проведение свободнорадикальной полимеризации микроэмульсии мономера.

Помимо мономеров и сшивающих агентов водный раствор может также содержать другие традиционные добавки, включающие хелатирующие агенты для удаления ингибиторов полимеризации, регуляторы рН, инициаторы и другие традиционные добавки.

Углеводородная жидкая фаза включает углеводородную жидкость или смесь углеводородных жидкостей. Предпочтительными являются насыщенные углеводороды или их смеси. Обычно углеводородная жидкая фаза включает бензол, толуол, нефтяное топливо, керосин, непахучие уайт-спириты и смеси любых из перечисленных соединений.

Описанные здесь поверхностно-активные вещества, пригодные для использования в способе полимеризации микроэмульсий, включают сорбитановые сложные эфиры жирных кислот, этоксилированные сорбитановые сложные эфиры жирных кислот и т.п., или их смеси. Предпочтительные эмульгаторы включают этоксилированный сорбитол олеат и сорбитан сесквиолеат. Дополнительные сведения об этих агентах можно найти в кн. McCuthceon. Detergents and Emulsifiers, North American Edition, 1980.

Полимеризацию эмульсии можно выполнять любым способом, известным специалистам в данной области техники. Инициирование можно проводить с помощью различных термических и окислительно-восстановительных инициаторов образования свободных радикалов, включающих азо-соединения, такие как азобисизобутиронитрил; пероксиды, такие как трет-бутилпероксид; органические соединения, такие как персульфат калия, и окислительно-восстановительные пары, такие как бисульфит натрия/бромат натрия. Получение водного продукта из эмульсии можно осуществлять путем инверсии посредством добавления ее в воду, которая может содержать инвертирующее поверхностно-активное вещество.

Альтернативно полимерные микрочастицы, сшитые с помощью лабильных поперечных связей, можно получить путем внутреннего сшивания полимерных частиц, которые содержат полимеры с боковыми группами карбоновой кислоты и гидроксильными группами. Сшивания достигают посредством образования сложных эфиров из карбоновой кислоты и гидроксильных групп. Этерификацию можно выполнять путем азеотропной перегонки (US 4599379) или технологии тонкопленочного испарения (US 5589525) для удаления воды. Например, полимерные микрочастицы, получаемые способом полимеризации обратной эмульсии с использованием акриловой кислоты, 2-гидроксиэтилакрилата, акриламида и 2-акриламид-2-метилпропансульфоната натрия в качестве мономера, можно превращать в сшитые полимерные частицы путем процессов дегидратации, описанных выше.

При необходимости полимерные микрочастицы получают в сухой форме путем добавления эмульсии к растворителю, который вызывает осаждение полимера, такому как изопропанол, изопропанол/ацетон или метанол/ацетон, или другие растворители или смеси растворителей, которые смешиваются как с углеводородом, так и с водой, и фильтрования и сушки получаемого твердого вещества.

Водную суспензию полимерных микрочастиц получают путем повторного диспергирования сухого полимера в воде.

После закачивания в подземный пласт полимерные микрочастицы протекают через зону или зоны с относительно высокой проницаемостью в подземном пласте в условиях увеличивающейся температуры, пока композиция не достигает места, где температура или рН являются достаточно высокими, чтобы способствовать расширению микрочастицы.

В отличие от традиционных блокирующих агентов, таких как полимерные растворы и полимерные гели, которые не могут проникать далеко и глубоко в пласт, композиция по этому изобретению, благодаря размеру частиц и низкой вязкости, может распространяться далеко от места закачивания до достижения высокотемпературной зоны.

Также полимерные микрочастицы по этому изобретению, благодаря тому, что они являются сильносшитыми, не расширяются в растворах различной солености. Следовательно, соленость флюида, встречающегося в подземном пласте, не влияет на вязкость дисперсии. Соответственно для обработки не требуется специального флюида-носителя. Только после того, как частицы сталкиваются с условиями, достаточными для снижения плотности сшивания, изменяется реология флюида с достижением требуемого эффекта.

Среди других факторов снижение плотности сшивания зависит от скорости расщепления лабильного сшивающего агента. В частности, различные лабильные сшивающие агенты имеют различные скорости разрыва связей при различных температурах. Температура и механизм зависят от природы сшивающих химических связей. Например, когда лабильный сшивающий агент представляет собой ПЭГ диакрилат, гидролиз сложноэфирной связи представляет собой механизм разрыва поперечных связей. Различные спирты имеют немного различные скорости гидролиза. В общем метакрилатные сложные эфиры гидролизуются с меньшей скоростью, чем акрилатные сложные эфиры при аналогичных условиях. В случае дивиниловых или диаллиловых соединений, разделенных посредством азо-группы, таких как диаллиламид 2,2'-азобисизубутировой кислоты, механизм разрыва поперечных связей представляет собой удаление молекулы азота. Как продемонстрировано на примере различных азо-инициаторов свободнорадикальной полимеризации, различные азо-соединения действительно имеют разные температуры полуразложения.

Вне связи с какой-либо теорией полагают, что помимо скорости разрыва поперечных связей, скорость увеличения диаметра частиц также влияет на общее количество остающихся поперечных связей. Наблюдали, что частица расширяется вначале постепенно, по мере уменьшения количества поперечных связей. После того, как общее количество поперечных связей становится меньше количества, соответствующего определенной критической плотности, вязкость резко увеличивается. Таким образом, путем правильного выбора лабильного сшивающего агента, можно задавать как зависящие от температуры, так и зависящие от времени свойства расширения полимерных частиц.

Размер полимерных частиц перед расширением выбирают на основе расчетного размера пор зоны поглощения с наиболее высокой проницаемостью. Тип сшивающего агента и концентрация, а следовательно, время задержки до того, как закачанные частицы начинают расширяться, основаны на температуре как вблизи нагнетательной скважины, так и глубже в пласте, ожидаемой скорости перемещения закачанных частиц через зону поглощения и на том, насколько легко вода может проходить поперечным потоком из зоны поглощения в прилегающие зоны с более низкой проницаемостью, содержащие углеводороды. Композиция полимерных микрочастиц, разработанная с учетом вышеописанных соображений, приводит к лучшему водяному барьеру после расширения частиц и к более оптимальному положению в пласте.

Одним из аспектов настоящего описания является демонстрация синергетических эффектов, которые возникают в результате сочетания описанных здесь полимерных частиц с дополнительными типами обработки. Дополнительные типы обработки могут включать, например, вторые полимерные микрочастицы, имеющие химическую структуру, отличную от структуры первых полимерных частиц, загущенный водный раствор, обработку подземного месторождения и их сочетания. Специалисту понятно, что дополнительные типы обработки не ограничены приведенными в качестве примера типами обработки, обсуждаемыми здесь, и любой дополнительный тип обработки, применение которого для улучшения степени извлечения углеводородных флюидов из подземного пласта известно в уровне техники, можно сочетать с полимерными микрочастицами для усиленного синергетического эффекта, который возникает, по меньшей мере отчасти, благодаря переплетениям цепи полимера, водородным связям, электростатическим эффектам и ван-дер-ваальсовым эффектам.

В одном воплощении по меньшей мере два типа различных полимерных микрочастиц, имеющих разную химическую структуру, можно использовать в сочетании или во взаимодействии друг с другом для повышения эффективности добычи нефти, для изменения проницаемости подземных пластов и для повышения подвижности и/или темпа добычи углеводородных флюидов, присутствующих в пластах.

Различные полимерные микрочастицы можно закачивать по отдельности в подземный пласт. Альтернативно, различные полимерные микрочастицы можно смешивать или перемешивать перед, в течение или после закачивания. Например, различные полимерные микрочастицы можно предварительно смешивать перед закачиванием в подземный пласт. Различные полимерные микрочастицы можно также смешивать или перемешивать в течение одновременного закачивания двух разных типов полимерных микрочастиц в подземный пласт. Более того, различные полимерные микрочастицы можно также смешивать или перемешивать внутри подземного пласта в результате повторяющихся, последовательных внесений каждого различного типа полимерных микрочастиц.

Существует много преимуществ, которые могут быть результатом использования по меньшей мере двух различных типов микрочастиц, имеющих средний диаметр частиц неувеличенного объема от примерно 0,05 до примерно 5000 мкм и содержание сшивающих агентов от примерно 100 до примерно 200000 частей на мл лабильных сшивающих агентов и от 0 до примерно 300 частей на млн нелабильных сшивающих агентов. Например, использование по меньшей мере двух различных типов полимерных микрочастиц, имеющих различную химическую структуру, обеспечивает вносимую дозу расширяемых полимерных микрочастиц, содержащую широкое распределение периодов полуразложения и/или размеров микрочастиц. Широкое распределение периодов полуразложения и/или размеров микрочастиц обеспечивает возможность расширения различных фракций распределения полимерных микрочастиц с различными скоростями, под влиянием рН или температуры, например, таким образом обеспечивая возможность протекания микрочастиц с более высоким содержанием лабильного сшивающего агента в более глубинные области подземного пласта. Как таковая, смесь включает полимерные микрочастицы, которые способны расширяться с различными скоростями, что препятствует полной активации внесенной порции расширяемых полимерных микрочастиц только при одной более низкой температуре зоны поглощения. Это позволяет частям внесенной дозы протекать далее от места внесения глубже в подземный пласт прежде активации. Более того, является ли распределение периодов полуразложения в полимерной смеси бимодальным, зависит от распределения периодов полуразложения двух полимеров.

Например, вносимую порцию смеси по меньшей мере двух различных типов неактивированных микрочастиц можно закачать в скважину, которая имеет градиент температуры, или зоны неоднородной температуры. Микрочастицы, которые ч