Способ определения предельной растяжимости цементных штукатурных составов

Иллюстрации

Показать все

Изобретение относится к области испытаний цементных штукатурных составов на предельную растяжимость при статическом нагружении. Сущность: величину предельной растяжимости определяют испытанием стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости рассчитывают по формуле. Технический результат: упрощение технологии проведения испытаний, исключение необходимости применения средств тензометрии, повышение точности определения предельной растяжимости и проведение испытаний на слоях штукатурки с характерно малой толщиной от нескольких мм до 2-3 см. 1 табл., 1 ил.

Реферат

Изобретение относится к области испытаний цементных штукатурных составов на предельную растяжимость при статическом нагружении.

Важным показателем для фасадных штукатурок является способность воспринимать развивающиеся в них усадочные и термомеханические напряжения без образования трещин. Трещиностойкость штукатурного раствора обеспечивает эстетический вид фасада и ограничивает попадание влаги под штукатурку, что может вызвать отслоение штукатурного слоя и отразиться на долговечности стены.

Известен способ определения условной деформативности цементных бетонов εult (Трещиностойкость бетона / В.В.Стольников, Р.Е.Литвинова. - М.: Энергия, 1972. - С.57-59), по которому эта характеристика рассчитывается как отношение прочности образцов при растяжении, получаемой раскалыванием кубов или цилиндров Rраск, к динамическому модулю упругости Един, определяемому на образцах из бетона того же состава физическими методами. Условную предельную растяжимость εult определяют из соотношения εult=Rраск/Eдин.

Недостатками этого способа являются следующие обстоятельства: данный способ косвенный; каждая из определяемых характеристик определяется с погрешностями. Кроме того, при определении деформации путем измерения прочности при растяжении раскалыванием и динамического модуля упругости прочность при раскалывании Rpacк обычно на 10-15% выше, чем прочность при растяжении Rp, определяемая при прямом испытании образцов-восьмерок материала на осевое растяжение, а динамический модуль упругости больше статического модуля упругости примерно на 20-25%. Это приводит к тому, что получаемая таким образом деформация фактически больше предельной растяжимости εult не менее чем на 15-20%.

Наиболее близким к предлагаемому является прямой способ определения деформативности бетона при растяжении на образцах-восьмерках (Трещиностойкость бетона / В.В.Стольников, Р.Е.Литвинова. - М.: Энергия, 1972. - С.55-56). По данному способу для определения дефомативности на образцы-восьмерки наклеиваются приборы измерения деформаций (тензодатчики сопротивления, механические тензометры), и образцы испытываются на прочность при растяжении. В основу приборов положен так называемый нулевой метод измерения сопротивлений проволочных датчиков, обеспечивающий высокую точность показаний приборов. К таким приборам относятся приборы серии АИД-1М, АИ-1, ИСД-3 и др.

Недостатком данного способа является трудность синхронизации данных измерения деформаций и разрушающей нагрузки, приводимой далее к напряжению.

В обоих вышеназванных способах реализуется испытание образцов материала штукатурного состава с размерами, отличными от толщины реального штукатурного слоя.

Задачей изобретения является упрощение технологии проведения испытаний, исключение необходимости применения средств тензометрии, повышение точности определения предельной растяжимости и проведение испытаний на слоях штукатурки с характерно малой толщиной от нескольких мм до 2-3 см.

Поставленная задача решается тем, что в способе определения предельной растяжимости цементных штукатурных составов, включающем испытание образцов материала штукатурного состава при растяжении, согласно изобретению величину предельной растяжимости определяют испытанием образцов - стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости расчитывают по формуле:

где εultш.р. - предельная растяжимость штукатурного раствора; Р - прикладываемая нагрузка, равная двум сосредоточенным силам Р/2, кН; а - расстояние от опоры балочки до точки приложения сосредоточенной силы Р/2, см; Es - модуль упругости стали, 2·105 МПа; b - ширина стальной балочки, см; h - высота балочки, см.

За счет обеспечения равномерного нагружения цементного штукатурного слоя достигается однородное напряженное состояние в сечении испытуемого образца за счет его центрирования при нагружении. Таким образом, достигается технологическая простота при проведении испытаний и повышается точность определения величины предельной растяжимости.

Способ осуществляется следующей последовательностью операций: подготавливают предварительно ошкуренный (для повышения адгезии) образец в виде стальной обезжиренной балочки из мягкой углеродистой стали, на нижнюю поверхность которой наносят штукатурный слой постоянной толщины. Далее образец выдерживают в нормальных условиях (температура (20±2)°С, влажность (90±5)%) необходимое время. По истечении срока хранения в нормальных условиях балочку помещают в естественные условия (температура (20±2)°С, влажность (55±5)%) на 24 ч для удаления избытка влаги. Далее балочку устанавливают на опоры пресса с механической системой нагружения и подвергают испытанию по схеме двухточечного изгиба с плавным нагружением малыми ступенями. За величину ступени принимается малый прирост нагрузки относительно предельно допустимой, исходя из предела текучести стали образца. После приложения очередной ступени нагружения штукатурный слой просматривают (при необходимости с помощью лупы) на возможность образования трещин на данном этапе нагружения. Во время испытания фиксируют величину ступени, соответствующую моменту трещинообразования. Нагружение производится в пределах 0,8-0,9 от уровня нагрузки, соответствующей пределу текучести стальной балочки. Предельная растяжимость определяется исходя из условия совместности деформаций стали и штукатурного слоя при допущении отсутствия влияния слоя раствора на напряженно-деформированное состояние стальной балочки. Точность метода оценивается деформацией, соответствующей 1/2 ее приращения за одну ступень, предшествующей трещинообразованию. Предельно возможная ошибка по деформации Δε соответственно 1/2 ступени нагрузки. Варьируя ступени приращения нагрузки, можно получить необходимую точность измерений.

На чертеже изображена схема испытания по схеме двухточечного изгиба с плавным нагружением малыми ступенями.

Применительно к нагружению по схеме двухточечного изгиба стальной балочки сечением b×h, длиной (пролетом) l изгибающий момент в зоне чистого изгиба составит

где Р - прикладываемая нагрузка, равная двум сосредоточенным силам Р/2, кН; а - расстояние от опоры до точки приложения сосредоточенной силы Р/2, см; М - изгибающий момент, кН·см;

где b - ширина стальной балочки, см; h - высота балочки, см; Ws - момент сопротивления сечения балочки, см3.

Нормальное напряжение в крайнем растянутом волокне балочки

при этом σs - предельно допустимое напряжение, принимаемое пониженным относительно предела текучести стали σу на 10-20%, МПа.

Из условия совместности деформации при допущении об отсутствии влияния слоя раствора на напряженно-деформированное состояние стальной балочки получим

где Es - модуль упругости стали, Es=2·105 МПа; εs - предельная растяжимость стальной балочки; εultш.р. - предельная растяжимость штукатурного раствора, равная

Предлагаемый способ может использоваться при оценке предельной растяжимости растворов и в исследованиях по оптимизации составов штукатурок с целью повышения их трещиностойкости.

Примеры реализации способа

Предлагаемый способ определения предельной растяжимости штукатурных составов обоснован результатами экспериментов.

Лабораторные исследования проводились для различных штукатурных составов: Baumit StartContact, Baumit Artoplast, Быстрой OK Теплоизоляция, цементно-песчаный раствор. По предлагаемому способу подготавливают предварительно ошкуренные обезжиренные стальные балочки (марка стали С230) размером 7×10×200 мм, на нижнюю поверхность которых наносят штукатурный слой постоянной толщины. Далее эти образцы выдерживают в нормальных условиях (температура (20±2)°С, влажность (90±5)%) необходимое количество суток. По истечении срока хранения в нормальных условиях балочки помещают в естественные условия (температура (20±2)°С, влажность (55±5)%) на сутки для удаления лишней влаги, после чего их устанавливают на опоры пресса с механической системой нагружения (пресс механический мощностью 5кН П-8) и подвергают испытанию по схеме двухточечного изгиба с плавным нагружением малыми ступенями. Испытания на растяжимость проводят в возрасте 14 и 28 суток.

В таблице показаны техника проведения эксперимента и результаты испытаний балочек с нанесенным штукатурным составом по схеме двухточечного изгиба на предельную растяжимость (см. Приложение).

Способ определения предельной растяжимости цементных штукатурных составов, включающий испытание образцов материала штукатурного состава при растяжении, отличающийся тем, что величину предельной растяжимости определяют испытанием стальных балочек с нанесенным штукатурным составом по схеме двухточечного изгиба с плавным нагружением малыми ступенями и фиксацией ступени нагружения, соответствующей моменту трещинообразования, а значение предельной растяжимости расcчитывают по формуле: где - предельная растяжимость штукатурного раствора; Р - прикладываемая нагрузка, равная двум сосредоточенным силам Р/2, кН; а - расстояние от опоры балочки до точки приложения сосредоточенной силы Р/2, см; Es - модуль упругости стали, 2·105 МПа; b - ширина стальной балочки, см; h - высота балочки, см.