Способ и устройство для продвижения зонда

Иллюстрации

Показать все

Группа изобретений относится к медицине. Устройство для продвижения зонда содержит удлиненную гибкую трубку, определяющую центральную полость, выполненную с размерами, обеспечивающими возможность ее размещения в биологическом или конструкционном тракте, и имеющую проксимальный конец и дистальный конец; приводной механизм, соединенный с проксимальным концом; столб жидкости, продолжающийся в центральной полости от проксимального до дистального конца, и средство смещения, расположенное на дистальном конце и выполненное с возможностью способствовать проксимальному перемещению столба жидкости в ответ на дистальное перемещение столба жидкости. Приводной механизм выполнен с возможностью вызывать возвратно-поступательное перемещение столба жидкости в трубке для придания трубке импульса движения вперед и тем самым способствовать продвижению по меньшей мере дистального конца трубки в тракте, когда по меньшей мере дистальный конец размещен в пределах части тракта. Раскрыт способ продвижения зонда, осуществляемый с помощью этого устройства. Технический результат состоит в обеспечении дистанционного управления перемещением зонда. 2 н. и 13 з.п.ф-лы, 44 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Описанные варианты осуществления касаются способов и устройств для использования в продвижении зонда. В частности, варианты осуществления могут использоваться для продвижения зонда по поверхности или в тракте, таком как тракт биологического объекта.

УРОВЕНЬ ТЕХНИКИ

Исследование трактов, узких пространств или областей, подход к которым затруднен, может представлять сложность. Это в особенности касается ситуации, при которой может быть затруднен соответствующий контроль продвижения зонда. Например, кишечники часто имеют относительно большую длину и образуют извилистый путь, по которому зонду трудно пройти без помощи какого-либо устройства, способствующего продвижению зонда.

Тракты, такие как кишечные и сосудистые тракты, можно с успехом исследовать, используя зонд, предназначенный для медицинских целей.

Желательно обозначить и преодолеть некоторые недостатки и неудобства, связанные с существующими способами и/или устройствами для продвижения зондов, или по меньшей мере предложить полезную альтернативу таковым.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Некоторые варианты осуществления касаются устройства, содержащего:

удлиненную гибкую трубку, выполненную с возможностью размещения в тракте и имеющую проксимальный конец и дистальный конец;

приводной механизм, соединенный с проксимальным концом этой трубки; а также

столб жидкости, продолжающийся от проксимального конца до дистального конца;

при этом приводной механизм выполнен с возможностью вызывать перемещение столба жидкости в трубке для придания трубке импульса движения вперед и тем самым содействовать продвижению по меньшей мере дистального конца трубки в тракте, когда по меньшей мере дистальный конец размещен в пределах части тракта.

Столб жидкости может представлять собой часть объема жидкости, заключенного в трубке и приводном механизме. Трубка может иметь периодические отклонения формы, созданные на наружной поверхности трубки вдоль по меньшей мере части дистального конца. Периодические отклонения формы могут продолжаться по окружности трубки и могут иметь радиальное отклонение величиной порядка радиальной толщины стенки трубки.

Наружная поверхность трубки может быть выполнена с возможностью увеличения сопротивления перемещению трубки в обратном направлении. Внутренняя поверхность трубки может быть выполнена с возможностью увеличения сопротивления перемещению столба через трубку в направлении вперед. Наружная и внутренняя поверхности трубки (т.е. периодические отклонения формы) могут быть выполнены по проксимально обращенной схеме «елочки». Внутренние периодические отклонения формы могут быть выполнены вдоль по меньшей мере секции трубки, дистальной по отношению к проксимальному концу.

Жидкость или столб жидкости может иметь плотность, примерно равную плотности воды или превышающую ее, чтобы жидкость сжималась минимально, когда на столб жидкости воздействует приводной механизм.

Приводной механизм может быть выполнен с возможностью придания проксимальному концу столба жидкости скорости определенного профиля для усиления перемещения вперед трубки в тракте. Профиль скорости может содержать одну или несколько из составляющих:

участок постепенного ускорения в первой части перемещения вперед столба жидкости;

участок резкого снижения скорости во второй части перемещения вперед столба жидкости, которая следует за первой частью перемещения вперед;

участок резкого ускорения в первой части перемещения назад столба жидкости; а также

участок постепенного снижения скорости во второй части перемещения назад столба жидкости, которая следует за первой частью перемещения назад.

Приводной механизм может содержать поршень и ведущее звено, такое как вал, выполненное с возможностью вызывать повторяющиеся продвижение вперед и отвод назад столба жидкости в трубке. Приводной механизм может быть выполнен с возможностью заставлять поршень резко снижать скорость к концу каждого хода поршня и/или резко ускоряться от конца каждого хода поршня.

Устройство может дополнительно содержать гибкую мембрану в трубке на дистальном конце для замыкания дистального конца столба жидкости. Дистальный конец трубки может вмещать в себя некоторый объем сжимаемой текучей среды (например, воздуха или иного инертного газа малой плотности), ограничиваемый трубкой, гибкой мембраной и другой мембраной, расположенной дистально от гибкой мембраны. Другая мембрана также может быть гибкой, при этом обе мембраны способны упруго деформироваться в ответ на продвижение столба жидкости.

Внутренний диаметр трубки может уменьшаться в дистальном направлении. Такое уменьшение может быть ступенчатым и/или плавным. Это сужение может способствовать минимизации потери давления в столбе жидкости в направлении дистального конца по мере того как приводной механизм перемещает столб жидкости. Стенки трубки могут быть усилены с помощью некоторого средства армирования, чтобы способствовать сопротивлению трубки расширению или сжатию в ответ на перепады давления, создаваемые работой приводного механизма.

Зонд может располагаться на дистальном конце трубки. Зонд может вмещать в себя устройство для визуализации, предназначенное для сбора изображений области впереди зонда. Множество каналов могут продолжаться вдоль трубки и соединяться с зондом, например, для подачи и/или приема сигналов на зонд и/или от зонда. Каналы могут размещаться в трубке вдоль по меньшей мере части трубки. По меньшей мере один из каналов может продолжаться по спирали вдоль по меньшей мере части трубки. В некоторых вариантах осуществления вспомогательная полость может продолжаться в основной полости, определяемой трубкой, при этом один или несколько каналов могут продолжаться во вспомогательной полости вдоль по меньшей мере части трубки. В некоторых вариантах осуществления один или несколько каналов могут быть встроены в стенку трубки вдоль по меньшей мере части трубки.

Тракт, внутри которого трубка должна иметь возможность прохождения, может представлять собой, например, желудочно-кишечный тракт или сосудистый тракт. Согласно альтернативному варианту тракт может быть небиологической структурой или областью, такой как трубопровод, водовод, контейнер или иная конструкция, получить доступ к которой и/или обследовать которую человеку может быть трудно или опасно.

Дополнительные варианты осуществления касаются способа продвижения зонда, при этом способ включает:

расположение дистального конца удлиненной гибкой трубки по меньшей мере частично в пределах нижнего конца тракта, при этом трубка выполнена с возможностью размещения в тракте и содержит столб жидкости, продолжающийся от проксимального конца трубки до дистального конца, причем зонд расположен на дистальном конце трубки; а также

управление приводным механизмом, чтобы вызвать продвижение столба жидкости в трубке для придания трубке импульса движения вперед и тем самым содействовать продвижению по меньшей мере дистального конца трубки в тракте.

Этап управления может включать придание проксимальному концу столба жидкости скорости определенного профиля для усиления перемещения вперед трубки в тракте. Профиль скорости может содержать одну или несколько из составляющих:

участок постепенного ускорения в первой части перемещения вперед столба жидкости;

участок резкого снижения скорости во второй части перемещения вперед столба жидкости, которая следует за первой частью перемещения вперед;

участок резкого ускорения в первой части перемещения назад столба жидкости; а также

участок постепенного снижения скорости во второй части перемещения назад столба жидкости, которая следует за первой частью перемещения назад.

Этап управления может включать управление поршнем или ведущим валом, чтобы вызывать повторяющиеся продвижение вперед и отвод назад столба жидкости в трубке. Управление может заставлять поршень резко снижать скорость к концу каждого хода поршня (т.е. непосредственно до точки максимального хода). Управление может заставлять поршень резко ускоряться от конца каждого хода поршня (т.е. непосредственно после точки максимального хода).

Способ может дополнительно включать создание контура по наружной поверхности трубки для сопротивления перемещению трубки во встречном направлении в тракте, а также может включать создание контура по внутренней поверхности трубки для сопротивления перемещению столба жидкости через трубку в дистальном направлении.

Зонд может содержать устройство для визуализации, а способ может дополнительно включать сбор изображений в тракте с использованием устройства для визуализации. Способ может дополнительно содержать передачу данных изображения, соответствующих собранным изображениям, на систему, выполненную с возможностью обработки и вывода на экран изображений. Каналы, включая по меньшей мере один электрический канал, могут продолжаться вдоль трубки для выполнения по меньшей мере одного из действий по подаче и приему сигналов на зонд или от зонда, при этом передача может выполняться с использованием по меньшей мере одного электрического канала.

Некоторые варианты осуществления касаются способа продвижения, включающего создание возвратно-поступательного перемещения столба жидкости, продолжающегося внутри удлиненного звена от одного конца звена до противоположного конца звена, для придания перемещения вперед звену вдоль длины удлиненного звена.

Некоторые варианты осуществления касаются устройства, содержащего зонд, расположенный на одном конце удлиненного звена, а также приводной механизм на противоположном конце удлиненного звена, при этом удлиненное звено содержит столб жидкости, продолжающийся от одного конца до противоположного конца, причем приводной механизм вызывает возвратно-поступательное перемещение столба жидкости в удлиненном звене для придания зонду перемещения вперед.

Некоторые варианты осуществления касаются сменного самопродвигающегося блока трубки, содержащего удлиненную гибкую трубку, жидкостную камеру, расположенную на проксимальном конце трубки, а также зонд, расположенный на дистальном конце трубки, при этом в трубке имеется столб жидкости, продолжающийся между жидкостной камерой и дистальным концом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Ниже подробно описаны варианты осуществления в виде примеров со ссылкой на прилагаемые чертежи, где:

на фиг. 1 показана структурная схема системы, используемой для продвижения зонда в тракте;

на фиг. 2 показан график иллюстративного профиля скорости, сообщаемой столбу жидкости;

на фиг. 3 схематично представлено устройство для продвижения, используемое для продвижения зонда;

на фиг. 4А схематично показан вид сбоку в сечении проксимального участка трубки, образующей часть устройства для продвижения, представленного на фиг. 3;

на фиг. 4В схематично показан вид сбоку в сечении дистального участка трубки, образующей часть устройства для продвижения, представленного на фиг. 3;

на фиг. 5А схематично показан пример гибкой мембраны, расположенной в направлении дистального конца устройства для продвижения, при этом мембрана показана в положении релаксации;

на фиг. 5В показана примерная схема мембраны, представленной на фиг. 5А, при этом мембрана показана в деформированном положении;

на фиг. 6 показана схема системы для продвижения зонда согласно некоторым вариантам осуществления;

на фиг. 7А показан вид сбоку, частично в сечении, трубки согласно некоторым вариантам осуществления;

на фиг. 7В показан вид в сечении трубки, представленной на фиг. 7А, по линии 7-7;

на фиг. 8А показан вид сбоку трубки согласно некоторым вариантам осуществления;

на фиг. 8В показан вид в сечении трубки, представленной на фиг. 8А, по линии 8-8;

на фиг. 9А показан вид сбоку трубки согласно некоторым вариантам осуществления;

на фиг. 9В показан вид в сечении трубки, представленной на фиг. 9А, по линии 9-9;

на фиг. 10А показан вид сбоку трубки согласно некоторым вариантам осуществления;

на фиг. 10В показан вид в сечении трубки, представленной на фиг. 10А, по линии 10-10;

на фиг. 11А показан вид сбоку трубки согласно некоторым вариантам осуществления;

на фиг. 11В показан вид в сечении трубки, представленной на фиг. 11А, по линии 11-11;

на фиг. 12А показан вид сбоку, частично в сечении, трубки согласно некоторым вариантам осуществления;

на фиг. 12В показан вид в сечении трубки, представленной на фиг. 12А, по линии 12-12;

на фиг. 13А показан вид сбоку, частично в сечении, трубки согласно некоторым вариантам осуществления;

на фиг. 13В показан вид в сечении трубки, представленной на фиг. 13А, по линии 13-13;

на фиг. 13С показан альтернативный вид в сечении трубки, представленной на фиг. 13А, по линии 13-13;

на фиг. 14А показан вид сбоку, частично в сечении, трубки согласно некоторым вариантам осуществления;

на фиг. 14В показан вид в сечении трубки, представленной на фиг. 14А, по линии 14-14;

на фиг. 15А показан вид сбоку, частично в сечении, трубки согласно некоторым вариантам осуществления;

на фиг. 15В показан вид в сечении трубки, представленной на фиг. 15А, по линии 15-15;

на фиг. 16А и 16В схематично представлен поршень, перемещающийся в камере согласно некоторым вариантам выполнения приводного механизма;

на фиг. 17А и 17В схематично представлен поршень, перемещающийся в камере согласно некоторым вариантам выполнения приводного механизма;

на фиг. 18 схематично представлен поршень, воздействующий на гибкую мембрану жидкостной камеры согласно некоторым вариантам выполнения приводного механизма;

на фиг. 19 схематично представлен поршень круглого сечения, который по существу способен вращаться для смещения мембраны жидкостной камеры согласно некоторым вариантам выполнения приводного механизма;

на фиг. 20 схематично представлена жидкостная камера, имеющая поршень, способный перемещаться в камере под управлением электромагнитных элементов, согласно некоторым вариантам выполнения приводного механизма;

на фиг. 21 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 22 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 23 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 24 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 25 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления, показанная в несжатом состоянии;

на фиг. 26 схематично представлена дистальная камера смещения, показанная на фиг. 25, в сжатом состоянии;

на фиг. 27 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления, показанная в несжатом состоянии;

на фиг. 28 схематично представлена дистальная камера смещения, показанная на фиг. 27, в сжатом состоянии;

на фиг. 29 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 30 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 31 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 32 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления, показанная в несжатом состоянии;

на фиг. 33 схематично представлена дистальная камера смещения, показанная на фиг. 32, в сжатом состоянии;

на фиг. 34 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления, показанная в несжатом состоянии;

на фиг. 35 схематично представлена дистальная камера смещения, показанная на фиг. 34, в сжатом состоянии;

на фиг. 36 схематично представлена дистальная камера смещения согласно некоторым вариантам осуществления;

на фиг. 37А показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль наружной поверхности трубки;

на фиг. 37В показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль наружной поверхности трубки;

на фиг. 38А показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль наружной поверхности трубки;

на фиг. 38В показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль наружной поверхности трубки;

на фиг. 39А показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль наружной поверхности трубки;

на фиг. 39В показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль наружной поверхности трубки;

на фиг. 40А показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль внутренней поверхности трубки;

на фиг. 40В показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль внутренней поверхности трубки;

на фиг. 41А показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль внутренней поверхности трубки;

на фиг. 41В показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль внутренней поверхности трубки;

на фиг. 42А показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль внутренней поверхности трубки;

на фиг. 42В показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль внутренней поверхности трубки;

на фиг. 43А показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль как внутренней, так и наружной поверхности трубки;

на фиг. 43В показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль как внутренней, так и наружной поверхности трубки; а также

на фиг. 44 показан вид сбоку, частично в сечении, части трубки согласно некоторым вариантам осуществления, на котором показаны периодические отклонения формы вдоль внутренней и наружной поверхности трубки в секциях, разнесенных вдоль трубки.

ПОДРОБНОЕ ОПИСАНИЕ

Описанные варианты осуществления касаются способов и устройств для использования в продвижении зонда. Поскольку в описанных вариантах осуществления могут использоваться зонды различного вида, данное описание будет сосредоточено главным образом на устройствах и способах для продвижения зонда в тракте, проходе или области. В описанных способах и устройствах применяется удлиненная гибкая трубка, образующая полость и выполненная с возможностью размещения в тракте, проходе или области, при этом имеющая проксимальный конец и дистальный конец. Приводной механизм соединен с проксимальным концом этой трубки, а столб жидкости продолжается от проксимального конца до дистального конца трубки. Приводной механизм выполнен с возможностью вызывать перемещение столба жидкости в трубке для придания трубке импульса движения вперед, что содействует продвижению по меньшей мере дистального конца трубки в тракте, проходе или области, когда по меньшей мере дистальный конец поддерживается частью тракта, прохода или области.

В общем, перемещение столба жидкости в полости сообщает импульс движения внутренней стенке трубки вдоль большей части длины трубки за счет трения и/или турбулентности. Например, для трубки длиной около 3 метров перемещение столба жидкости в трубке сообщит некоторое количество движения трубке относительно поверхности подложки (или) прохода вдоль большей части трехметровой длины трубки, за исключением тех секций, которые располагаются вблизи приводного механизма или не опираются на поверхность подложки прохода.

В данном описании термины «проксимальный» и «дистальный» поясняют относительное положение. Вообще, термин «дистальный» рассчитан на обозначение положения или направления, в общем, в направлении конца трубки, который должен быть продвинут в тракте впереди остальной части трубки. Термин «проксимальный» рассчитан на обозначение положения или направления, в общем, противоположного тому, что называют «дистальным», и может обозначать положение или направление к тому концу трубки, с которым соединен приводной механизм. Описанные варианты осуществления, в общем, касаются продвижения зонда в дистальном направлении.

В частности, на фиг. 1 система 100 для продвижения зонда 160 описана более подробно. Система 100 содержит устройство 110 для продвижения, реагирующее на команды блока 115 управления для продвижения зонда 160 в тракте 180 или иной области, когда зонд 160 помещен в тракт 180 или иную область.

Устройство 110 для продвижения содержит приводной механизм 130, соединенный с проксимальным концом 142 удлиненной гибкой трубки 140. Трубка имеет дистальный конец 144, на котором расположен зонд 160. Приводной механизм 130 подчиняется сигналам управления, получаемым от блока 115 управления для управления некоторым средством привода, таким как вал привода, который управляет поршнем, чтобы вызвать возвратно-поступательное (в прямом и обратном направлениях) перемещение столба 156 жидкости в трубке 140.

Гибкая трубка 140 определяет основную внутреннюю полость 141, в пределах которой продолжается столб 156 жидкости. Основная внутренняя полость 141 продолжается от прилегающего приводного механизма 130 до дистального конца 144, при этом столб 156 жидкости продолжается по существу по всей длине полости 141. Столб 156 жидкости может не продолжаться непосредственно до зонда 160 с целью обеспечения расположения дистального средства смещения (описанного ниже) проксимально зонду 160 для смещения столба 156 жидкости в проксимальном направлении, после того как он был продвинут дистально. Столб 156 жидкости содержит часть объема жидкости, заключенного в трубке 140, дистальном средстве смещения и жидкостной камере приводного механизма 130. Примеры дистального средства смещения показаны и описаны ниже в связи с фиг. 21-36.

Удлиненная гибкая трубка 140 может иметь диаметр и длину, значения которых выбраны так, чтобы удовлетворять конкретному диагностическому применению. Материал трубки 140 точно так же может быть выбран с возможностью удовлетворения конкретному применению. Например, если устройство 110 для продвижения используется для продвижения зонда в биологическом тракте, например, в желудочно-кишечном тракте, трубка может иметь максимальный внешний диаметр от около 5 мм до около 15 мм (возможно ближе к 7 мм) и может иметь длину от около 1 метра до около 10 метров, возможно от около 3 метров до около 6 метров. Трубка длиной примерно от 3 до 4 метров может быть пригодна для продвижения зонда 160 в кишечнике (т.е. в тонкой кишке) через анальное отверстие.

Материал трубки, используемой для обследования кишечника (т.е. для эндоскопического обследования желудочно-кишечного тракта), может быть образован соответствующим гибким и инертным с медицинской точки зрения материалом, таким как подходящий поливинилхлорид (PVC), силикон, латекс или резина. Материал трубки 140 должен позволять трубке 140 изгибаться с возможностью образования петли относительно малого минимального диаметра (в зависимости от области применения) без того, чтобы стенка трубки 140 перегнулась, сжалась или как-то иначе деформировалась с уменьшением внутреннего сечения трубки 140. Для этой цели стенка трубки может быть армирована для повышения конструктивной целостности. Применительно к эндоскопии, минимальный диаметр петли может составлять около 2 см и, например, может находиться в диапазоне от около 1 см до около 5 см.

В тех областях применения в медицине и ветеринарии, где требуется обследовать сосудистый тракт (т.е. для ангиоскопии), диаметр и длина трубки могут быть соразмерно меньшими, например, диаметр может составлять от около 3 мм до около 10 мм (возможно ближе к 5 мм), а длина - от около 0,8 м до 3 м, при этом также подбирают зонд 160 соответствующего малого диаметра.

Для обследования объектов в большей степени промышленного назначения, например, для обследования трубопроводов, коробов, контейнеров, проходов, каналов и других областей, доступ к которым для человека неудобен, небезопасен или затруднен, трубка 140 может быть выполнена из более грубого материала по меньшей мере на ее наружной поверхности, чтобы избежать повреждений трубки или уменьшить их, по мере того как она проходит вдоль потенциально абразивных поверхностей. В некоторых областях практического применения трубка 140 должна быть относительно гибкой и способной в какой-то степени захватывать поверхность, конструкцию или объект, по которым трубка 140 должна передвигаться. Таким образом, периодические отклонения формы, образованные вдоль наружной поверхности трубки 140, как будет подробнее описано ниже со ссылкой на фиг. 37А-44, могут способствовать зацеплению по механизму трения с поверхностью или структурой, по которым трубка 140 должна передвигаться.

Система 100 может содержать компьютерную систему 120 для обеспечения функций управления, обработки сигналов и интерфейса пользователя в отношении продвижения зонда 160. Таким образом, компьютерная система 120 может содержать блок 115 управления, который может быть создан в виде аппаратного обеспечения, программного обеспечения либо сочетания того и другого. Хотя и не показано, компьютерная система 120 содержит по меньшей мере один процессор или накопитель, выполненные с возможностью выполнения функций, представленных в настоящем описании.

Компьютерная система 120 может содержать блок 124 интерфейса пользователя. Компьютерная система 120 может также содержать блок 122 обработки сигналов для приема и обработки сигналов от зонда 160, таких как сигналы, соответствующие данным изображения или состоянию, или сигналы обратной связи. Блок 122 обработки сигналов может взаимодействовать с блоком 124 интерфейса пользователя, чтобы обеспечивать передачу изображений, собранных зондом 160, на устройство отображения (не показано), так чтобы пользователь системы 100 мог располагать визуальной обратной связью по мере продвижения зонда 160.

Блок 124 интерфейса пользователя может быть выполнен с возможностью обеспечения изменения или адаптации настроек и/или функций блока 122 обработки сигналов и блока 115 управления для соответствия конкретной окружающей среде, практическому применению или обстоятельствам.

Каждый из блоков 115, 122 и 124 может быть выполнен в виде программного кода, хранящегося в памяти, доступной по меньшей мере одному процессору, и может быть дополнен соответствующими компонентами программного обеспечения и/или аппаратного обеспечения, такими как компоненты ввода-вывода, компоненты операционной системы, периферийные устройства компьютера и т.д.

В дополнение к приводному механизму 130 может обеспечиваться вспомогательное оборудование 135, управляемое блоком 115 управления, для обеспечения питания, сигналов и/или материалов для зонда 160. Например, вспомогательное оборудование 135 может обеспечивать электропитание одного или нескольких источников света, таких как светоизлучающие диоды (LED), расположенные на дистальном торце зонда 160, например, посредством по меньшей мере одного кабельного канала, продолжающегося вдоль трубки 140. Кроме того, в том случае, когда зонд 160 содержит устройство для сбора изображений, имеющее прибор с зарядовой связью (CCD), или иное достаточно малое устройство для визуализации, по меньшей мере один кабельный канал может использоваться для питания такого устройства, предназначенного для сбора изображений.

Вспомогательное оборудование 135 может дополнительно содержать источник очищенного воздуха и/или воды, подаваемых к зонду 160 по одному или нескольким дополнительным каналам, продолжающимся вдоль трубки 140. С этой целью вспомогательное оборудование 135 может содержать соответствующий компрессор для нагнетания воздуха, воды или иного вещества, подаваемого к зонду 160. В зависимости от области применения, в зонде 160 может использоваться воздуховодное окно, расположенное на его дистальном конце, для подачи воздуха в тракт, такой как сосудистый тракт или кишечник. Зонд 160 может также дозированно подавать воду из отверстия на его дистальной поверхности, например, для очистки зоны перед устройством для визуализации.

Вспомогательное оборудование 135 может частично или полностью управляться блоком 115 управления, который в свою очередь может находиться под управлением пользователя через блок 124 интерфейса пользователя, или же оно может управляться отдельно, например, путем манипулирования вручную соответствующими компонентами вспомогательного оборудования, с целью обеспечения необходимого взаимодействия с зондом 160. В зависимости от области применения, вспомогательное оборудование 135 может также содержать механизм для контролируемого забора материала, примыкающего к зонду 160, например, для биопсии или иного его последующего анализа. С этой целью вспомогательное оборудование 135 может механически, пневматически и/или электрически сообщаться с зондом 160 посредством дополнительного всасывающего канала и/или управляющего кабельного канала, продолжающегося вдоль трубки 140.

В системе 100, показанной на фиг. 1, может использоваться беспроводный сбор данных изображения, собираемых устройством для визуализации в зонде 160, при этом такие данные принимаются соответствующей антенной, связанной с компьютерной системой 120, для подачи данных изображения непосредственно в блок 124 обработки данных для их обработки. Согласно альтернативному или дополнительному варианту сигналы управления по беспроводной связи могут быть приняты от зонда 160 или переданы зонду 160, управляемому блоком 115 управления и/или вспомогательным оборудованием 135 с использованием соответствующего маломощного радиотрансивера ближнего радиуса действия.

С целью продвижения зонда 160 приводной механизм 130 сообщает столбу 156 жидкости скорость определенного профиля в полости 141 по повторяющейся схеме. Пример такого профиля скорости показан на графике скорости как функции времени на фиг. 2. Перемещение столба 156 жидкости, придаваемое приводным механизмом 130, можно разделить на секцию 30 перемещения вперед и секцию 34 обратного перемещения, при этом каждая из секций 31, 34 подразделяется на две части или фазы. Секция 30 перемещения вперед разделяется на первую фазу 31, на которой приводной механизм 130 сообщает постепенное ускорение проксимальному концу столба жидкости. На второй фазе 32, которая сразу же следует за первой фазой, приводной механизм 130 обеспечивает резкое замедление скорости до момента, когда столб 156 жидкости остановится в положении 33 покоя, которое соответствует перемещению жидкости 156 в ее самое дистальное положение (соответствующее точке максимального хода) в трубке 140. Секция 34 обратного перемещения может далее содержать первую фазу 35 резкого ускорения в проксимальном направлении, за которой сразу же следует вторая фаза 36 постепенного снижения скорости в проксимальном направлении, которая продолжается до того момента, когда столб 156 жидкости опять остановится в своем самом проксимальном положении, обозначенном ссылочной позицией 37.

Хотя первая и вторая фазы 31, 32, 35 и 36 секций 30, 34 перемещения вперед и назад изображены на фиг. 2 как фазы с постоянным изменением скорости (т.е. постоянным ускорением) в каждой фазе, такие изменения скорости необязательно должны быть линейными. Скорее, профиль скорости, включающий в себя резкую инверсию (т.е. переход от малого, но положительного ускорения к большому отрицательному ускорению и наоборот), рассматривается как эффективный для передачи импульса движения от столба 156 жидкости к трубке 140 в переднем (т.е. дистальном) направлении.

Если требуется отвести назад зонд 160, профиль скорости можно инвертировать так, чтобы он имел резкое ускорение и снижение скорости с каждой стороны от наиболее проксимального положения покоя, обозначенного ссылочной позицией 37. Например, фаза резкого ускорения будет сопровождаться фазой постепенного снижения скорости в секции перемещения вперед, а за фазой постепенного ускорения немедленно последует фаза резкого снижения скорости в секции перемещения назад.

В некоторых вариантах осуществления резкая инверсия скорости может быть использована только в секции 30 перемещения вперед или только в секции 34 обратного перемещения, при этом другая секция перемещения имеет относительно плавное изменение скорости.

Хотя приводной механизм может быть выполнен с возможностью сообщения проксимальному концу столба 156 жидкости скорости требуемого профиля, в силу того, что перемещение столба 156 жидкости обусловлено разностью давления, создаваемой приводным механизмом и сообщаемой столбу 156 жидкости от проксимального конца 142 до дистального конца 144, по длине столба 156 жидкости может иметь место некоторое падение давления. Таким образом, профиль скорости, приданный приводным механизмом 130 столбу 156 жидкости на проксимальном конце 142, может не совпадать с профилем скорости, который воспринимается столбом 156 жидкости на дистальном конце 144. С целью минимизации или снижения потери давления по длине трубки 140, в общем, цилиндрическая стенка трубки 140 может быть усилена для сопротивления расширению или сжатию стенки трубки в ответ на перепад давления, образуемый вдоль столба 156 жидкости. Кроме того, внутренний диаметр полости 141 может постепенно снижаться по длине трубки 140 от первого значения внутреннего диаметра на проксимальном конце 142 до меньшего второго значения внутреннего диаметра на дистальном конце 144. Такое снижение диаметра может быть плавным или ступенчатым. Например, ступенчатое снижение может содержать снижения, скажем, на 0,05 мм или 0,1 мм через каждые 15, 20, 25 или 30 см вдоль трубки 140. Снижение диаметра вдоль трубки 140 может быть линейным или нелинейным. В этом контексте уменьшение внутреннего диаметра по длине трубки 140 не зависит от каких-либо периодических изменений внутреннего диаметра полости, вызванных периодическими отклонениями формы, такими как описаны ниже в связи с фиг. 37А-44.

Потери давления вдоль трубки 140 могут быть минимизированы путем использования жидкости, плотность которой при комнатной температуре и внутренних температурах тела примерно та же или выше, чем у воды при тех же температурах. Жидкости с такой плотностью обычно заметно не сжимаются под относительно малым давлением, создаваемым приводным механизмом 130. Таким образом, вода, такая, например, как очищенная или деминерализованная вода, может использоваться в качестве жидкости для столба 156 жидкости.

При использовании системы 100 трубка 140 в большей своей части по длине может быть свита, закручена или провисать, так что она может выпрямляться постепенно, по мере того как дистальный конец 144 и зонд 160 помещены внутрь и продвигаются в тракте 180 или иной области. Таким образом, по мере продвижения зонда 160 под управлением приводного механизма 130, все большая и большая часть трубки будет поступать в тракт 180. Когда вся слабина трубки 140 будет выбрана и та часть трубки 140, которая находится вне тракта 180, не сможет далее продвигаться, зонд 160 достигнет предела, до которого он может проходить в тракте 180.