Способ и устройство для управления цветом на дисплее

Иллюстрации

Показать все

Дисплей содержит множество пикселей, включающих красный, зеленый и синий интерференционный модуляторы. Каждый из пикселей выполнен с возможностью вывода более высокой интенсивности зеленого света, чем красного и синего света. По меньшей мере один из интерференционных модуляторов, выполненных с возможностью вывода красного и синего света выполнен с возможностью вывода света, имеющего длину волны, обеспечивающую возможность компенсации более высокой интенсивности зеленого света. Технический результат - усиление субъективной яркости дисплея. 6 н. и 26 з.п. ф-лы, 21 ил.

Реферат

Область техники, к которой относится изобретение

Область техники изобретения относится к микроэлектромеханическим системам (MEMS).

Уровень техники

Микроэлектромеханические системы (MEMS) содержат микромеханические элементы, исполнительные механизмы и электронику. Микромеханические элементы могут быть созданы с применением осаждения, травления и/или других способов микрообработки, с помощью которых вытравливают части подложек и/или слоев осажденного материала, или с помощью которых добавляют слои для формирования электрических и электромеханических устройств. Один тип MEMS-устройства называется интерференционным модулятором. Для целей настоящего описания термин интерференционный модулятор или интерференционный светомодулятор относится к устройству, которое селективно поглощает и/или отражает свет с использованием принципов оптической интерференции. В некоторых вариантах осуществления интерференционный модулятор может содержать пару проводящих пластин, одна из которых или обе могут быть прозрачными и/или отражающими в целом или частично и способными к относительному перемещению при подаче соответствующего электрического сигнала. В конкретном варианте осуществления одна пластина может содержать неподвижный слой, осажденный на подложку, и другая пластина может содержать металлическую мембрану, отделенную от неподвижного слоя воздушным зазором. Как подробно изложено в настоящем описании, расположение одной пластины относительно другой пластины может изменять оптическую интерференцию света, падающего на интерференционный модулятор. Подобные устройства имеют широкую область применения, и в технике полезно использовать и/или модифицировать характеристики устройств такого типа, чтобы их свойства можно было применить для совершенствования существующих изделий и создания новых изделий, которые еще не разрабатывались.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Система, способ и устройства в соответствии с изобретением, обладают, в каждом случае, своими индивидуальными особенностями, ни одна из которых, в отдельности, не отвечает за соответствующие искомые признаки. Ниже, без ограничения объема настоящего изобретения, кратко изложены его наиболее заметные характерные черты. После изучения настоящего изложения и, в частности, после прочтения раздела «Подробное описание предпочтительных вариантов осуществления» станет понятно, каким образом характерные черты настоящего изобретения обеспечивают преимущества над другими устройствами отображения.

Один вариант осуществления включает в себя дисплей. Дисплей содержит множество пикселей. Каждый из пикселей содержит, по меньшей мере, один красный суб-пиксель, содержащий, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода красного света, по меньшей мере, один зеленый суб-пиксель, содержащий, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода зеленого света, по меньшей мере, один синий суб-пиксель, содержащий, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода синего света, и, по меньшей мере, один белый суб-пиксель, содержащий, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода окрашенного света.

Еще один вариант осуществления включает в себя дисплей. Дисплей содержит множество интерференционных модуляторов. Множество интерференционных модуляторов содержит, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода красного света, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода зеленого света, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода синего света, и, по меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода белого света. По меньшей мере, один интерференционный модулятор, выполненный с возможностью вывода белого света, выводит белый свет, имеющий стандартизованную точку белого.

Еще один вариант осуществления включает в себя дисплей. Дисплей содержит множество элементов отображения. Каждый из элементов отображения содержит отражающую поверхность, выполненную с возможностью расположения на расстоянии от частично отражающей поверхности. Множество элементов отображения содержит, по меньшей мере, один из множества элементов отображения, выполненный с возможностью вывода окрашенного света, и, по меньшей мере, один из множества элементов отображения, выполненный с возможностью интерференционного вывода белого света.

Еще один вариант осуществления включает в себя способ изготовления дисплея. Способ заключается в том, что формируют множество элементов отображения. Каждый из множества элементов отображения содержит отражающую поверхность, выполненную с возможностью расположения на расстоянии от частично отражающей поверхности. Каждое из соответствующих расстояний подбирают так, чтобы, по меньшей мере, один из множества элементов отображения был выполнен с возможностью вывода окрашенного света, и, по меньшей мере, один другой из множества элементов отображения был выполнен с возможностью интерференционного вывода белого света.

Еще один вариант осуществления включает в себя дисплей, содержащий средство для отображения изображения. Средство отображения содержит средство для отражения света и средство для частичного отражения света. Отражающее средство выполнено с возможностью расположения на расстоянии от частично отражающего средства. Средство отображения содержит первое средство для вывода окрашенного света и второе средство для интерференционного вывода белого света.

Еще один вариант осуществления включает в себя дисплей. Дисплей содержит множество пикселей, из которых каждый содержит красный, зеленый и синий интерференционные модуляторы, которые выполнены с возможностью вывода красного, зеленого и синего света, соответственно. Каждый из пикселей выполнен с возможностью вывода более высокой интенсивности зеленого света, чем красного света, и выполнен с возможностью вывода более высокой интенсивности зеленого света, чем синего света, когда каждый из интерференционных модуляторов настроен на вывод красного, зеленого и синего света.

Еще один вариант осуществления включает в себя способ изготовления дисплея. Способ заключается в том, что формируют множество пикселей. Формирование множества пикселей заключается в том, что формируют интерференционные модуляторы, выполненные с возможностью вывода красного света, формируют интерференционные модуляторы, выполненные с возможностью вывода зеленого света, и формируют интерференционные модуляторы, выполненные с возможностью вывода синего света. Каждый из пикселей выполняют с возможностью вывода более высокой интенсивности зеленого света, чем красного света, и выполняют с возможностью вывода более высокой интенсивности зеленого света, чем синего света, когда каждый из интерференционных модуляторов настроен на вывод красного, зеленого и синего света.

Еще один вариант осуществления включает в себя дисплей. Дисплей содержит множество пикселей. Каждый из пикселей содержит красный, зеленый и синий интерференционные модуляторы, которые выполнены с возможностью вывода красного, зеленого и синего света, соответственно. Каждый из пикселей выполнен с возможностью вывода более высокой интенсивности зеленого света, чем красного света, и выполнен с возможностью вывода более высокой интенсивности зеленого света, чем синего света. По меньшей мере, один из интерференционных модуляторов, выполненных с возможностью вывода красного света, и интерференционных модуляторов, выполненных с возможностью вывода синего света, выполнен с возможностью вывода света, имеющего длину волны, выбранную для компенсации более высокой интенсивности зеленого света.

Еще один вариант осуществления включает в себя дисплей, содержащий множество средств для вывода красного света, множество средств для вывода зеленого света и множество средств для вывода синего света. Средства вывода красного, зеленого и синего образуют средство для отображения пикселя изображения. Каждое из средств отображения пикселя выполнено с возможностью вывода более высокой интенсивности зеленого света, чем синего света, когда средства вывода красного, зеленого и синего настроены на вывод красного, зеленого и синего света.

Еще один вариант осуществления включает в себя дисплей, содержащий множество элементов отображения. Множество элементов отображения содержит, по меньшей мере, один цветной элемент отображения, выполненный с возможностью вывода окрашенного света, и, по меньшей мере, один элемент отображения, выполненный с возможностью вывода белого света. По меньшей мере, один элемент отображения, выполненный с возможностью вывода белого света, выводит белый свет, имеющий стандартизованную точку белого.

Еще один вариант осуществления включает в себя дисплей, содержащий средство для отображения изображения. Средство отображения содержит средство для вывода окрашенного света и средство для вывода белого света. Средство для вывода белого света выводит белый свет, имеющий стандартизованную точку белого.

Еще один вариант осуществления включает в себя способ изготовления дисплея, заключающийся в том, что формируют множество элементов отображения, содержащее, по меньшей мере, один цветной элемент отображения, выполненный с возможностью вывода окрашенного света, и, по меньшей мере, один элемент отображения, выполненный с возможностью вывода белого света. По меньшей мере, один элемент отображения, выполненный с возможностью вывода белого света, предназначен для вывода белого света, имеющего стандартизованную точку белого.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 представлен вид в изометрии участка одного варианта осуществления интерференционно-модуляторного дисплея, в котором подвижный отражающий слой первого интерференционного модулятора находится в релаксированном положении, и подвижный отражающий слой второго интерференционного модулятора находится в активном положении.

На фиг. 2 изображена блок-схема системы, представляющая один вариант осуществления электронного устройства, включающего в себя 3×3 интерференционно-модуляторный дисплей.

На фиг. 3 представлена диаграмма положения подвижного зеркала в зависимости от приложенного напряжения для одного примерного варианта осуществления интерференционного модулятора, показанного на фиг. 1.

На фиг. 4 представлена комбинация напряжений строк и столбцов, которую можно применить для управления интерференционно-модуляторным дисплеем.

На фиг. 5A изображен один примерный кадр отображаемых данных на 3×3 интерференционно-модуляторном дисплее, показанном на фиг. 2.

На фиг. 5B представлена одна примерная временная диаграмма для строчных и столбцовых сигналов, которые можно применять для записи кадра, показанного на фиг. 5A.

На фиг. 6A и 6B представлены блок-схемы системы, изображающие вариант осуществления устройства визуального отображения, содержащего множество интерференционных модуляторов.

На фиг. 7A представлено сечение устройства, показанного на фиг. 1.

На фиг. 7B представлено сечение альтернативного варианта осуществления интерференционного модулятора.

На фиг. 7C представлено сечение еще одного альтернативного варианта осуществления интерференционного модулятора.

На фиг. 7D представлено сечение еще одного другого альтернативного варианта осуществления интерференционного модулятора.

На фиг. 7E представлено сечение дополнительного альтернативного варианта осуществления интерференционного модулятора.

На фиг. 8 представлен вид сбоку в сечении примерного интерференционного модулятора, с пояснением спектральных характеристик света на выходе путем установки подвижного зеркала в ряд положений.

На фиг. 9 приведена графическая схема, демонстрирующая спектральную характеристику одного варианта осуществления, который содержит голубой и желтый интерференционные модуляторы для синтеза белого света.

На фиг. 10 представлен вид сбоку в сечении интерференционного модулятора, с изображением разных оптических путей сквозь модулятор, которые приводят, в результате, к отражению света разного цвета.

На фиг. 11 представлен вид сбоку в сечении интерференционного модулятора, содержащего слой материала для селективного пропускания света конкретного цвета.

На фиг. 12 приведена графическая схема, демонстрирующая спектральную характеристику одного варианта осуществления, который содержит зеленые интерференционные модуляторы и слой «пурпурного» фильтра для синтеза белого света.

На фиг. 13 приведена графическая схема, демонстрирующая два пикселя примерной матрицы 30 пикселей. Строки 1-4 и столбцы 1-4 образуют один пиксель 120a.

На фиг. 14A представлен график цветностей, с демонстрацией цветов, которые могут быть синтезированы примерным цветным дисплеем, который содержит красный, зеленый и синий элементы отображения.

На фиг. 14B представлен график цветностей, с демонстрацией цветов, которые могут быть синтезированы примерным цветным дисплеем, который содержит красный, зеленый, синий и белый элементы отображения.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Нижеследующее подробное описание относится к некоторым конкретным вариантам осуществления изобретения. Однако, изобретение можно осуществить множеством разных способов. В настоящем описании даны ссылки на чертежи, на которых сходные части везде обозначены одинаковыми числовыми позициями. Как очевидно из нижеследующего описания, варианты осуществления можно реализовать в любом устройстве, которое выполнено с возможностью отображения любого изображения, движущегося (например, видео) или неподвижного (например, стоп-кадра) и текстового или изобразительного. В частности, предполагается, что варианты осуществления могут быть реализованы в виде или во взаимосвязи с множеством таких разнообразных электронных устройств, как, например, хотя и без ограничения, мобильные телефоны, беспроводные устройства, персональные электронные помощники (PDA), карманные или портативные компьютеры, приемники/навигаторы GPS (системы глобального позиционирования), камеры, MP3-плейеры, записывающие видеокамеры, пульты-приставки для видеоигр, наручные часы, часы, калькуляторы, телемониторы, плоские дисплеи, компьютерные мониторы, автомобильные дисплеи (например, дисплей счетчика пробега и т.д.), средства управления и/или устройства отображения информации в кабине экипажа, дисплей полей зрения съемочных камер (например, дисплей камеры заднего вида в транспортном средстве), электронные фотографии, электронные рекламные щиты или плакаты, проекторы, архитектурные конструкции, упаковка и художественные конструкции (например, дисплей изображений на ювелирном изделии). MEMS-устройства, конструктивно аналогичные устройствам, описанным в настоящей заявке, можно также применить в недисплейной аппаратуре, например, электронных коммутирующих устройствах.

Один вариант осуществления представляет собой дисплей, в котором каждый из пикселей содержит набор элементов отображения, каждый из которых может содержать, по меньшей мере, один интерференционный модулятор. Набор элементов отображения содержит элементы отображения, выполненные с возможностью вывода красного, зеленого, синего и белого света. В одном варианте осуществления, элемент отображения «белого света» выводит белый свет, имеющий более широкую спектральную характеристику с более высокой интенсивностью, чем комбинированная спектральная характеристика «красного», «зеленого» и «синего» элементов отображения. В одном варианте осуществления дисплей содержит задающую схему, выполненную с возможностью включения элемента отображения «белого света», когда поступают данные на возбуждение пикселя. Кроме того, варианты осуществления включают в себя цветные дисплеи, выполненные с возможностью обеспечения большей части интенсивности светового выхода на зеленых участках видимого спектра для повышения воспринимаемой яркости дисплея.

Один вариант осуществления интерференционно-модуляторного дисплея, содержащего интерференционный MEMS-элемент отображения, изображен на фиг. 1. В таких устройствах пиксели находятся либо в светлом, либо в темном состоянии. В светлом («включенном» или «открытом») состоянии элемент отображения отражает большую часть падающего видимого света к пользователю. В темном («выключенном» или «закрытом») состоянии элемент отображения отражает мало падающего видимого света к пользователю. В зависимости от варианта осуществления, светоотражательные характеристики во «включенном» и «выключенном» состояниях могут обращаться. MEMS-пиксели могут быть выполнены с возможностью отражения, преимущественно, в выбранных цветах, что обеспечивает возможность цветного отображения, дополнительно к черно-белому.

На фиг. 1 представлен вид в изометрии двух смежных пикселей в последовательности пикселей дисплея, при этом, каждый пиксель содержит интерференционный MEMS-модулятор. В некоторых вариантах осуществления интерференционно-модуляторный дисплей содержит строчно-столбцовую матрицу из упомянутых интерференционных модуляторов. Каждый интерференционный модулятор содержит пару отражающих слоев, расположенных на переменном и управляемом расстоянии один от другого для формирования оптического резонатора с, по меньшей мере, одним переменным линейным размером. В одном варианте осуществления один из отражающих слоев можно перемещать между двумя положениями. В первом положении, именуемом в настоящем описании релаксированным положением, подвижный отражающий слой расположен на относительно большом расстоянии от неподвижного частично отражающего слоя. Во втором положении, именуемом в настоящем описании активным положением, подвижный отражающий слой расположен значительно ближе к частично отражающему слою. Падающий свет, который отражается от двух слоев, интерферирует конструктивно или деструктивно, в зависимости от положения подвижного отражающего слоя, с созданием либо полностью отражающего, либо неотражающего состояния каждого пикселя.

Изображенный участок матрицы пикселей на фиг. 1 содержит два смежных интерференционных модулятора 12a и 12b. В интерференционном модуляторе 12a слева подвижный отражающий слой 14a показан в релаксированном состоянии на заданном расстоянии от оптической стопы 16a, которая содержит частично отражающий слой. В интерференционном модуляторе 12b справа, подвижный отражающий слой 14b показан в активном состоянии с прилеганием к оптической стопе 16b.

Оптические стопы 16a и 16b (совокупно именуемые оптической стопой 16), как указано в настоящем описании, обычно состоят из нескольких сплавленных слоев, которые могут содержать электродный слой, например, оксид индия и олова (ITO), частично отражающий слой, например, хром, и прозрачный диэлектрик. Таким образом, оптическая стопа 16 является токопроводящей, частично прозрачной и частично отражающей и может быть изготовлена, например, осаждением, по меньшей мере, одного из вышеупомянутых слоев на прозрачную подложку 20. В некоторых вариантах осуществления слои выполнены в виде узора из параллельных полосок и могут формировать строчные электроды в устройстве отображения, как дополнительно поясняется ниже. Подвижные отражающие слои 14a, 14b могут быть выполнены в виде последовательности параллельных полосок осажденного металлического слоя или слоев (ортогональных строчным электродам 16a, 16b), осажденных поверх стоек 18, и промежуточного удаляемого материала, осажденного между стойками 18. Когда удаляемый материал вытравлен, подвижные отражающие слои 14a, 14b отделены от оптических стоп 16a, 16b определенным зазором 19. Для отражательных слоев 14 можно воспользоваться высокопроводящим и отражающим материалом типа алюминия, и упомянутые полоски могут формировать столбцовые электроды в устройстве отображения.

В отсутствие прикладываемого напряжения, между подвижным отражающим слоем 14a и оптической стопой 16a остается полость 19, с подвижным отражающим слоем 14a в механически релаксированном состоянии, как показано для пикселя 12a слева на фиг. 1. Однако, когда на назначенные строку и столбец подается разность потенциалов, конденсатор, образованный в месте пересечения строчного и столбцового электродов на соответствующем пикселе, становится заряженным, и электростатические силы притягиваются один к другому. Если напряжение достаточно велико, то подвижный отражающий слой 14 деформируется и прижимается к оптической стопе 16. Диэлектрический слой (не показанный на рассматриваемой фигуре) в оптической стопе 16 может предотвращать замыкание накоротко и регулировать зазор между слоями 14 и 16, как показано для пикселя 12b справа на фиг. 1. Характер изменения является одинаковым, независимо от полярности подводимой разности потенциалов. При этом, активизация строки/столбца, которая дает возможность управления отражающим или неотражающим состояниями пикселей, во многом аналогична активизации, применяемой в традиционных LCD (жидкокристаллических дисплеях) и технологиях других дисплеев.

На фиг. 2-5B представлены один примерный способ и система для использования матрицы интерференционных модуляторов в применении к отображению.

На фиг. 2 представлена блок-схема системы, с изображением одного варианта осуществления электронного устройства, которое может обладать особенностями изобретения. В примерном варианте осуществления электронное устройство содержит процессор 21, которым может быть любой универсальный одно- или многокристальный микропроцессор, например, ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, 8051, MIPS®, Power PC®, ALPHA® или любой специализированный микропроцессор, например, цифровой сигнальный процессор, микроконтроллер или программируемая логическая матрица. Как принято в данной области техники, процессор 21 может быть выполнен с возможностью исполнения, по меньшей мере, одного программного модуля. В дополнение к исполнению операционной системы, процессор может быть выполнен с возможностью исполнения, по меньшей мере, одного приложения, включая web-браузер, приложение телефонии, программу электронной почты или любое другое приложение.

В одном варианте осуществления процессор 21 выполнен также с возможностью связи с формирователем 22 матрицы. В одном варианте осуществления формирователь 22 матрицы содержит задающую схему 24 строки и задающую схему 26 столбца, которые обеспечивают сигналы для дисплейной матрицы или панели 30. Сечение матрицы, показанное на фиг. 1, взято по линиям 1-1 на фиг. 2. В случае интерференционного MEMS-модулятора, протокол активизации строки/столбца может использовать гистерезисные свойства рассматриваемых устройств, изображенные на фиг. 3. При этом, чтобы вызвать деформацию подвижного слоя из релаксированного состояния в активное состояние, может потребоваться разность потенциалов, например, 10 Вольт. Однако, когда напряжение снижается от упомянутого значения, подвижный слой сохраняет свое состояние по мере того, как напряжение снова падает ниже 10 Вольт. В примерном варианте осуществления на фиг. 3, подвижный слой не релаксирует полностью, пока напряжение не упадет ниже 2 Вольт. Таким образом, в примере, показанном на фиг. 3, имеет место изменение напряжения в пределах, приблизительно, от 3 до 7 В, в которых существует окно прилагаемого напряжения, внутри которого устройство устойчиво находится либо в релаксированном, либо а активном состоянии. Упомянутое окно именуется в настоящем описании «окном гистерезиса» или «окном устойчивости». Протокол активизации строки/столбца для дисплейной матрицы с гистерезисными характеристиками, изображенными на фиг. 3, может быть составлен так, что во время стробирования строки, к пикселям в стробируемой строке, которые подлежат активизации, прикладывается разность потенциалов около 10 Вольт, и к пикселям, которые подлежат релаксации, прикладывается разность потенциалов, близкая к нулю Вольт. После стробирования, к пикселям прикладывается установившаяся разность потенциалов около 5 Вольт, поэтому пиксели остаются в любом состоянии, в которое строб-импульс строки устанавливает упомянутые пиксели. После записи, каждый пиксель находится под разностью потенциалов в пределах «окна стабильности» 3-7 Вольт в настоящем примере. Описанная особенность делает конструкцию пикселя, показанную на фиг. 1, устойчивой в том же режиме приложенного напряжения, либо в активном, либо в релаксированном предшествующем состоянии. Поскольку каждый пиксель интерференционного модулятора, будь то в активном или релаксированном состоянии, по существу, является конденсатором, образованным неподвижным и подвижным отражающими слоями, упомянутое устойчивое состояние может сохраняться при напряжении в пределах окна гистерезиса, фактически, в отсутствие рассеивания мощности. По существу, в пиксель не протекает никакого тока, если приложенный потенциал является постоянным.

В типичных практических случаях, кадр изображения может быть создан назначением комбинации столбцовых электродов в соответствии с искомой комбинацией активных пикселей в первой строке. Затем на электрод строки 1 подается строчный импульс, активизирующий пиксели, соответствующие назначенным столбцовым проводниками. Затем назначенная комбинация столбцовых электродов изменяется в соответствии с искомой комбинацией активных пикселей во второй строке. Затем на электрод строки 2 подается импульс, активизирующий надлежащие пиксели в строке 2, в соответствии с назначенными столбцовыми проводниками. Пиксели строки 1 не подвергаются воздействиям импульса строки 2 и остаются в состоянии, в которое они были установлены во время импульса строки 1. Описанный процесс может повторяться для всего набора строк последовательным образом для создания кадра. В общем, кадры обновляются и/или модифицируются новыми отображаемыми данными при непрерывном повторении описанного процесса при некотором искомом числе кадров в секунду. Множество различных протоколов для управления строчными и столбцовыми электродами матрицы пикселей с созданием кадров изображения также широко известно и применимо в связи с настоящим изобретением.

На фиг. 4, 5A и 5B представлен один возможный протокол активизации для создания кадра изображения на 3×3-матрице, показанной на фиг. 2. На фиг. 4 представлена возможная комбинация уровней напряжения столбца и строки, которые можно использовать для пикселей, обладающих характеристиками гистерезиса, представленными кривыми на фиг. 3. В варианте осуществления на фиг. 4 активизирование пикселя предусматривает установку в соответствующем столбце напряжения -Vbias и в соответствующей строке напряжения +ΔV, которое может соответствовать -5 Вольтам и +5 Вольтам, соответственно. Релаксация пикселя осуществляется установкой +Vbias в соответствующем столбце и такого же +ΔV в соответствующей строке, с созданием на пикселе разности потенциалов, равной нулю Вольт. В тех строках, в которых напряжение строки выдерживается равным нулю Вольт, пиксели устойчиво находятся в любом состоянии, в котором они находились первоначально, независимо от того, находится ли столбец под напряжением +Vbias или -Vbias. Как также показано на фиг. 4, следует понимать, что можно применять напряжения с полярностью, противоположной вышеописанным напряжениям, например, активизация пикселя может предполагать установку +Vbias в соответствующем столбце и -ΔV в соответствующей строке. В таком варианте осуществления релаксация пикселя осуществляется установкой -Vbias в соответствующем столбце и -ΔV в соответствующей строке, с созданием на пикселе разности потенциалов, равной нулю Вольт.

На фиг. 5B представлена временная диаграмма, показывающая последовательных строчных и столбцовых сигналов, подаваемых на 3×3-матрицу, показанную на фиг. 2, что дает, в результате, схему отображения, показанную на фиг. 5A, где активные пиксели являются неотражающими. Перед записью кадра, изображенного на фиг. 5A, пиксели могут быть в любом состоянии, и, в приведенном примере, на все строки подано 0 Вольт, и на все столбцы подано +5 Вольт. При приложении таких напряжений, все пиксели устойчиво пребывают в их существующих активных или релаксированных состояниях.

В кадре на фиг. 5A пиксели (1,1), (1,2), (2,2), (3,2) и (3,3) являются активными. Для достижения упомянутых состояний, в продолжении «длительности строки» для строки 1, в столбцах 1 и 2 установлено -5 Вольт, и в столбце 3 установлено +5 Вольт. Это не изменяет состояния ни одного пикселя, поскольку все пиксели остаются внутри 3-7-вольтового окна стабильности. Затем строка 1 стробируется импульсом, который переходит от 0 до 5 Вольт и обратно в нуль. Это активизирует пиксели (1,1) и (1,2) и релаксирует пиксель (1,3). Никакие другие пиксели в матрице не изменяются. Для искомой установки строки 2, столбец 2 устанавливают на -5 Вольт, и столбцы 1 и 3 устанавливают на +5 Вольт. Затем аналогичный строб-импульс, поданный в строку 2, активизирует пиксель (2,2) и релаксирует пиксели (2,1) и (2,3). И вновь не изменяются никакие другие пиксели матрицы. Аналогично, строку 3 устанавливают установкой -5 Вольт в столбцах 2 и 3 и +5 Вольт в столбце 1. Строб-импульс строки 3 устанавливает пиксели строки 3, как показано на фиг. 5A. После записи кадра потенциалы строк равны нулю, и потенциалы столбцов могут оставаться либо +5, либо -5 Вольт, и тогда дисплей устойчиво сохраняет схему, показанную на фиг. 5A. Очевидно, что аналогичную процедуру можно использовать для матриц из десятков или сотен строк и столбцов. Следует понимать, что распределение временных интервалов, последовательность и уровни напряжений, применяемых для осуществления активизации строк и столбцов, могут широко изменяться в рамках вышеизложенных общих принципов, и вышеприведенный пример является только иллюстративным, и возможно применение любого способа приложения напряжения активизации в системах и способам, предлагаемых в настоящей заявке.

На фиг. 6A и 6B представлены блок-схемы системы, изображающие вариант осуществления устройства 40 отображения. Устройство 40 отображения может представлять собой, например, сотовый или мобильный телефон. Однако, аналогичные компоненты устройства 40 отображения или их слабо отличающиеся варианты являются характерными также для устройств отображения разнообразных типов, например, телевизоров и портативных медиа-плейеров.

Устройство 40 отображения содержит корпус 41, дисплей 30, антенну 43, динамик 44, входное устройство 48 и микрофон 46. Корпус 41 обычно выполнен по любой из множества различных технологий изготовления, которые широко известны специалистам в данной области техники, включая литье под давлением и вакуумную формовку. Кроме того, корпус 41 может быть изготовлен из любого из многочисленных материалов, включая, но без ограничения, пластик, металл, стекло, резину и керамику или их комбинации. В одном варианте осуществления корпус 41 содержит съемные участки (не показанные), которые можно заменять другими съемными участками отличающегося цвета, или содержащими разные логотипы, рисунки или символы.

Дисплей 30 примерного устройства 40 отображения может быть любым из множества разных дисплеев, включая бистабильный дисплей типа описанного в настоящей заявке. В других вариантах осуществления дисплей 30 содержит плоский дисплей, например, плазменный, EL (электролюминесцентный), OLED (на органических светодиодах), STN LCD (цветной ЖК-дисплей с матрицей пассивных суперскрученных нематических элементов) или TFT LCD (ЖК-дисплей на тонкопленочных транзисторах) вышеописанного типа, или неплоский дисплей, например, на ЭЛТ или устройство на другой трубке, которые широко известны специалистам в данной области техники. Однако, для описания настоящего варианта осуществления, дисплей 30 содержит интерференционно-модуляторный дисплей, такой же, как описан в настоящей заявке.

Компоненты одного варианта осуществления примерного устройства 40 отображения схематично изображены на фиг. 6B. Изображенное примерное устройство 40 отображения содержит корпус 41 и может содержать дополнительные компоненты, по меньшей мере, частично, заключенные в упомянутый корпус. Например, в одном варианте осуществления примерное устройство 40 отображения содержит сетевой интерфейс 27, который содержит антенну 43, которая сопряжена с приемопередающим устройством 47. Приемопередающее устройство 47 подключено к процессору 21, который подключен к аппаратуре 52 предварительного формирования сигнала. Аппаратура 52 предварительного формирования сигнала может быть выполнена с возможностью преобразования сигнала (например, фильтрации сигнала). Аппаратура 52 предварительного формирования сигнала подключена к динамику 45 и микрофону 46. Процессор 21 подключен также к устройству 48 ввода и задающему контроллеру 29. Задающий контроллер 29 связан с кадровым буфером 28 и формирователем 22 матрицы, который, в свою очередь, связан с дисплейной матрицей 30. Источник 50 питания обеспечивает питание всех компонентов, в соответствии с требованиями конкретной конструкции примерного устройства 40 отображения.

Сетевой интерфейс 27 содержит антенну 43 и приемопередающее устройство 47, так что примерное устройство 40 отображения может обмениваться данными с, по меньшей мере, одним устройством в сети. В одном варианте осуществления сетевой интерфейс 27 может также содержать какие-нибудь средства обработки для ослабления требований к процессору 21. Антенна 43 представляет собой любую антенну, известную специалистам в данной области техники, для передачи и приема сигналов. В одном варианте осуществления антенна передает и принимает радиочастотные (RF) сигналы в стандарте IEEE 802.11, включая IEEE 802.11(a), (b) или (g). В другом варианте осуществления антенна передает и принимает RF-сигналы в стандарте BLUETOOTH. В случае сотового телефона антенна предназначена для приема сигналов CDMA (многостанционного доступа с кодовым разделением каналов), GSM (глобальной системы связи с подвижными объектами), AMPS (развитой мобильной телефонной службы) или других известных сигналов, которые применяют для обмена данными в беспроводной сотовой телефонной сети. Приемопередающее устройство 47 предварительно обрабатывает сигналы, полученные из антенны 43, так, что они могут быть приняты и дополнительно обработаны процессором 21. Приемопередающее устройство 47 обрабатывает также сигналы, получаемые из процессора 21, так, что их можно передавать из примерного устройства 40 отображения через антенну 43.

В альтернативном варианте осуществления приемопередающее устройство 47 может быть заменено приемником. В еще одном альтернативном варианте осуществления сетевой интерфейс 27 может быть заменен источником изображения, который может хранить или формировать данные изображений, подлежащие передаче в процессор 21. Например, источник изображения может представлять собой цифровой видеодиск (DVD) или накопитель на жестких дисках, который содержит данные изображения, или программный модуль, который формирует данные изображения.

Процессор 21 обычно управляет всей работой примерного устройства 40 отображения. Процессор 21 принимает данные, например, сжатые данные изображения из сетевого интерфейса 27 или источника изображения, и обрабатывает данные с превращением в исходные данные изображения или в формат, который легко обрабатывается с превращением в исходные данные изображения. Затем процессор 21 пересылает обработанные данные в задающий контроллер 29 или кадровый буфер 28 для хранения. Исходными данными обычно именуется информация, которая идентифицирует характеристики изображения в каждом месте в пределах изображения. Например, упомянутые характеристики изображения могут включать в себя цвет, насыщенность и уровень яркости.

В одном варианте осуществления процессор 21 содержит микроконтроллер, CPU (центральный процессор) или логический блок для управления работой примерного устройства 40 отображения. Аппаратура 52 предварительного формирования