Электрический приводной инструмент, корпус инструмента и аккумуляторный источник питания

Иллюстрации

Показать все

Изобретение относится к электрическим аккумуляторным инструментам. Технический результат - упрощение структуры электрического приводного инструмента. Электрический приводной инструмент включает в себя корпус инструмента и аккумуляторный источник питания. Модуль задания напряжения контактного вывода корпуса инструмента задает напряжение контактного вывода на стороне корпуса равным первому напряжению, когда команда на то, чтобы приводить в действие узел привода корпуса инструмента, выдана посредством переключателя корпуса инструмента. Модуль изменения напряжения аккумуляторного источника питания изменяет напряжение контактного вывода на стороне аккумулятора с первого напряжения на второе напряжение, когда подача электроэнергии из аккумуляторного источника питания в узел привода разрешена. 3 н. и 8 з.п. ф-лы, 10 ил.

Реферат

Уровень техники

Настоящее изобретение относится к электрическому приводному инструменту, оснащенному аккумуляторным источником питания.

Один пример традиционных электрических приводных инструментов, раскрытых в нерассмотренной патентной публикации (Япония), номер 2006-280043, выполнен таким образом, что управляющий сигнал, который указывает, приводится в действие или нет внешний переключатель корпуса электрического приводного инструмента, выводится из корпуса инструмента в аккумуляторный источник питания через пару контактных выводов. Один пример также выполнен таким образом, что другой управляющий сигнал, который указывает, разрешена или нет подача электроэнергии из аккумуляторного источника питания в привод в корпусе инструмента, вводится от аккумуляторного источника питания в корпус инструмента через другую пару контактных выводов.

Сущность изобретения

Согласно вышеприведенному примеру, две пары контактных выводов необходимы для того, чтобы передавать эти два вида управляющих сигналов между корпусом инструмента и аккумуляторным источником питания. Тем не менее, уменьшение числа контактных выводов может быть одним способом упрощения структуры электрического приводного инструмента и повышения степени свободы в конструировании электрического приводного инструмента.

Предпочтительно, чтобы один аспект настоящего изобретения мог предоставлять технологию, которая позволяет передавать между корпусом инструмента и аккумуляторным источником питания через одну пару контактных выводов сигнал, который указывает, выдана или нет команда на то, чтобы приводить в действие узел привода корпуса инструмента посредством переключателя, управляемого извне корпуса инструмента, и сигнал, который указывает, разрешена или нет подача электроэнергии в узел привода.

Электрический приводной инструмент в первом аспекте изобретения содержит корпус инструмента и аккумуляторный источник питания.

Корпус инструмента содержит контактный вывод на стороне корпуса, узел привода, переключатель, модуль задания напряжения контактного вывода и модуль управления подключением.

Контактный вывод на стороне корпуса передает электрический сигнал между корпусом инструмента и аккумуляторным источником питания. Узел привода электрически соединен с аккумуляторным источником питания и снабжается электроэнергией от аккумуляторного источника питания, который должен приводиться в действие. Переключатель управляется извне корпуса инструмента и выдает одну из команд на то, чтобы приводить в действие узел привода, или на то, чтобы останавливать узел привода, в соответствии с операцией переключателя. Модуль задания напряжения контактного вывода задает напряжение контактного вывода на стороне корпуса равным первому напряжению, когда команда на то, чтобы приводить в действие узел привода, выдана посредством переключателя. Модуль управления подключением электрически отключает аккумуляторный источник питания и узел привода друг от друга, когда напряжение контактного вывода на стороне корпуса установлено равным первому напряжению, и электрически подключает аккумуляторный источник питания и узел привода друг к другу, когда напряжение контактного вывода на стороне корпуса установлено равным второму напряжению, отличному от первого напряжения.

Аккумуляторный источник питания содержит контактный вывод на стороне аккумулятора, модуль распознавания команд, модуль определения разрешения и модуль изменения напряжения. Контактный вывод на стороне аккумулятора электрически соединен с контактным выводом на стороне корпуса инструмента. Модуль распознавания команд формирует сигнал распознавания команды, указывающий то, что команда приведения в действие узла привода выдана посредством переключателя корпуса инструмента, когда напряжение контактного вывода на стороне аккумулятора установлено равным первому напряжению. Модуль определения разрешения определяет, должна или нет быть разрешена подача электроэнергии из аккумуляторного источника питания в узел привода на основе предварительно определенной процедуры определения, включающей в себя, по меньшей мере, определение состояния сигнала распознавания команды. Модуль изменения напряжения изменяет напряжение контактного вывода на стороне аккумулятора с первого напряжения на второе напряжение, когда подача электроэнергии из аккумуляторного источника питания в узел привода разрешена посредством модуля определения разрешения.

В электрическом приводном инструменте, сконфигурированном так, как описано выше, когда переключатель выдает команду на то, чтобы приводить в действие узел привода, модуль задания напряжения контактного вывода корпуса инструмента задает напряжение контактного вывода на стороне корпуса инструмента равным первому напряжению. В этом случае, модуль управления подключением корпуса инструмента электрически отключает аккумуляторный источник питания и узел привода друг от друга. Когда напряжение контактного вывода на стороне корпуса установлено равным первому напряжению, напряжение контактного вывода на стороне аккумулятора в аккумуляторном источнике питания, электрически соединенного с контактным выводом на стороне корпуса, также устанавливается равным первому напряжению, так, чтобы модуль распознавания команд аккумуляторного источника питания формировал сигнал распознавания команды. Затем, когда модуль определения разрешения аккумуляторного источника питания определяет разрешение подачи электроэнергии из аккумуляторного источника питания в узел привода, модуль изменения напряжения аккумуляторного источника питания изменяет напряжение контактного вывода на стороне аккумулятора с первого напряжения на второе напряжение.

Когда напряжение контактного вывода на стороне аккумулятора изменяется на второе напряжение, напряжение контактного вывода на стороне корпуса инструмента, электрически соединенного с контактным выводом на стороне аккумулятора, также изменяется на второе напряжение, так, чтобы модуль управления подключением корпуса инструмента электрически соединял аккумуляторный источник питания и узел привода друг с другом.

Таким образом, в электрическом приводном инструменте первого аспекта тот факт, что команда на то, чтобы приводить в действие узел привода, выдана посредством переключателя, указывается посредством задания напряжения контактного вывода на стороне корпуса и напряжения контактного вывода на стороне аккумулятора равными первому напряжению, и разрешение подавать электроэнергию в узел привода указывается посредством задания напряжения контактного вывода на стороне корпуса и напряжения контактного вывода на стороне аккумулятора равными второму напряжению.

Следовательно, в электрическом приводном инструменте первого аспекта, сигнал, который указывает, выдана или нет команда на то, чтобы приводить в действие узел привода, посредством переключателя, и сигнал, который указывает, разрешена или нет подача электроэнергии в узел привода, может быть передан между корпусом инструмента и аккумуляторным источником питания через одну пару контактных выводов.

Переключатель корпуса инструмента может быть сконструирован любым способом, чтобы выдавать команду на то, чтобы приводить в действие узел привода, и команду на то, чтобы останавливать узел привода, извне корпуса инструмента.

В случае, если аккумуляторный источник питания оснащен положительным электродом, который должен быть электрически соединен с узлом привода корпуса инструмента, например, переключатель может быть сконструирован так, чтобы выдавать команду на то, чтобы приводить в действие узел привода, и команду на то, чтобы останавливать узел привода, посредством электрического подключения и отключения положительного электрода аккумуляторного источника питания и узла привода корпуса инструмента. Дополнительно, в этом случае, модуль задания напряжения контактного вывода может быть сконструирован так, чтобы подавать первое напряжение на контактный вывод на стороне корпуса, когда положительный электрод аккумуляторного источника питания и узел привода корпуса инструмента электрически соединены друг с другом посредством переключателя.

В таким образом сконструированном электрическом приводном инструменте, когда положительный электрод аккумуляторного источника питания и узел привода корпуса инструмента электрически соединены друг с другом, напряжение контактного вывода на стороне корпуса может быть установлено равным первому напряжению.

Модуль задания напряжения контактного вывода может быть сконструирован, например, так, чтобы формировать первое напряжение из напряжения положительного электрода аккумуляторного источника питания, чтобы подавать формируемое первое напряжение на контактный вывод на стороне корпуса, когда положительный электрод аккумуляторного источника питания и узел привода корпуса инструмента электрически соединены друг с другом посредством переключателя.

В этом случае, первое напряжение формируется только тогда, когда положительный электрод аккумуляторного источника питания и узел привода корпуса инструмента электрически соединены друг с другом. Таким образом, первое напряжение формируется только тогда, когда переключатель выдает команду на то, чтобы приводить в действие узел привода, тем самым предоставляя возможность недопущения задания напряжения контактного вывода на стороне корпуса и напряжения контактного вывода на стороне аккумулятора равным первому напряжению, несмотря на то, что переключатель не выдает команды на то, чтобы приводить в действие узел привода.

Модуль изменения напряжения может быть сконструирован любым способом, чтобы изменять напряжение контактного вывода на стороне аккумулятора с первого напряжения на второе напряжение.

Например, модуль изменения напряжения может быть сконструирован так, чтобы изменять напряжение контактного вывода на стороне аккумулятора с первого напряжения на второе напряжение посредством понижения первого напряжения или подачи напряжения, превышающего первое напряжение, на контактный вывод на стороне аккумулятора.

Аккумуляторный источник питания может включать в себя модуль перехода в экономичный режим, который прекращает операции части электронных схем, включенных в аккумуляторный источник питания, на основе, по меньшей мере, состояния сигнала распознавания команды.

В этом случае, если модуль перехода в экономичный режим задается таким образом, чтобы активироваться, когда сигнал распознавания команды не формируется, например, когда команда на то, чтобы останавливать узел привода, выдана посредством переключателя корпуса инструмента, только часть электронных схем, включенных в аккумуляторный источник питания, вместо всех электронных схем останавливается. Соответственно, узел привода может начинать приводиться в действие быстрее, чем в случае активирования всех электронных схем после того, как выдана команда на то, чтобы приводить в действие узел привода.

Процедура определения может включать в себя любое определение, должна или нет быть разрешена подача электроэнергии из аккумуляторного источника питания в узел привода.

Если аккумуляторный источник питания оснащен модулем определения перегрузки по току, который определяет, превышает или нет абсолютная величина электрического тока, протекающего из аккумуляторного источника питания в корпус инструмента, предварительно определенное значение тока, например, процедура определения может включать в себя определение посредством модуля определения перегрузки по току.

В этом случае, например, посредством задания модуля определения разрешения так, чтобы не разрешать подачу электроэнергии из аккумуляторного источника питания в узел привода, когда абсолютная величина электрического тока, протекающего из аккумуляторного источника питания в корпус инструмента, превышает предварительно определенное значение тока, может предотвращаться возникновение неполадок вследствие чрезмерного электрического тока, протекающего из аккумуляторного источника питания в корпус инструмента.

Если аккумуляторный источник питания оснащен модулем определения избыточной зарядки, который определяет, является ли аккумуляторный источник питания избыточно заряженным, например, процедура определения может включать в себя определение посредством модуля определения избыточной зарядки.

В этом случае, например, посредством задания модуля определения разрешения так, чтобы не разрешать подачу электроэнергии из аккумуляторного источника питания в узел привода, когда аккумуляторный источник питания является избыточно заряженным, может предотвращаться выполнение подачи электроэнергии из избыточно разряженного аккумуляторного источника питания в узел привода, и, тем самым, предотвращается возникновение неполадок в аккумуляторном источнике питания.

Если аккумуляторный источник питания оснащен модулем определения температуры, который определяет, превышает или нет температура аккумуляторного источника питания предварительно заданную температуру, например, процедура определения может включать в себя определение посредством модуля определения температуры.

В этом случае, например, посредством задания модуля определения разрешения так, чтобы не разрешать подачу электроэнергии из аккумуляторного источника питания в узел привода, когда температура аккумуляторного источника питания превышает заданную температуру, может предотвращаться выполнение подачи электроэнергии из аккумуляторного источника питания, имеющего чрезмерно высокую температуру, в узел привода, и, тем самым, предотвращается возникновение неполадок в аккумуляторном источнике питания.

Аккумуляторный источник питания может несъемно предоставляться в корпусе инструмента. Альтернативно, аккумуляторный источник питания может быть съемным образом присоединен к корпусу инструмента.

В случае, если аккумуляторный источник питания съемным образом присоединен к корпусу инструмента, аккумуляторный источник питания может быть легко заменен.

Корпус инструмента во втором аспекте изобретения содержит контактный вывод на стороне корпуса, узел привода, переключатель, модуль задания напряжения контактного вывода и модуль управления подключением. Контактный вывод на стороне корпуса передает электрический сигнал между корпусом инструмента и аккумуляторным источником питания. Узел привода электрически соединен с аккумуляторным источником питания и снабжается электроэнергией от аккумуляторного источника питания, который должен приводиться в действие. Переключатель управляется извне корпуса инструмента и выдает одну из команд на то, чтобы приводить в действие узел привода, или на то, чтобы останавливать узел привода, в соответствии с операцией переключателя. Модуль задания напряжения контактного вывода задает напряжение контактного вывода на стороне корпуса равным первому напряжению, когда команда на то, чтобы приводить в действие узел привода, выдана посредством переключателя. Модуль управления подключением электрически отключает аккумуляторный источник питания и узел привода друг от друга, когда напряжение контактного вывода на стороне корпуса установлено равным первому напряжению, и электрически подключает аккумуляторный источник питания и узел привода друг к другу, когда напряжение контактного вывода на стороне корпуса установлено равным второму напряжению, отличному от первого напряжения.

Другими словами, корпус инструмента предназначен для электрического приводного инструмента в первом аспекте и может составлять часть электрического приводного инструмента в первом аспекте.

Аккумуляторный источник питания в третьем аспекте изобретения предназначен для электрического приводного инструмента, который подает электроэнергию в корпус электрического приводного инструмента. Аккумуляторный источник питания содержит контактный вывод на стороне аккумулятора, модуль распознавания команд, модуль определения разрешения и модуль изменения напряжения. Контактный вывод на стороне аккумулятора передает электрический сигнал между аккумуляторным источником питания и корпусом инструмента. Модуль распознавания команд формирует сигнал распознавания команды, указывающий на то, что команда на приведение в действие узла привода, предоставляемая в корпус инструмента, выдана посредством переключателя, предоставляемого на корпусе инструмента, когда напряжение контактного вывода на стороне аккумулятора установлено равным первому напряжению. Модуль определения разрешения определяет, должна или нет быть разрешена подача электроэнергии из аккумуляторного источника питания в узел привода на основе предварительно определенной процедуры определения, включающей в себя, по меньшей мере, определение состояния сигнала распознавания команды. Модуль изменения напряжения изменяет напряжение контактного вывода на стороне аккумулятора с первого напряжения на второе напряжение, отличающееся от первого напряжения, когда подача электроэнергии из аккумуляторного источника питания в узел привода разрешена посредством модуля определения разрешения.

Другими словами, аккумуляторный источник питания предназначен для электрического приводного инструмента в первом аспекте и может составлять часть электрического приводного инструмента в первом аспекте.

Краткое описание чертежей

Настоящее изобретение далее описывается в качестве примера со ссылкой на прилагаемые чертежи, на которых:

Фиг.1 является видом сбоку электрического приводного инструмента в первом варианте осуществления;

Фиг.2 является видом сбоку, показывающим электрический приводной инструмент в первом варианте осуществления, в котором аккумуляторный источник питания отделен от корпуса электрического приводного инструмента;

Фиг.3 является принципиальной схемой, показывающей конфигурацию части электронных схем, включенных в электрический приводной инструмент;

Фиг.4 является временной диаграммой, показывающей операции соответствующих секций электронных схем в первом варианте осуществления;

Фиг.5A-5C - это таблицы, показывающие рабочие режимы соответствующих секций электронных схем в первом варианте осуществления, при этом фиг.5A является таблицей, показывающей рабочие режимы соответствующих секций электронных схем от точки во времени, когда главный выключатель включен, до точки во времени, когда приводной электродвигатель начинает приводиться в действие, фиг.5B является таблицей, показывающей рабочие режимы соответствующих секций электронных схем в случае, если возникла перегрузка по току, а фиг.5C является таблицей, показывающей рабочие режимы соответствующих секций электронных схем в случае, если пользователь распознал режим автоматического отключения;

Фиг.6A и 6B являются блок-схемами последовательности операций способа, показывающими последовательности операций процесса управления разрядкой, выполняемого посредством главного модуля управления в первом варианте осуществления, при этом фиг.6A показывает этапы процесса управления разрядкой от начала до середины, а фиг.6B показывает оставшиеся этапы обработки управления разрядкой; и

Фиг.7 является принципиальной схемой, показывающей конфигурацию части электронных схем, включенных в электрический приводной инструмент, во втором варианте осуществления.

Подробное описание предпочтительных вариантов

осуществления

(Первый вариант осуществления)

Как показано на фиг.1, электрический приводной инструмент 1 в настоящем первом варианте осуществления сконструирован как так называемый шуруповерт.

Более конкретно, корпус 2 электрического приводного инструмента 1 включает в себя кожух 3 электродвигателя, картер 4 редуктора, размещенный перед кожухом 3 привода, зажимной патрон 5, размещенный перед картером 4 редуктора, и рукоятку 6, размещенную под кожухом 3 привода.

Кожух 3 электродвигателя содержит приводной электродвигатель M1 (см. фиг.3), который формирует движущую силу, чтобы вращательно приводить в действие зажимной патрон 5.

Картер 4 редуктора содержит зубчатую передачу (не показана), чтобы передавать движущую силу от приводного электродвигателя M1 на зажимной патрон 5.

Зажимной патрон 5 включает в себя крепежный механизм (не показан), к которому насадка (не показана) съемно прикрепляется, на переднем конце зажимного патрона 5.

Рукоятка 6 сформирована так, чтобы пользователь электрического приводного инструмента 1 мог зажимать рукоятку 6 в одной руке. Перед верхней секцией рукоятки 6 предусмотрен курковый переключатель 7 для пользователя электрического приводного инструмента 1, чтобы приводить в действие и останавливать приводной электродвигатель M1. В нижнем конце рукоятки 6 предусмотрена секция 8 присоединения аккумуляторного источника питания, чтобы съемно присоединять аккумуляторный источник 9 питания к корпусу 2 инструмента. Более конкретно, как показано на фиг.2, секция 8 присоединения аккумуляторного источника питания выполнена так, чтобы пользователь электрического приводного инструмента 1 мог отсоединять аккумуляторный источник 9 питания от секции 8 присоединения аккумуляторного источника питания посредством плавного перемещения аккумуляторного источника 9 питания вперед.

Как показано на фиг.3, корпус 2 инструмента включает в себя главный выключатель SW1, положительный контактный вывод 11A, отрицательный контактный вывод 11B, сигнальный контактный вывод 11C, возбуждающую схему 21 и схему 22 автоматического отключения.

Главный выключатель SW1 соединен с вышеуказанным курковым переключателем 7 таким образом, что главный выключатель SW1 включается, когда курковый переключатель 7 нажимается, при этом главный выключатель SW1 выключается, когда курковый переключатель 7 отпускается. Включение главного выключателя SW1 соответствует выдаче команды на приведение в действие приводного электродвигателя M1. Выключение главного выключателя SW1 соответствует выдаче команды на остановку приводного электродвигателя M1.

Возбуждающая схема 21 включает в себя вышеуказанный приводной электродвигатель M1 и диод D1.

В первом варианте осуществления приводной электродвигатель M1 - это щеточный электромотор постоянного тока (DC), один контактный вывод (положительный контактный вывод) которого подключается к положительной линии L1A питания, предусмотренной в корпусе 2 инструмента, а другой контактный вывод (отрицательный контактный вывод) которого подключается к отрицательной линии L1B питания, предусмотренной в корпусе 2 инструмента. Положительная линия L1A питания подключается к положительному контактному выводу 11A через главный выключатель SW1.

Диод D1 - это так называемый инерционный диод, в котором катод подключается к положительному контактному выводу приводного электродвигателя M1, а анод подключается к отрицательному контактному выводу приводного электродвигателя M1 так, чтобы могли исключаться выбросы напряжения, которые будут возникать в приводном электродвигателе M1, когда электрический ток (возбуждающий ток), протекающий в приводной электродвигатель M1, отсекается.

Схема 22 автоматического отключения включает в себя транзистор Q1, резистор R1, схему 23 формирования управляющего напряжения и схему 24 ввода-вывода сигналов.

Транзистор Q1 является N-канальным полевым МОП-транзистором (MOSFET). Сток и исток транзистора Q1 вставляются в отрицательную линию L1B питания, тогда как затвор транзистора Q1 подключается к коллектору нижеописанного транзистора Q2 в схеме 24 ввода-вывода сигналов. Отрицательная линия L1B питания подключается к отрицательному контактному выводу 11B на его противоположном конце к одному концу, подключенному к отрицательному контактному выводу приводного электродвигателя M1. Таким образом, когда транзистор Q1 включен, отрицательный контактный вывод 11B и отрицательный контактный вывод приводного электродвигателя M1 электрически соединены друг с другом, а когда транзистор Q1 выключен, отрицательный контактный вывод 11B и отрицательный контактный вывод приводного электродвигателя M1 электрически отсоединены друг от друга.

Схема 23 формирования управляющего напряжения включает в себя полупроводниковый стабилитрон ZD1 и конденсатор C1.

В полупроводниковом стабилитроне ZD1, катод подключается к положительной линии L1A питания через резистор R1, а анод подключается к земле (GND), которая является опорным электрическим потенциалом в корпусе 2 инструмента.

Конденсатор C1 - это электролитический конденсатор, контактный вывод положительного электрода которого подключается вместе с катодом полупроводникового стабилитрона ZD1 к положительной линии L1A питания через резистор R1, и контактный вывод отрицательного электрода которого подключается к заземлению в корпусе 2 инструмента.

В таким образом сконструированной схеме 23 формирования управляющего напряжения, когда главный выключатель SW1 включен, напряжение (36 VDC в первом варианте осуществления), приложенное из положительной линии L1A питания, понижается через кремниевый стабилитрон ZD1 до предварительно определенного напряжения (5 VDC в первом варианте осуществления), и конденсатор C1 заряжается посредством пониженного напряжения. Затем, напряжение конденсатора C1 прикладывается к различным схемам, включенным в корпус 2 инструмента, в качестве управляющего напряжения Vcc для того, чтобы управлять различными схемами.

Схема 24 ввода-вывода сигналов включает в себя транзистор Q2 и резисторы R2, R3, R4 и R5.

К резистору R2 применяется управляющее напряжение Vcc на одном его конце, и он подключается к сигнальному контактному выводу 11C на другом конце.

Транзистор Q2 является биполярным транзистором с n-p-n-структурой. База транзистора Q2 подключается к сигнальному контактному выводу 11C через резистор R3, а также к заземлению через резистор R4. Таким образом, резисторы R2, R3 и R4 подключаются последовательно. Следует отметить, что, в первом варианте осуществления, соответствующие значения сопротивления резисторов R2, R3 и R4 задаются так, чтобы напряжение в сигнальном контактном выводе 11C практически равнялось управляющему напряжению Vcc, когда управляющее напряжение Vcc достигло предварительно определенного напряжения, и транзистор Q2 включается.

Коллектор транзистора Q2 подключается к затвору транзистора Q1, как описано выше, а эмиттер транзистора Q2 подключается к заземлению в корпусе 2 инструмента.

К резистору R5 прикладывается управляющее напряжение Vcc на одном его конце, и он подключается к коллектору транзистора Q2 на другом конце.

Следует отметить, что в схеме 22 автоматического отключения из первого варианта осуществления, коллектор транзистора Q2 непосредственно подключается к затвору транзистора Q1, чтобы упрощать пояснение; тем не менее, коллектор транзистора Q2 может подключаться к затвору транзистора Q1 через коммутационную схему, чтобы переключать транзистор Q1. В этом случае широтно-импульсный модулированный сигнал, имеющий продолжительность действия, соответствующую напряжению в коллекторе транзистора Q2, может формироваться в коммутационной схеме, чтобы затем вводиться в затвор транзистора Q1.

Аккумуляторный источник 9 питания включает в себя положительный контактный вывод 12A, отрицательный контактный вывод 12B, сигнальный контактный вывод 12C, аккумулятор 91 и схему 92 управления аккумулятором.

Положительный контактный вывод 12A подключается к положительному контактному выводу 11A корпуса 2 инструмента.

Отрицательной контактный вывод 12B подключается к отрицательному контактному выводу 11B корпуса 2 инструмента.

Сигнальный контактный вывод 12C подключается к сигнальному контактному выводу 11C корпуса 2 инструмента.

Аккумулятор 91 имеет положительный контактный вывод 91A и отрицательный контактный вывод 91B, соответственно, подключаемые к положительному контактному выводу 12A и отрицательному контактному выводу 12B через положительную линию L2A питания и отрицательную линию L2B питания, предусмотренные в аккумуляторном источнике 9 питания. Дополнительно, аккумулятор 91 имеет множество элементов аккумулятора (10 элементов аккумулятора в первом варианте осуществления), которые подключаются последовательно между положительным контактным выводом 91A и отрицательным контактным выводом 91B. Таким образом, в аккумуляторе 91 напряжение возбуждения (36 VDC в первом варианте осуществления), чтобы приводить в действие приводной электродвигатель M1, формируется посредством множества элементов аккумулятора, подключаемых последовательно. Каждый из элементов аккумулятора в первом варианте осуществления - это ионно-литиевый перезаряжаемый аккумулятор, который формирует постоянное напряжение 3,6 V.

Схема 92 управления аккумулятором включает в себя главный модуль управления (MCU) 93, схему 94 измерения тока, схему 95 измерения напряжения, схему 96 измерения температуры, схему 97 обнаружения операции переключения и транзистор Q4.

MCU 93 является известным микрокомпьютером, который включает в себя, по меньшей мере, ЦПУ, ПЗУ, ОЗУ, перезаписываемое энергонезависимое запоминающее устройство, порт ввода-вывода и аналогово-цифровой преобразователь (A/D) и работает в соответствии с различными программами, сохраненными в ПЗУ.

Схема 94 измерения тока выполнена так, чтобы выводить сигнал измерения тока в аналоговом формате, который имеет значение напряжения, соответствующее абсолютной величине электрического тока, который вытекает или протекает в положительный контактный вывод 91A аккумулятора 91, или электрического тока, который протекает в или вытекает из отрицательного контактного вывода 91B аккумулятора 91.

Схема 95 измерения напряжения выполнена так, чтобы измерять напряжения соответствующих элементов аккумулятора в аккумуляторе 91 последовательно и выводить сигнал измерения напряжения в аналоговом формате, который имеет значение напряжения, соответствующее измеренному напряжению.

Схема 96 измерения температуры включает в себя терморезистор и выполнена так, чтобы выводить сигнал измерения температуры в аналоговом формате, имеющий значение напряжения, соответствующее температуре окружающей среды.

Схема 97 обнаружения операции переключения включает в себя транзистор Q3 и резисторы R6, R7 и R8.

Транзистор Q3 является биполярным транзистором с n-p-n-структурой. База транзистора Q3 подключается к сигнальному контактному выводу 12C через резистор R6, а также к заземлению в аккумуляторном источнике 9 питания через резистор R7. В первом варианте осуществления, линия L2B питания отрицательной клеммы подключается к заземлению в аккумуляторном источнике 9 питания, так, чтобы заземление в аккумуляторном источнике 9 питания имело такой же электрический потенциал, как электрический потенциал отрицательной линии L2B питания и, следовательно, электрический потенциал отрицательного электрода аккумулятора 91.

Дополнительно, транзистор Q3 имеет коллектор, подключенный к порту ввода MCU 93, и эмиттер, подключенный к заземлению в аккумуляторном источнике 9 питания.

Резистор R8 имеет один конец, к которому прикладывается управляющее напряжение Vdd (5 VDC в первом варианте осуществления), формируемое посредством непоказанной схемы формирования напряжения, включенной в аккумуляторный источник 9 питания, и другой конец, подключенный к коллектору транзистора Q3.

Транзистор Q4 - это N-канальный полевой МОП-транзистор и имеет затвор, подключенный к порту вывода MCU 93. Транзистор Q4 имеет сток, подключенный к сигнальному контактному выводу 12C, и исток, подключенный к заземлению в аккумуляторном источнике 9 питания.

Каждая секция таким образом сконструированных электронных схем в корпусе 2 инструмента и аккумуляторный источник 9 питания управляется, как показано на фиг.4, 5A, 5B и 5C.

Как показано на фиг.4 и 5A, в состоянии, когда курковый переключатель 7 отпущен, и главный выключатель SW1 выключен, рабочий режим MCU 93 задается как экономичный режим. В этом экономичном режиме, MCU 93 находится в режиме ожидания за счет работы части электронных схем, включенных в него, вместо остановки всех электронных схем, включенных в него. Другими словами, MCU 93 переходит в экономичный режим, чтобы тем самым уменьшать потребляемую мощность до значения, ниже своей потребляемой мощности в обычное время (в нормальном режиме).

Когда курковый переключатель 7 нажат, чтобы включать главный выключатель SW1, управляющее напряжение Vcc, формируемое посредством схемы 23 формирования управляющего напряжения, увеличивается так, чтобы достигать предварительно определенного напряжения, так, чтобы управляющее напряжение Vcc стало активным. В этом случае, логический уровень устанавливается равным LOW (низкий уровень) для напряжения в сигнале управления разрядкой, выводимом на затвор транзистора Q4 из MCU 93, чтобы включать/отключать транзистор Q4. Следовательно, транзистор Q4 выключается, и логические уровни напряжений в соответствующих сигнальных контактных выводах 11C и 12C устанавливаются равными HIGH (высокий уровень). Когда логические уровни напряжений в соответствующих сигнальных контактных выводах 11C и 12C заданы равными HIGH, транзистор Q3 в схеме 97 обнаружения операции переключения включается, чтобы задавать LOW логический уровень напряжения в сигнале (сигнале обнаружения операции), вводимом в MCU 93 из коллектора транзистора Q3. Поскольку логический уровень напряжения в сигнале обнаружения операции, таким образом, задается с HIGH на LOW, MCU 93 распознает, что главный выключатель SW1 включен, чтобы активировать (быть активированным) из экономичного режима, тем самым переходя в нормальный режим.

В состоянии, где логические уровни напряжений в соответствующих сигнальных контактных выводах 11C и 12C заданы равными HIGH, транзистор Q2 в схеме 24 ввода-вывода сигналов включается, и логический уровень напряжения в сигнале (сигнале управления приводом), вводимом в затвор транзистора Q1, устанавливается равным LOW. Тем самым транзистор Q1 выключается, и ток возбуждения, подаваемый из аккумулятора 91 для того, чтобы приводить в действие приводной электродвигатель M1, отсекается.

Когда MCU93 распознает, что главный выключатель SW1 включен, MCU 93 задает логический уровень напряжения в сигнале управления разрядкой равным HIGH, чтобы разрешать разрядку от аккумулятора 91 на приводной электродвигатель M1. Тем самым включается транзистор Q4, который, в свою очередь, устанавливает равными LOW логические уровни напряжений в соответствующих сигнальных контактных выводах 11C и 12C, таким образом выключая транзистор Q2 в схеме 24 ввода-вывода сигналов. Когда транзистор Q2 выключен, логический уровень напряжения в сигнале управления приводом, вводимом в затвор транзистора Q1, устанавливается равным HIGH, чтобы включать транзистор Q1, таким образом начиная приводить в действие приводной электродвигатель M1.

Как показано на фиг.4 и 5B, когда MCU 93 распознает, что перегрузка по току возникает после начала приведения в действие приводного электродвигателя M1, MCU 93 задает логический уровень напряжения в сигнале управления разрядкой равным LOW, чтобы запрещать разрядку от аккумулятора 91 на приводной электродвигатель M1.

Когда логический уровень напряжения в сигнале управления разрядкой устанавливается равным LOW, транзистор Q4 выключается, чтобы задавать равными HIGH логические уровни напряжений в соответствующих сигнальных контактных выводах 11C и 12C. Когда логические уровни напряжений в соответствующих сигнальных контактных выводах 11C и 12C заданы равными HIGH, транзистор Q2 в схеме 24 ввода-вывода сигналов включается, чтобы задавать логический уровень напряжения в сигнале управления приводом равным LOW, тем самым останавливая приводной электродвигатель M1. Таким образом, приводной электродвигатель M1 автоматически останавливается (режим автоматического отключения) несмотря на то, что курковый переключатель 7 нажат, чтобы включать главный выключатель SW1.

Как показано на фиг.4 и 5C, когда курковый переключатель 7 отпущен, чтобы выключать главный выключатель SW1, поскольку пользователь распознал перех