Биосенсорная система с корректировкой сигнала

Иллюстрации

Показать все

Использование: в диагностике и лечении физиологических расстройств при анализе текучей среды биологического происхождения, такой как цельная кровь, сыворотка крови, плазма, моча, слюна, интерстициальная жидкость или внутриклеточная жидкость для определения концентрации аналита. Сущность заключается в том, что биосенсорная система определяет концентрацию аналита по выходному сигналу, сгенерированному частицами вещества, идентифицируемыми с помощью света, или редокс-реакцией аналита. Биосенсорная система корректирует корреляционную зависимость для определения значений концентрации аналита по выходным сигналам или найденным значениям концентрации аналита с использованием одной или нескольких составных индексных функций, выделенных из выходных сигналов или полученных из других источников. Составные индексные функции определяют по меньшей мере одно значение девиации угла наклона, дельта S, или нормализованную девиацию угла наклона по одному или нескольким параметрам ошибок. Технический результат: повышение достоверности и точности определения концентрации аналита в образце. 2 н. и 36 з.п. ф-лы 15 ил.

Реферат

ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

Данная заявка испрашивает приоритет по предварительной заявке США № 61/120525 озаглавленной "Complex Index Functions", поданной 8 декабря 2008 г., которая в полном объеме включена в настоящее описание путем ссылки.

УРОВЕНЬ ТЕХНИКИ

Биосенсорные системы обеспечивают анализ текучей среды биологического происхождения, такой как цельная кровь, сыворотка крови, плазма, моча, слюна, интерстициальная жидкость или внутриклеточная жидкость. Обычно такие системы включают в себя измерительное устройство, которое проводит анализ образца, находящегося в контакте с измерительным датчиком. Образец обычно находится в жидкой форме и в дополнение к тому, что является биологической жидкостью, может представлять собой производную биологической жидкости, такую как экстракт, разведенный раствор, фильтрат или ресуспендированный осадок. Анализ, выполняемый биосенсорной системой, определяет наличие и/или концентрацию в биологической жидкости аналитов, таких как спирт, глюкоза, мочевая кислота, лактат, холестерин, билирубин, свободные жирные кислоты, триглицериды, протеины, кетоны, фенилаланин или энзимы. Такой анализ может использоваться в диагностике и лечении физиологических расстройств. Например, человек, страдающий диабетом, может использовать биосенсорную систему для определения уровня глюкозы в цельной крови для коррекции диеты и/или приема лекарственных препаратов.

Биосенсорные системы могут быть выполнены с возможностью проведения анализа в отношении одного или нескольких аналитов и могут использовать различные объемы текучих сред биологического происхождения. Некоторые системы могут проводить анализ единственной капли цельной крови, например объемом 0,25-15 микролитров (мкл). Биосенсорные системы могут быть реализованы с использованием настольных, портативных и подобных им измерительных устройств. Портативные измерительные устройства могут удерживаться в руке и обеспечивать идентификацию и/или количественное определение одного или нескольких аналитов в образце. В число примеров портативных измерительных устройств входят измерители Ascensia® Breeze® и Elite® компании Bayer Healthcare, Tarrytown, New York, а в число примеров настольных измерительных систем входит электрохимическая рабочая станция Electrochemical Workstation, поставляемая CH Instruments, Austin, Texas.

В биосенсорных системах могут использоваться оптические и/или электрохимические способы анализа текучей среды биологического происхождения. В некоторых оптических системах концентрация аналита определяется путем измерения света, который вступил во взаимодействие с частицами вещества, идентифицируемыми с помощью света, или был поглощен последними, такими как аналит или продукт реакции, образованный химическим индикатором, прореагировавшим с аналитом. В других оптических системах химический индикатор флуоресцирует или испускает свет, реагируя на аналит под воздействием возбуждающего облучения. Свет может преобразовываться в выходной электрический сигнал, например ток или потенциал, который может быть таким же образом обработан в выходной сигнал, получаемый при использовании электрохимического способа. В любой оптической системе производятся измерения, при этом определяется корреляция между световым излучением и концентрацией аналита в образце.

В оптических системах со светопоглощением химический индикатор создает продукт реакции, поглощающий свет. Может использоваться химический индикатор, такой как тетразол, наряду с ферментом, таким как диафораза. Тетразол обычно образует формазан (хромоген) в ответ на редокс-реакцию аналита. Входящий падающий луч от источника света направляют на образец. Источник света может представлять собой лазер, светоизлучающий диод и т.п. Падающий луч может иметь длину волны, выбранную для поглощения продуктом реакции. При прохождении падающего луча через образец продукт реакции поглощает часть падающего луча, тем самым ослабляя или снижая интенсивность падающего луча. Падающий луч может отражаться обратно от образца или проходить сквозь образец на детектор. Детектор производит сбор и измерения ослабленного падающего луча (выходной сигнал). Степень ослабления светового излучения, вызванного продуктом реакции, является показателем концентрации аналита в образце.

В оптических системах, генерирующих световое излучение, химический индикатор флуоресцирует или испускает свет в ответ на редокс-реакцию аналита. Детектор производит сбор и измерения сгенерированного светового излучения (выходной сигнал). Количество светового излучения, выработанного химическим индикатором, - показатель концентрации аналита в образце.

В электромеханических биосенсорных системах концентрация аналита определяется из электрического сигнала, сгенерированного в результате реакции окисления/восстановления или редокс-реакции аналита или частиц, реагирующих на аналит, когда к образцу прикладывается входной сигнал. Входной сигнал может представлять собой потенциал или ток и может быть постоянным, переменным или сочетанием таковых, когда, например, сигнал переменного тока прикладывается со смещением на величину сигнала постоянного тока. Входной сигнал может прикладываться в виде единичного импульса или в виде ряда импульсов, последовательностей или циклов. В образец может быть добавлен фермент или схожие частицы для усиления перехода электронов с одних частиц на другие частицы в процессе редокс-реакции. Ферменты или схожие частицы могут вступать в реакцию с одним единственным аналитом, обеспечивая особенности для части сгенерированного выходного сигнала. Для поддерживания окисленного состояния фермента может быть использован медиатор.

Электромеханические биосенсорные системы обычно включают в себя измерительное устройство, имеющее электрические контакты, соединенные с электрическими проводниками в измерительном датчике. Проводники могут быть выполнены из проводящих материалов, таких как твердые металлы, металлические пасты, проводящий углерод, проводящие углеродные пасты, проводящие полимеры и т.п. Электрические проводники обычно соединены с рабочими, противо-, опорными и/или другими электродами, которые продолжаются в резервуар с образцом. Один или несколько электрических проводников могут также продолжаться в резервуар с образцом, чтобы выполнять функции, которые электроды не выполняют.

Измерительное устройство передает входной сигнал через электрические контакты на электрические проводники измерительного датчика. Электрические проводники передают входной сигнал через электроды в образец, который находится в резервуаре для образца. В результате редокс-реакции аналита генерируется выходной электрический сигнал в ответ на входной сигнал. Выходной электрический сигнал от полоски может представлять собой ток (сигнал, формируемый амперметром или вольтметром), потенциал (сигнал, формируемый потенциометром/гальванометром) либо накопленный заряд (сигнал, формируемый кулонометром). Измерительное устройство может обладать возможностью обработки сигнала для измерения выходного сигнала и его корреляции с наличием и/или концентрацией одного или более аналитов в текучей среде биологического происхождения.

В кулонометрии потенциал прикладывают к образцу для предельного окисления или снижения содержания аналита. Биосенсорная система с использованием кулонометрии описана в патенте США № 6120676. В амперометрии электрический сигнал с постоянным потенциалом (напряжением) прикладывают к электрическим проводникам измерительного датчика, при этом измеряемый выходной сигнал - ток. Биосенсорные системы с использованием амперометрии описаны в патентах США №№ 5620579, 5653863, 6153069 и 6413411. В вольтамперометрии к образцу текучей среды биологического происхождения прикладывают изменяющийся потенциал. В импульсной амперометрии и импульсной вольтамперометрии могут использоваться импульсные входные сигналы, как описано соответственно в публикациях WO 2007/013915 и WO 2007/040913.

Во многих биосенсорных системах измерительный датчик может быть выполнен с возможностью использования вне, внутри или частично внутри живого организма. При использовании вне живого организма образец текучей среды биологического происхождения может вводиться в резервуар для образца в измерительном датчике. Измерительный датчик может помещаться в измерительное устройство до, после или во время введения образца для анализа. В случае размещения внутри или частично внутри живого организма измерительный датчик может непрерывно вводиться в образец, либо образец может периодически поступать в полосовую структуру. Измерительный датчик может включать в себя резервуар, который частично изолирует объем образца или является открытым для образца. Если он является открытым, полосовая структура может принимать форму волокна или иной структуры, размещаемой в контакте с текучей средой биологического происхождения. Таким же образом для проведения анализа образец может непрерывно протекать через полосовую структуру, например для непрерывного мониторинга, или его поток может прерываться, например, для периодического мониторинга.

Биосенсорные системы могут выдавать выходной сигнал в процессе проведения анализа текучей среды биологического происхождения, который содержит в себе одну или несколько ошибок. Эти ошибки могут отражаться в неправильном выходном сигнале, когда одна или несколько частей выходного сигнала либо выходной сигнал полностью не реагируют на концентрации аналита в образце или неверно ее отражают. Ошибки могут иметь один или несколько источников, связанных, например, с физическими характеристиками образца, влиянием окружающей среды на образец, условиями работы системы, посторонними включениями и т.п. Физические характеристики образца включают в себя концентрацию гематокрита (красных клеток крови) и т.п. Факторы окружающей среды, влияющие на образец, включают в себя температуру и т.п.

Измерительные характеристики биосенсорной системы определяются в терминах достоверности и/или точности. Повышение достоверности и/или точности обеспечивает повышение измерительных характеристик системы или снижение ее погрешности. Достоверность может выражаться в терминах отклонения от истинного значения показаний сенсорной системы в отношении аналита по сравнению с опорными показаниями в отношении аналита, при этом больший уровень отклонения говорит о меньшей степени достоверности. Точность может выражаться в терминах разброса или дисперсии значений отклонения среди множества считанных данных об аналите по отношению к среднему значению. Отклонение представляет собой разность между одним или несколькими значениями, найденными биосенсорной системой, и одним или несколькими принятыми опорными значениями концентрации аналита в текучей среде биологического происхождения. Таким образом, одна или несколько ошибок при проведении анализа приводят к отклонению найденной концентрации аналита, полученной биосенсорной системой.

Отклонение может выражаться в терминах «абсолютное отклонение» или «процентное отклонение». Абсолютное отклонение может выражаться в единицах измерений, таких как mg/dL, в то время как процентное отклонение может выражаться в виде процента абсолютного отклонения от опорного значения. По стандарту ISO абсолютное отклонение используют для выражения ошибки в концентрации глюкозы при величине менее 75 mg/dL, а процентное отклонение используют для выражения ошибки в концентрации глюкозы при величине 75 mg/dL и выше. Термин «комбинированное отклонение» (выражаемое как bias/%-bias, т.е. отклонение/%-отклонение) представляет абсолютное отклонение для концентрации глюкозы при величине менее 75 mg/dL и процентное отклонение для концентрации глюкозы при величине 75 mg/dL и выше. Принимаемые опорные значения концентрации аналита могут быть получены с помощью опорного (эталонного) инструмента, такого как YSI 2300 STAT PLUS™, поставляемого компанией YSI Inc., Yellow Springs, Ohio.

Отклонение гематокрита относится к разности между опорной концентрацией глюкозы, полученной с помощью опорного инструмента, и экспериментальным показателем глюкозы, полученным биосенсорной системой для образцов с различным уровнем гематокрита. Различие между опорным значением и значением, полученным системой, является результатом изменения уровня гематокрита среди конкретных образцов цельной крови и, в общем, может выражаться в виде процентного отношения согласно следующему уравнению: %Hct-Bias = 100% × (Gm-Gref)/Gref, где Gm и Gref - соответственно найденное и опорное считанные значения для любого уровня гематокрита. Чем выше абсолютное значение %Hct-bias, тем значительнее уровень гематокрита в образце (выражается как %Hct: процент объемного содержания красных клеток крови/объем образца) снижает достоверность и/или точность найденной концентрации глюкозы. Например, если проводится анализ образцов цельной крови, которые содержат одинаковую концентрацию глюкозы, но имеют различные уровни гематокрита, составляющие 20, 40 и 60%, система выдаст три различных показателя глюкозы на основе одного набора калибровочных постоянных (например, угла наклона и отрезка, отсекаемого по оси, для образца цельной крови с 40% уровнем гематокрита). «Чувствительность к уровню гематокрита» выражает влияние изменений уровня гематокрита в образце на значения отклонения при проведении анализа. Чувствительность к уровню гематокрита может определяться в виде численных величин комбинированных отклонений, приходящихся на процентное содержание гематокрита, т.е. bias/%-bias на %Hct.

Температурное отклонение относится к разности между концентрацией аналита, полученной при опорной температуре, и концентрацией аналита, полученной при другой экспериментальной температуре, для одного и того же образца. Разность между концентрацией аналита, полученной при опорной температуре, и той, что получена при другой экспериментальной температуре, в общем случае может выражаться в процентах согласно следующему уравнению: %Temp-Bias = 100% x (AmTemp - ARefTemp)/ARefTemp, где AmTemp и ARefTemp - концентрации аналита в образце при экспериментальной и опорной температуре соответственно. Чем выше абсолютное значение величины %Temp-Bias, тем существеннее разность температур снижает достоверность и/или точность определения концентрации глюкозы при другой экспериментальной температуре. «Чувствительность к температуре» - выражение степени, в которой изменения температуры, при которой выполняется анализ, влияют на значения отклонения при проведении анализа. Чувствительность к температуре может определяться в виде численных величин комбинированных отклонений, приходящихся на уровень температуры, т.е. %-bias/°C. Чувствительность к температуре может также определяться как девиация угла наклона, приходящаяся на уровень температуры, т.е. ΔS/°C.

Во многих биосенсорных системах используются один или несколько способов коррекции ошибок, связанных с проведением анализа. Значения концентрации, полученные из анализа, проведенного с ошибкой, могут быть недостоверны. Таким образом, возможность корректировки при проведении анализа может повысить достоверность и/или точность полученных значений концентрации. Система коррекции ошибок может вводить поправку на одну или несколько ошибок, например на температуру образца или уровень гематокрита, которые отличаются от опорной температуры или опорного уровня гематокрита.

Некоторые биосенсорные системы имеют систему коррекции ошибок, которая вводит поправку на различные уровни гематокрита в образце. Предложены различные способы и технологии для снижения влияния гематокрита на отклонение при замере содержания глюкозы. В некоторых способах используется отношение токов при прямом и обратном импульсах напряжения для компенсации влияния гематокрита. Предложены также другие способы снижения отклонения, вызванного влиянием гематокрита, в том числе с использованием частиц двуокиси кремния для фильтрации красных кровяных клеток с поверхности электрода или использование большого зазора между электродами в сочетании со слоями сетки для распределения крови по измерительному датчику.

Некоторые биосенсорные системы имеют систему коррекции ошибок, которая вводит поправку на температуру. Такие системы коррекции ошибок обычно изменяют полученную концентрацию аналита для определенной опорной температуры с учетом температуры инструментального средства или образца. В ряде биосенсорных систем температурная поправка осуществляется путем коррекции выходного сигнала до вычисления концентрации аналита по корреляционному соотношению. В других биосенсорных системах температурная поправка осуществляется путем коррекции концентрации аналита, рассчитанной по корреляционному соотношению. Вообще в традиционных способах температурной компенсации рассматривается влияние температуры на конкретный параметр, а не общий эффект, который температурная ошибка оказывает на отклонение результата при проведении анализа. Биосенсорные системы, обладающие системами детектирования и/или компенсации ошибок для учета температуры образца, описаны в патентах США №№ 4431004; 4750496; 5366609; 5395504; 5508171; 6391645; и 6576117.

Некоторые биосенсорные системы имеют систему коррекции ошибок, которая вводит поправку на возмущающие воздействия и другие посторонние факторы. В таких системах коррекции ошибок обычно используется электрод, у которого отсутствует один или несколько рабочих реагентов, чтобы позволить вычесть посторонний фоновый сигнал из полезного сигнала рабочего электрода.

Между тем как в традиционных системах компенсации ошибок можно сравнивать различные преимущества и недостатки, ни одна из них не совершенна. Традиционные системы обычно направлены на детектирование и реагирование на ошибки определенного типа, например связанные с температурой или гематокритом. Такие системы обычно не способны компенсировать ошибки, порожденные множеством источников. Эти системы, как правило, также лишены возможности изменять введение поправки на ошибку на основе выходного сигнала от конкретного образца. Следовательно, традиционные биосенсорные системы могут выдавать результаты анализа, в которых найденные значения концентрации аналита лежат за пределами допустимой погрешности.

Соответственно существует потребность в создании усовершенствованных биосенсорных систем, в особенности таких, которые могут определять концентрацию аналита в образце более достоверно и/или с более высокой точностью. Системы, устройства и способы по настоящему изобретению устраняют по меньшей мере один из недостатков, связанных с традиционными биосенсорными системами.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение обеспечивает создание биосенсорной системы, в которой корректируется отношение для определения концентраций аналита в биологическом образце по выходным сигналам с использованием одной или нескольких составных индексных функций, реагирующих на одну или несколько ошибок, которые могут привести к отклонению найденных значений концентрации аналита. Отклонение может быть представлено значениями девиации угла наклона (крутизны), ΔS-значениями и нормализованными значениями девиации угла наклона, полученными по одному или нескольким параметрам ошибок. ΔS-значения представляют значения девиации угла наклона, определенные с помощью одной или нескольких составных индексных функций по параметрам ошибок. Составные индексные функции включают в себя по меньшей мере два члена, преобразуемых с помощью весовых коэффициентов. Члены соотношения могут включать в себя параметры ошибок, выделенные из выходных сигналов или независимые от выходных сигналов.

В способе определения концентрации аналита в образце генерируется величина выходного сигнала, реагирующая на концентрацию аналита в образце. Для определения концентрации аналита в образце определяется по меньшей мере одно ΔS-значение по меньшей мере по одному параметру ошибки и по меньшей мере одна величина выходного сигнала корректируется с использованием по меньшей мере одной опорной корреляционной зависимости и по меньшей мере одного ΔS-значения. По меньшей мере одно ΔS-значение может быть определено по прогнозирующей функции f(predictor); f(predictor) включает в себя индексную функцию и устанавливает зависимость по меньшей мере одного параметра ошибки с ΔS. Реакция может представлять собой электрохимическую реакцию окисления-восстановления.

В способе определения составных индексных функций по параметрам ошибок определяется по меньшей мере один параметр ошибки, реагирующий на процентное отклонение в найденной концентрации аналита в образце. По меньшей мере один параметр ошибки связан по меньшей мере с одним ΔS-значением посредством по меньшей мере одной составной индексной функции, при этом по меньшей мере одно ΔS-значение представляет различие в угле наклона между углом наклона, полученным по опорной корреляционной зависимости, и гипотетическим углом наклона некоторой прямой, соответствующей величине выходного сигнала, который обеспечил бы определение концентрации аналита в образце без отклонения от истинного значения. Составные индексные функции включают в себя по меньшей мере один параметр ошибки, входящий в соотношение в виде члена, преобразуемого с помощью весового коэффициента.

В способе для отбора членов соотношения для введения в составную индексную функцию осуществляется выбор множества параметров ошибок в виде членов соотношения для возможного введения в составную индексную функцию. Для каждого отобранного члена соотношения определяются первые величины, налагающие запрет. К величинам, налагающим запрет, применяют один или несколько тестов на исключение с целью идентификации одного или нескольких членов соотношения для исключения из составной индексной функции. После исключения по меньшей мере одного члена соотношения для оставшихся членов соотношения определяются вторые величины, налагающие запрет. Если вторые величины, налагающие запрет, не идентифицируют оставшиеся члены соотношения для исключения из составной индексной функции при выполнении одного или нескольких тестов на исключение, оставшиеся члены соотношения вводятся в составную индексную функцию.

В способе определения составной индексной функции по образцам с откорректированным уровнем гематокрита и донорской крови для использования в измерительном устройстве с помощью множества измерительных датчиков определяют экспериментальное значение концентрации глюкозы во множестве образцов крови с откорректированным уровнем гематокрита, имеющих известные опорные значения концентрации глюкозы при множестве условий окружающей среды. По найденной и известной концентрациям глюкозы при опорной температуре и опорном значении %Hct определяют угол наклона и отрезок, отсекаемый по оси, для опорной корреляционной функции для множества измерительных датчиков. Для множества образцов донорской крови определяют опорное значение концентрации глюкозы. Множество данных по концентрации глюкозы в образцах крови с откорректированным уровнем гематокрита может объединяться с множеством данных по концентрации глюкозы в образцах донорской крови. По этим данным выбираются члены соотношения для одной или нескольких величин выходного сигнала. Могут также отбираться члены для одной или нескольких физических характеристик, условий окружающей среды, уровней концентрации и т.п. В дополнение к различным коэффициентам для этих членов соотношения определяются весовые коэффициенты. На основе комбинации отобранных членов соотношения, соответствующих весовых коэффициентов и констант определяется составная индексная функция.

Биосенсорная система для определения концентрации аналита в образце включает в себя измерительное устройство и измерительный датчик. Измерительное устройство имеет процессор, связанный с интерфейсом датчика и средой хранения информации. Измерительный датчик имеет интерфейс образца, примыкающий к резервуару, образованному датчиком. Процессор определяет величину выходного сигнала, реагирующую на концентрацию аналита в образце, с интерфейса датчика. Процессор определяет по меньшей мере одно ΔS-значение по параметру ошибки и корректирует величину выходного сигнала с использованием по меньшей мере одного ΔS-значения и по меньшей мере одной опорной корреляционной зависимости, присутствующей в среде хранения информации.

Биосенсорная система регулирует взаимозависимость между значениями концентрации аналита и выходными сигналами с использованием по меньшей мере одного ΔS-значения, реагируя на параметры ошибок. Процессор определяет концентрацию аналита, используя корреляционную зависимость со скорректированным углом наклона, в ответ на выходной сигнал с интерфейса образца.

В другом способе определения концентрации аналита в образце генерируют один или несколько выходных сигналов, получаемых от образца. Определяют по меньшей мере одну составную индексную функцию, при этом составная индексная функция реагирует более чем на один параметр ошибки. Концентрацию аналита в образце определяют по выходным сигналам с учетом по меньшей мере одной составной индексной функции.

Другие системы, способы, признаки и преимущества по изобретению станут понятны специалисту в данной области техники после изучения последующих чертежей и подробного описания. Предполагается, что все такие дополнительные системы, способы, признаки и преимущества входят в состав данного описания, объем изобретения и защищены прилагаемой формулой изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение поясняется в нижеследующем описании со ссылками на чертежами. Компоненты на чертежах не обязательно выполнены в масштабе, взамен этого внимание сосредоточено на иллюстрации принципов, лежащих в основе изобретения.

На Фиг.1A представлен способ определения концентрации аналита в образце.

На Фиг.1B представлен способ выбора членов соотношения для включения в составную индексную функцию.

На Фиг.1C представлен способ определения составной индексной функции по образцам с откорректированным уровнем гематокрита и донорской крови для использования в измерительном устройстве.

На Фиг.2 показана взаимозависимость между величиной %-bias и индексной функцией на основе использования параметра, выражающего отношение.

На Фиг.3 показана зависимость между величинами Scal, Shyp, ΔS, Acorr, Acal и ΔA.

На Фиг.4 показана регулируемая импульсная последовательность, при которой входной сигнал включает в себя множество импульсов.

На Фиг.5A показан график взаимозависимости между ΔS и R4/3-индексными значениями.

На Фиг.5B показан график взаимозависимости между ΔS и значениями комплексного индекса.

На Фиг.6A показан график взаимозависимости между ΔS и R4/3-индексными значениями для образцов крови при 21°C.

На Фиг.6B показан график взаимозависимости между ΔS и значениями комплексного индекса для образцов крови при 21°C.

На Фиг.6C показан график взаимозависимости между ΔS и R4/3-индексными значениями для образцов крови при 18°C.

На Фиг.6D показан график взаимозависимости между ΔS и значениями комплексного индекса для образцов крови при 18°C.

На Фиг.6E показан график зависимости чувствительности к гематокриту в осях, комбинированное отклонение - %Hct.

На Фиг.6F показан график, устанавливающий взаимозависимость между комбинированными отклонениями и опорными значениями концентрации глюкозы для значений концентрации аналита без внесения поправок и откорректированных с использованием комплексного индекса.

На Фиг.7 схематично представлена биосенсорная система для определения концентрации аналита в образце текучей среды биологического происхождения.

ПОДРОБНОЕ ОПИСАНИЕ

Биосенсорная система корректирует взаимозависимость для определения концентрации аналита в текучей среде биологического происхождения по выходным сигналам с использованием составных индексных функций, выделенных из промежуточных сигналов выходных сигналов или полученных из других источников. Аналит может генерировать выходные сигналы в ответ на присутствие частиц вещества, идентифицируемых с помощью света, или на редокс-реакцию. Промежуточные сигналы могут представлять собой одну или несколько частей выходных сигналов и т.п. Прогнозирующие функции, включающие в себя по меньшей мере одну составную индексную функцию, корректируют взаимозависимость для определения значений концентрации аналита по выходным сигналам для одной или нескольких ошибок при проведении анализа. Прогнозирующие функции, включающие в себя по меньшей мере одну составную индексную функцию, могут также использоваться для коррекции концентрации аналита, включающей в себя ошибки. Такие ошибки могут привести к отклонению найденных значений концентрации аналита, а значит к снижению достоверности и/или точности найденных значений концентрации аналита. В дополнение к системе компенсации, обеспечивающей существенные преимущества при анализе сложных биологических образцов, система компенсации может использоваться для повышения эффективности измерений в других видах анализа.

Составные индексные функции включают в себя комбинацию членов соотношения, преобразуемых с помощью весовых коэффициентов. Члены соотношения, включенные в составную индексную функцию, могут быть отобраны с помощью одного или нескольких тестов на исключение. Прогнозирующие функции и/или составные индексные функции соответствуют величине bias/%-bias в корреляционной зависимости между значениями концентрации аналита и выходными сигналами вследствие одной или нескольких ошибок при проведении анализа. Величина %-bias в этой взаимозависимости может быть представлена одним или несколькими ΔS-значениями, полученными по одному или нескольким параметрам ошибок. ΔS-значения представляют девиации угла наклона корреляционной зависимости между значениями концентрации аналита и выходными сигналами, полученные по одному или нескольким параметрам ошибок. Таким образом, чем точнее предиктор или составная индексная функция коррелирует с ΔS (ΔS = f(CIndex)), тем лучше функция корректирует ошибку при проведении анализа.

Составные индексные функции, соответствующие углу наклона или изменению угла наклона, могут быть нормализованы для снижения статистического эффекта изменений в выходных сигналах, улучшения дифференциации в вариациях выходных сигналов, стандартизации измерений выходных сигналов, сочетания таковых и т.п. Поскольку девиация угла наклона может быть нормализована, составная индексная функция может быть также выражена в виде ΔS/S = f(Clndex). Откорректированную взаимозависимость можно использовать для определения значений концентрации аналита в образце по выходным сигналам либо можно использовать для коррекции значений концентрации аналита, что может повысить эффективность измерений по сравнению с традиционными биосенсорами. Более подробное описание выполнения коррекции ошибок с использованием индексных функций и ΔS-значений можно найти в публикации № WO 2009/108239, зарегистрированной 6 декабря 2008 г. под заголовком "Slope-Based Compensation."

На Фиг.1A представлен способ определения концентрации аналита в образце текучей среды биологического происхождения. В блоке 102 биосенсорная система генерирует выходной сигнал в ответ на присутствие либо частиц вещества, идентифицируемых с помощью света, либо реакции окисления-восстановления (редокс) аналита в образце текучей среды биологического происхождения. В блоке 104 биосенсорная система измеряет выходной сигнал. В блоке 106 концентрация аналита определяется по компенсационному уравнению, включающему в себя по меньшей мере одну составную индексную функцию и выходной сигнал. В блоке 110 концентрация аналита может быть отображена, сохранена для дальнейших ссылок и/или использована для дополнительных вычислений.

В блоке 102 на Фиг.1A биосенсорная система генерирует выходной сигнал в ответ на присутствие частиц вещества, идентифицируемых с помощью света, либо реакции окисления-восстановления (редокс) аналита в образце текучей среды биологического происхождения. Выходной сигнал может генерироваться с использованием оптической сенсорной системы, электрохимической сенсорной системы и т.п.

В блоке 104 на Фиг.1A биосенсорная система измеряет выходной сигнал, сгенерированный аналитом в ответ на входной сигнал, приложенный к образцу, например по результату редокс-реакции аналита. Система может измерять выходной сигнал непрерывно или с перерывами. Например, биосенсорная система может измерять выходной сигнал периодически во время импульсов амперометрического входного сигнала, подаваемых в импульсном режиме, что приводит к получению множества значений тока, зарегистрированных в процессе подачи каждого импульса. Система может отобразить выходной сигнал на устройстве отображения и/или сохранить выходной сигнал либо части выходного сигнала в запоминающем устройстве.

В блоке 106 на Фиг.1A концентрация аналита может определяться по компенсационному уравнению, включающему в себя по меньшей мере одну составную индексную функцию и выходной сигнал. Составная индексная функция может составлять часть прогнозирующей функции. На Фиг.2 отображена взаимозависимость между величиной %-bias и индексной функцией на основе использования параметра соотношения (R5/4). Параметр соотношения R5/4 представляет отношение между токами, сгенерированными аналитом в ответ на четвертый и пятый импульсы импульсной последовательности амперометрических сигналов, включающей в себя 7 импульсов. Могут использоваться также другие параметры соотношения и импульсные функции. Таким образом, величина %-bias замеренной концентрации аналита в образце текучей среды биологического происхождения, например глюкозы в цельной крови, может быть определена из выходных сигналов или в корреляционной связи с ними при проведении анализа, например, промежуточных токов, сгенерированных аналитом в ответ на импульсную последовательность амперометрических сигналов.

Зависимость между %-bias и прогнозирующей функцией может быть представлена следующим образом:

(Уравнение 1),

где %-bias равняется (ΔA/Aref)*100%, а f(predictor) равняется a1*f(Index) + a0. ΔA - разность между измеренной или расчетной концентрацией аналита, Acal, и опорной концентрацией аналита Aref (известной концентрацией аналита в биологическом образце). f(Index) может представлять собой единственный параметр ошибки, комбинацию параметров ошибок или иные величины. Таким образом, заменив члены уравнения (1), приходим к следующему соотношению между %-bias и индексной функцией:

(Уравнение 2).

Преобразовав члены уравнения 2, получаем следующее соотношение:

(Уравнение 3).

Коррекцию можно выразить следующим образом:

(Уравнение 4).

Здесь Acorr - скорректированное или скомпенсированное значение концентрации аналита, а A0 - начальное значение для аналита, полученное при проведении анализа. В то время как ΔA можно получить из уравнения 3, величина Aref в уравнении 3 может быть неизвестна в процессе проведения анализа биологического образца. Однако вместо Aref можно использовать начальное значение A0 для аналита, полученное по результатам выполнения анализа. Таким образом, уравнение 3 может быть аппроксимировано следующим соотношением:

(Уравнение 5).

Наконец, подставив уравнение 5 в уравнение 4, получаем следующее соотношение:

(Уравнение 6).

Как следует из уравнения 6, разность между замеренной концентрацией аналита и опорной концентрацией аналита, ΔA, основана на начальном значении концентрации аналита, A0, которое может иметь отклонение в силу одной или нескольких ошибок при проведении анализа. Следовательно, не существует опорной точки или опорного значения, на которых можно