Способ связи и устройство связи

Иллюстрации

Показать все

Настоящее изобретение относится к способу связи и устройству, обеспечивающим связь между множеством устройств связи, совместно использующих полосу частот связи. Технический результат изобретения заключается в разрешении конфликтов между доступами в течение сравнительно короткого периода времени между устройствами, обладающими одинаковым приоритетом при выполнении приоритетного управления. Способ связи включает в себя первый этап, на котором передают сигнал уведомления в течение первого периода, чтобы сообщить информацию для разрешения конфликтов в отношении устройства связи, способного осуществлять передачу данных в течение второго периода, следующего за первым периодом, и второй этап, на котором передают данные от устройства связи, способного осуществлять передачу данных в течение второго периода, на основании сигнала уведомления, переданного в течение первого периода, в конкретном периоде во втором периоде, выделенном данным, передаваемым от устройства связи. 2 н. и 27 з.п. ф-лы, 43 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу связи и устройству связи, которые создают связь между множеством устройств связи, совместно использующих полосу частот связи.

Предпосылки создания изобретения

В системе связи, в которой связь создается между множеством единиц оборудования связи, совместно использующих полосу частот связи, такой как высокочастотная связь по линиям электропередачи, беспроводная LAN (Локальная Сеть) и подобной, множество единиц оборудования связи осуществляет связь посредством использования единственного канала передачи; следовательно, следует избегать конкуренции по доступу со стороны множества единиц оборудования связи.

Одним способом как избежать конфликтов является схема CSMA/CA (Множественного Доступ с Контролем Несущей и Предотвращением Конфликтов). Исходя из данной схемы, соответствующие единицы оборудования связи отслеживают состояние занятости канала передачи и выполняют передачу, когда другая единица оборудования связи не использует канал передачи. Когда обнаруживается, что канал передачи не используется другой единицей оборудования связи, передача кадра начинается по истечении произвольного времени ожидания (произвольной отсрочки передачи). Исходя из схемы CSMA/CA, даже когда множество единиц оборудования связи пытаются выполнить передачу при помощи единственного канала передачи, инициация передачи делается возможной по истечении произвольной отсрочки передачи. Таким образом, может быть уменьшена вероятность возникновения конфликта кадров. Тем не менее, когда верхний предел произвольного значения делается постоянным, то вероятность возникновения конфликта растет с ростом количества доступов (количеством единиц оборудования связи, соединенных с сетью), так что неизбежно снижение производительности. Если произвольное значение растет с ростом количества единиц подключенного оборудования, то вероятность конфликта уменьшается. Тем не менее средняя произвольная отсрочка передачи станет продолжительней, тем самым в любом случае снижая производительность. Более того, так как схема по сути позволяет осуществлять доступ по истечении произвольной отсрочки передачи, то не может быть определена максимальная величина задержки.

Список литературы

Патентная Литература

[PTL1] JP-A-2002-185473

[PTL2] US2007/0064720A

Краткое описание сущности изобретения

Техническая задача

Настоящее изобретение задумывалось в свете обстоятельств и целей обеспечения способа связи и устройства связи, которые могли бы осуществлять разрешение конфликтов между доступами в течение сравнительно короткого периода времени, даже когда растет количество устройств связи или потоков данных, и которые также могли бы предотвратить бесполезную трату полосы пропускания, тем самым предотвращая падение производительности. Дополнительно настоящее изобретение направлено на обеспечение способа связи и устройства связи, которые позволяют предотвратить конфликт между устройствами связи, обладающими одинаковым приоритетом при выполнении приоритетного управления. Настоящее изобретение также направлено на обеспечение способа связи и устройства связи, которые предотвращают несбалансированную концентрацию прав доступа у конкретного устройства связи или потока данных и позволяют выполнять управление доступом в соответствии с условиями трафика, такого как трафик связи или трафик данных.

Решение задач

Для того чтобы достигнуть вышеописанной цели, в соответствии с настоящим изобретением, предоставлен способ связи для осуществления связи между множеством устройств связи, совместно использующих полосу частот связи, содержащий:

первый этап, на котором передают сигнал уведомления в течение первого периода, чтобы сообщить информацию для разрешения конфликтов в отношении устройства связи, способного осуществлять передачу данных в течение второго периода, следующего за первым периодом; и

второй этап, на котором передают данные от устройства связи, способного осуществлять передачу данных в течение второго периода, на основании сигнала уведомления, переданного в течение первого периода, в конкретном периоде во втором периоде, выделенном данным, передаваемым от устройства связи.

В соответствии с настоящим изобретением также предоставлено устройство связи, используемое в системе связи для осуществления связи между множеством устройств связи, совместно использующих полосу частот связи, содержащее:

секцию уведомления информацией разрешения конфликтов, которая передает сигнал уведомления в течение первого периода, чтобы сообщить информацию для разрешения конфликтов в отношении устройства связи, способного осуществлять передачу данных в течение второго периода, следующего за первым периодом; и

секцию передачи данных, которая, когда устройство связи, передающее сигнал уведомления, определяется как устройство связи, способное осуществлять передачу данных на основе сигнала уведомления, переданного в течение первого периода, передает данные в конкретном периоде во втором периоде, выделенном данным, передаваемым от устройства связи,

при этом сигнал, установленный на основании приоритета, определенного ранее, исходя из типа данных, используется в качестве сигнала уведомления в первом периоде.

Преимущественные цели изобретения

Настоящее изобретение позволяет осуществлять разрешение конфликтов в отношении доступов в течение сравнительно короткого периода времени, даже когда растет количество устройств связи или потоков данных, и также предотвращает бесполезную трату полосы пропускания, тем самым предотвращая падение производительности. Дополнительно, настоящее изобретение может предотвратить конфликты между устройствами связи, обладающими одинаковым приоритетом при выполнении приоритетного управления. Настоящее изобретение также предотвращает несбалансированную концентрацию прав доступа у конкретного устройства связи или потока данных и позволяет осуществлять управление доступом в соответствии с условиями трафика, такого как трафик связи.

Перечень фигур чертежей

Фиг.1 является видом, показывающим характерную общую конфигурацию системы высокочастотной связи по линиям электропередачи, которая реализует способ связи и устройство связи настоящего изобретения.

Фиг.2A-2C являются видами, показывающими внешний вид модема PLC.

Фиг.3 является структурной схемой, показывающей пример аппаратного обеспечения модема PLC.

Фиг.4 является функциональной структурной схемой для описания характерной цифровой обработки сигнала, реализуемой блоком PLC • PHY.

Фиг.5 является видом, показывающим пример периода передачи данных в системе высокочастотной связи по линиям электропередачи настоящего варианта осуществления.

Фиг.6 является видом, показывающим пример периода доступа, достигаемого, когда данные передаются по схеме управления доступом настоящего варианта осуществления.

Фиг.7 является видом, показывающим пример сигнала разрешения конфликтов для каждой отдельной приоритетной группы, выдаваемого в момент времени PGA.

Фиг.8A и 8B являются видами, показывающими приоритетные группы и процедуры выделения слотов соответствующих устройств связи варианта осуществления.

Фиг.9 является видом, показывающим пример таблицы для выделения слотов соответствующим приоритетным группам.

Фиг.10 является видом, показывающим конфигурацию буфера передачи в устройстве связи варианта осуществления.

Фиг.11 является видом, показывающим пример периода доступа для каждой отдельной приоритетной группы в варианте осуществления.

Фиг.12 является блок-схемой, показывающей рабочие процедуры каждого из устройств связи, поддерживающих схему управления доступом настоящего варианта осуществления.

Фиг.13A и 13B являются видами, показывающими обработку, выполняемую, когда слоты не выделены никакой из приоритетных групп.

Фиг.14A-14C являются видами, показывающими пример обработки по обновлению информации выделения слотов для каждой отдельной приоритетной группы.

Фиг.15 является циклограммой, показывающей пример обработки по обновлению информации выделения слотов для каждой отдельной приоритетной группы.

Фиг.16A и 16B являются видами, показывающими пример обработки, выполняемой, когда терминалу, работающему в качестве ведомого устройства, предписывается вновь войти в сеть.

Фиг.17 является блок-схемой, показывающей рабочие процедуры, относящиеся к обработке по обновлению информации выделения слотов в отношении устройства связи, работающего в качестве ведущего устройства.

Фиг.18A и 18B являются видами, показывающими другой пример таблицы выделения слотов для каждой из приоритетных групп.

Фиг.19A и 19B являются видами для описания обработки по обновлению информации выделения слотов в соответствии с условиями трафика.

Фиг.20 является видом, показывающим пример, в котором приоритетные группы смещаются посредством обновления таблицы выделения слотов.

Фиг.21 является блок-схемой, показывающей рабочие процедуры обработки по обновлению информации выделения слотов, выполняемой при смещении приоритетных групп.

Фиг.22 является видом, показывающим первый пример периода доступа схемы циклического повтора слотов.

Фиг.23 является видом, показывающим второй характерный период доступа схемы циклического повтора слотов.

Фиг.24A и 24B являются видами, показывающими характерный способ хранения номеров слотов.

Фиг.25 является видом, показывающим третий характерный период доступа схемы циклического повтора слотов.

Фиг.26 является видом, показывающим характерную таблицу выделения слотов, поддерживающую третью характерную схему циклического повтора слотов.

Фиг.27A и 27B являются видами, показывающими характерные изменения схемы циклического повтора слотов.

Фиг.28 является видом, показывающим пример периода доступа, когда данные передаются по схеме PRS.

Фиг.29 является видом, показывающим характерные сигналы разрешения конфликтов для соответствующих приоритетных групп, выдаваемые в течение времени PRS.

Фиг.30 является видом, показывающим пример периодов доступа для множества приоритетных групп, поддерживающих схему PRS.

Фиг.31 является видом, показывающим пример периода доступа, достигаемого, когда данные передаются по схеме выделения слотов.

Фиг.32 является видом для описания проблем, возникающих, когда множество номеров слотов задано по схеме выделения слотов.

Описание вариантов осуществления

Одним способом предотвращения конкуренции между доступами со стороны множества устройств связи является схема PRS (Определения Приоритета Слотов) (см., например, Патентный Документ 1). Схема PRS является схемой доступа для задания приоритетных групп, на которые разделены приоритеты, показывающие приоритет, соответствующий типу передаваемых данных, и для того, чтобы способствовать разрешению конфликтов посредством сужения приоритетных групп, когда выполняется передача кадра до того, как произвольной отсрочкой передачи инициируется конкуренция.

Фиг.28 является видом, показывающим характерный период доступа, когда данные передаются по схеме PRS. Когда любое оборудование связи заканчивает передачу кадра P0, устанавливается промежуток времени PRS (включающего в себя PRS0 и PRS1) после того, как гарантируется заранее определенный промежуток времени CIFS (Интервал Межкадровой Конкуренции), вследствие чего управляется разрешение конфликтов приоритетных групп. В течение промежутка времени PRS соответствующие единицы оборудования связи отправляют сигналы разрешения конфликтов, тем самым выполняя разрешение конфликтов, в соответствии с которым одна из приоритетных групп имеет права доступа. В приоритетной группе, получившей права доступа посредством разрешения конфликтов, соответствующие единицы оборудования связи получают доступы посредством произвольной отсрочки передачи или подобного в окне конкуренции, получаемом по истечении промежутка времени PRS, и оборудование связи, которое победило в конкуренции, передает кадр P1.

Фиг.29 является видом, показывающим характерные сигналы разрешения конфликтов для соответствующих приоритетных групп, выдаваемые в течение промежутка времени PRS. Пример показывает, что здесь в качестве приоритетных групп заданы группы с CA0 по CA3 четырех уровней; что два бита информации (что, в общем, дает четыре типа информации) передаются в соответствии с наличием или отсутствием сигнала в течение двух периодов PRS0 и PRS1 в промежутке времени PRS; и что сообщаются приоритетные группы, назначенные данным передачи, принадлежащим самому оборудованию. В данном случае, приоритетная группа CA3, обладающая правами доступа с наивысшим приоритетом, отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи сигнала в течение периода PRS0 и сигнала в течение PRS1. Следующая приоритетная группа CA2 отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи сигнала в течение периода PRS0 и передачи отсутствия сигнала в течение периода PRS1. Приоритетная группа CA1 после следующей отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи отсутствия сигнала в течение периода PRS0 и сигнал в течение периода PRS1. Приоритетная группа CA0, обладающая правами доступа самого низкого приоритета, отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи отсутствия сигнала в течение периода PRS0, и отсутствие сигнала = PRS1.

Фиг.30 является видом, показывающим характерные периоды доступа для множества приоритетных групп, поддерживающих схему PRS. Когда сигнал выдается в период PRS0 промежутка времени PRS, права доступа сужаются до приоритетных групп CA3 или CA2. Таким образом, оборудование связи, принадлежащее приоритетным группам CA1 и CA0, не имеющее разрешенных прав доступа, ничего не выдает в следующем периоде PRS1 и в окне конкуренции. Когда сигнал выдается в следующем периоде PRS1, права доступа получает приоритетная группа CA3. Следовательно, оборудование связи, принадлежащее к приоритетной группе CA2, не имеющее разрешенных прав доступа, ничего не выдает в следующем окне конкуренции. В окне конкуренции единицы оборудования связи, принадлежащие приоритетной группе CA3, имеющие разрешенные права доступа, ведут конкуренцию. Предполагается, что единицы оборудования связи, принадлежащие приоритетной группе CA3, передают кадр по истечении произвольной отсрочки передачи. Проиллюстрированный пример показывает случай, где оборудование CA3(A) связи из единиц оборудования (A) и (B) связи, принадлежащих приоритетной группе CA3, первым выдает кадр P1, тем самым победив в конкуренции. Тем временем, при первом обнаружении кадра от другого оборудования связи оборудование CA3(B) связи проигрывает в конкуренции среди единиц оборудования, принадлежащих приоритетной группе CA3, и не передает никакой кадр.

По схеме PRS выполняется разрешение конфликтов между приоритетными группами, тем самым могут предотвращаться конфликты между разными приоритетными группами. При сравнении со схемой CSMA/CA управление доступом может реализовываться от одной приоритетной группы к другой в течение короткого периода времени, который называется промежутком времени PRS. Тем не менее все же существует вероятность возникновения конфликта в одной и той же приоритетной группе. Дополнительно, так как окно конкуренции используется для передачи разрешения конфликтов единиц оборудования связи, принадлежащих одной и той же приоритетной группе, то это влечет за собой, как и в случае со схемой CSMA/CA, более длительный промежуток времени разрешения конфликтов и бесполезную трату полосы пропускания. Следовательно, возникает проблема падения производительности.

Еще одним способом предотвращения конкуренции между доступами со стороны множества единиц оборудования связи является схема выделения слотов (см., например, Патентный Документ 2). Схема выделения слотов является схемой доступа, по которой задается множество слотов; права доступа выделяются на основе в единицу слотов; соответствующим слотам присваиваются номера; и доступ к слоту, обладающему номером, получает только оборудование связи или поток данных, связанный с номером.

Фиг.31 является видом, показывающим характерный период доступа, достигаемый при передаче данных по схеме выделения слотов. Показан пример, в котором заданы четыре слота с номерами от одного до четырех, и в которых получают доступ единицы оборудования связи, назначенные соответствующим номерам слотов. Проиллюстрирован пример, в котором перечисляются и циклически повторяются с течением времени номера слотов с 1 по 4 и в котором оборудование связи передает кадр только в слоте с номером, присвоенным самому оборудованию. Оборудование связи не может получить доступ к слоту с номером, назначенным оборудованию. Проиллюстрированный пример показывает случай, в котором оборудование связи с номером слота 2 передает кадр P21 и в котором оборудование связи с номером слота 1 впоследствии передает кадр P11. После того как одно оборудование связи передало кадр и приняло в ответ подтверждение от оборудования связи на другом конце, номер слота для возобновления слота начинается с номера слота, следующего за номером слота оборудования связи, выполнившего передачу («три» в проиллюстрированном примере). Соответствующие единицы оборудования связи уведомляются о номерах слотов посредством маяковых кадров, тем самым соответствующие единицы оборудования связи выясняют свои номера слотов. В качестве альтернативы, соответствующие единицы оборудования связи принимают ID слотов, хранящиеся в заголовке кадров, тем самым выясняя свои номера слотов.

По схеме выделения слотов может быть предотвращена вероятность конфликта до тех пор, пока номера слотов не будут накладываться друг на друга. Тем не менее, когда количество единиц оборудования связи или потоков данных, для которых должны выделяться слоты, растет, то по мере роста количества слотов растет время циклического повтора соответствующих слотов. Фиг.32 является видом для описания проблемы, возникающей, когда по схеме выделения слотов задано множество номеров слотов. В данном случае, когда оборудование связи, которому назначен номер слота 10, передает кадр P101, как проиллюстрировано, то требуется промежуток времени для циклического повтора номеров слотов с 1 по 10. Таким образом, существует проблема бесполезной траты ненужной полосы пропускания и падения производительности.

Схема выделения слотов выполняется для получения прав доступа всякий раз, когда через один оборот циклически повторяются номера слотов с 1 по 10, и, следовательно, не может быть задан приоритет передачи. Если приоритетное управление будет введено, как оно есть, то управление станет сложным. В качестве альтернативы возникает проблема вероятности возникновения конфликта, который в противном случае произойдет из выделения множеству единиц устройств связи или потокам данных одного слота.

По связанной с данной областью техники схеме PRS и схеме выделения слотов существует возможность, при которой права доступа несбалансированно концентрируются у конкретной единицы оборудования связи или данных, когда управление доступом выполняется в соответствии с приоритетной группой или слотом. Как результат, аккумулируются не переданные данные, которые не могут получить доступ, или не может быть немедленно выполнена передача данных с высоким приоритетом при их возникновении. Следовательно, возможны случаи, при которых управление доступом не может быть удовлетворительно выполнено в соответствии с обстоятельствами.

Вариант осуществления, описываемый ниже, показывает в качестве примера способ связи и характерное устройство связи настоящего изобретения, характерную конфигурацию системы связи, применимую как к устройству высокочастотной связи по линиям электропередачи, использующему линию электропередачи в качестве канала передачи, так и системе высокочастотной связи по линиям электропередачи, оборудованной устройствами высокочастотной связи по линиям электропередачи. Настоящее изобретение применимо к: проводным сетям, использующим другой проводной канал передачи, такой как коаксиальный кабель и кабель LAN (Локальной Сети); беспроводной сети, такой как беспроводная LAN; и устройству связи, способу связи и системе связи, использующих различные средства связи.

Фиг.1 является видом, показывающим характерную общую конфигурацию системы высокочастотной связи по линиям электропередачи, которая реализует способ связи и устройство связи настоящего изобретения. Система высокочастотной связи по линиям электропередачи, показанная на фиг.1, имеет множество модемов 100M, 100T1, 100T2, 100T3 и 100T4 PLC (высокочастотной связи по линиям электропередачи), соединенных с линией 900 электропередачи. Несмотря на то, что фиг.1 показывает пять модемов PLC, количество подключенных модемов произвольно. Модем 100M PLC работает в качестве ведущего устройства и управляет подключенными состояниями (соединенными состояниями) прочих модемов 100T1, …, 100T4, которые работают в качестве ведомых устройств.

В нижеследующих описаниях, когда дается ссылка на ведущее устройство и конкретное ведомое устройство, то устройства описываются как модемы 100M, 100T1, 100T2, 100T3 и 100T4 PLC. Когда делается ссылка на ведомое устройство в целом, то устройство описывается как модем 100T PLC. Когда делается ссылка на модем PLC, не ограничивающийся ни ведущим устройством, ни ведомым устройством, то устройство описывается как просто модем 100 PLC.

Несмотря на то, что линия 900 электропередачи обозначена на фиг.1 одной линией, в действительности линия электропередачи соответствует двум или более проводящим проводам. Модем 100 PLC подключен к проводящим проводам.

Как будет подробно описано позже, модем 100 PLC имеет стандартное гнездо соединителя с LAN, такое как RJ45. Стандартное гнездо соединителя соединено с телевизионным приемником 51 (TV, ТВ), персональным компьютером 52 (PC, ПК), телефоном 53 IP, устройством 54 записи и широкополосным маршрутизатором 55 (BB маршрутизатор). Широкополосный маршрутизатор 55 подключен к Интернету 60.

Фиг.2A-2C являются видами, показывающими внешний вид модема 100 PLC. Фиг.2A является внешним видом в перспективе, показывающим лицевую панель модема; фиг.2B является видом на модем спереди; и фиг.2C является видом на него же сзади. Модем 100 PLC, показанный на фиг.2A-2C, имеет корпус 101. Как показано на фиг.2A и 2B, секция 105 отображения, состоящая из LED (светодиодов) 105A, 105B и 105С, предоставлена на передней панели корпуса 101. Как показано на фиг.2C, задняя панель корпуса 101 имеет разъем 102 питания, стандартное гнездо 103 соединителя с LAN, такое как RJ45, и выбирающий переключатель 104 для переключения режимов работы и подобного. Разъем 102 питания соединен с сетевым кабелем (не проиллюстрирован на фиг.2), а кабель LAN (не показан на фиг.2) соединен со стандартным гнездом 103 соединителя. Модем 100 PLC также может быть дополнительно выполнен с разъемом Dsub (D-сверхминиатюрный), и кабель Dsub может быть соединен с разъемом Dsub.

Фиг.3 является структурной схемой, показывающей пример аппаратного обеспечения модема 100 PLC. Как показано на фиг.3, модем 100 PLC имеет схемный модуль 200 и переключаемый источник 300 питания модема. Переключаемый источник 300 питания модема подает различные напряжения (например, +1,2 В, +3,3 В и +12 В) схемному модулю 200 и состоит из, например, переключаемого трансформатора, преобразователя DC-DC (ни один не проиллюстрирован).

Схемный модуль 200 предоставлен с основной IC 210 (Интегральной Схемой), AFE • IC (Аналоговым Входным Каскадом • Интегральной Схемой) 220, Ethernet (Зарегистрированная Торговая Марка) PHY • IC (Физическим Уровнем • Интегральной Схемой) 230, памятью 240, фильтром 251 нижних частот (LPF), IC 252 драйвера, полосовым фильтром 260 (BPF) и разветвителем 270. Переключаемый источник 300 питания модема и разветвитель 270 соединены с сетевым разъемом 102 и дополнительно соединены с линией 900 электропередачи с помощью сетевого кабеля 600, сетевой вилки 400 и розетки 500. Основная IC 210 работает в качестве схемы управления, которая осуществляет высокочастотную связь по линии электропередачи.

Основная IC 210, состоящая из CPU (Центрального Процессора) 211, блока 212 PLC • MAC (Высокочастотной Связи по Линиям Электропередачи • уровня Управления Доступом к Среде) и блока 213 PLC • PHY (Высокочастотной Связи по Линиям Электропередачи • Физического Уровня). CPU 211 оснащен 32-битным процессором RISC (Компьютер с Сокращенным Набором Команд). Блок 212 PLC • MAC управляет уровнем MAC (уровнем Управления Доступа к Среде) отправляемого/принимаемого сигнала. Блок 213 PLC • PHY управляет уровнем PHY (Физическим уровнем) отправляемого/принимаемого сигнала. AFE • IC 220 состоит из преобразователя 221 DA (DAC: D/A Преобразователя), преобразователя 222 AD (ADC: A/D Преобразователя) и нелинейного усилителя 223 (VGA; Усилителя с Нелинейной Характеристикой). Разветвитель 270 состоит из катушечного трансформатора 271 и разделительных конденсаторов 272a и 272b. CPU 211 управляет функционированием всего модема 100 PLC, как, впрочем, и функционированием блока 212 PLC • MAC и блока 213 PLC • PHY посредством использования данных, хранящихся в памяти 240.

Модем 100 PLC осуществляет связь приблизительно в соответствии со следующим. Данные, подаваемые от стандартного гнезда 103 соединителя, отправляются основной IC 210 посредством Ethernet (Зарегистрированная Торговая Марка) PHY • IC 230 и подвергаются цифровой обработке сигнала, посредством чего формируется сигнал цифровой передачи. Преобразователь 221 DA (DAC), входящий в состав AFE • IC 220, преобразует сформированный таким образом сигнал цифровой передачи в аналоговый сигнал и выдает аналоговый сигнал в линию 900 электропередачи посредством фильтра 251 нижних частот, IC 252 драйвера, разветвителя 270, разъема 102 питания, сетевого кабеля 600, сетевой вилки 400 и розетки 500.

Сигнал, принятый из линии 900 электропередачи, отправляется в полосовой фильтр 260 при помощи разветвителя 270. Отправленный таким образом сигнал подвергается усилению в переменном усилителе 223 (VGA), входящем в состав AFE • IC 220, и затем преобразуется в цифровой сигнал посредством преобразователя 222 AD (ADC). Преобразованный таким образом цифровой сигнал отправляется основной IC 210 и подвергается цифровой обработке сигнала, чтобы таким образом быть преобразованным в цифровые данные. Преобразованные таким образом цифровые данные выдаются через стандартное гнездо 103 соединителя посредством Ethernet (Зарегистрированная Торговая Марка) PHY • IC 230.

Описывается характерная цифровая обработка сигнала, реализуемая основной IC 210. Модем 100 PLC осуществляет связь с несколькими несущими, используя множество поднесущих, такую как по схеме OFDM (Мультиплексирования с Ортогональным Частотным Разделением). Блок 213 PLC • PHY принципиально выполняет цифровую обработку для преобразования данных передачи в сигнал OFDM передачи и преобразования сигнала OFDM приема в принимаемые данные.

Фиг.4 является функциональной структурной схемой для описания характерной цифровой обработки сигнала, реализуемой блоком 213 PLC • PHY, показывающей случай, в котором выполняется OFDM передача, использующая вейвлет преобразование. Как показано на фиг.4, блок 213 PLC • PHY имеет возможности, эквивалентные секции 10 управления преобразованием, модулю 11 приведения к символам, модулю 12 последовательно-параллельного преобразования (модулю S/P преобразования), модулю 13 обратного вейвлет преобразования, модулю 14 вейвлет преобразования, модулю 15 параллельно-последовательного преобразования (модулю P/S преобразования) и модулю 16 обратного приведения.

Модуль 11 приведения к символам преобразует битовые данные, которые должны быть переданы, в данные символов и выполняет приведение к символам (например, PAM модуляцию), исходя из соответствующих групп данных символов. Модуль 12 S/P преобразования преобразует приведенные последовательные данные в параллельные данные. Модуль 13 обратного вейвлет преобразования подвергает параллельные данные обратному вейвлет преобразованию, тем самым создавая контролируемые по времени данные; и формирует последовательность из дискретных значений, представляющую собой символы передачи. Данные отправляются преобразователю 221 DA (DAC), входящему в состав AFE • IC 220.

Модуль 14 вейвлет преобразования преобразует принятые цифровые данные от преобразователя 222 AD (ADC), входящего в состав AFE • IC 220 (последовательность дискретных значений, полученную путем дискретизации с той же скоростью дискретизации, что используется и для преобразования), в основанные на частоте данные посредством дискретного вейвлет преобразования. Модуль 15 P/S преобразования преобразует основанные на частоте параллельные данные в последовательные данные. Модуль 16 обратного приведения вычисляет значения амплитуд соответствующих поднесущих и подтверждает принятый сигнал, тем самым определяя принятые данные.

Фиг.5 является видом, показывающим характерный период передачи данных в системе высокочастотной связи по линиям электропередачи настоящего варианта осуществления. В системе высокочастотной связи по линиям электропередачи, показанной на фиг.1, в случае выполнения передачи данных, модемы 100 PLS выступают в роли источника передачи кадров с Pt1 по Pt5 данных. Модемы 100 PLC выступают в роли получателя передачи ответных кадров с At1 по At5, когда модемы 100 PLC получатели могут успешно принимать кадры данных. Модем 100M PLC передает в заданных интервалах информацию для управления связью между PLC модемами в качестве широковещательных кадров (также именуемых «кадры управления» или «маяковые кадры») B1, B2, B3,.... В примере, показанном на фиг.5, кадры с Pt1 по Pt5 данных передаются от множества устройств передачи без конфликтов. Для того чтобы выполнить передачу данных, избегая при этом конфликтов, модемы 100 PLC варианта осуществления выполняют управление доступом, которое будет описано ниже. Обработка, относящаяся к управлению доступом, реализуется посредством обработки управления секцией управления в отдельном устройстве связи, подобной CPU 211 модема 100 PLC. CPU 211 модема 100 PLC воплощает функцию секции уведомления информацией разрешения конфликтов и функцию секции передачи данных, тем самым выполняя соответствующую обработку в соответствии с заранее определенной программой. Секция управления устройства связи, которое служит в качестве ведущего устройства (воплощаемое CPU 211 модема 100M PLC или подобным), преимущественно выполняет управление всей системой связи.

[Обзор схемы управления доступом данного варианта осуществления]

Фиг.6 является видом, показывающим пример периода доступа, достигаемого, когда данные передаются посредством схемы управления доступом данного варианта осуществления. Данный вариант осуществления адаптирует гибридное, основанное на типе доступа управление доступом, включающее в себя сочетание PGA (Разрешение Конфликтов на основе Приоритетных Групп) для управления разрешением конфликтов прав доступа (прав передачи) приоритетных групп (PG: Приоритетная Группа), в которые сгруппированы приоритеты данных или устройства связи для передачи данных, и разрешение конфликтов на основе слотов для управления разрешением конфликтов посредством прав доступа, выделенных соответствующим слотам. В отношении приоритетных групп, приоритет устанавливается множеству групп, исходя из приоритета, представляющего собой порядок приоритета, соответствующий типу данных передачи и условиям трафика, показывающим объем связи в средстве связи, такой как объем данных передачи и подобное.

Когда любое из устройств связи завершает передачу кадра P0, промежуток времени PGA (PGA0 и PGA1), соответствующий первому периоду, устанавливается так, чтобы выполнить разрешение конфликтов приоритетных групп после того, как гарантирован заранее установленный промежуток времени CIFS. В течение промежутка времени PGA соответствующие устройства связи выдают сигналы разрешения конфликтов в качестве сигналов уведомления, посредством чего выполняется разрешение конфликтов, при котором одна из приоритетных групп получает права доступа, чтобы таким образом сузить допустимые приоритетные группы. Затем устанавливается период разрешения конфликтов на основе слотов, соответствующий второму периоду, и затем выполняется разрешение конфликтов на основе номеров слотов в приоритетной группе, которая получила права доступа. Соответствующие устройства связи в приоритетной группе передают данные в конкретные периоды, соответствующие номерам слотов. В течение периода разрешения конфликтов на основе слотов соответствующим устройствам связи или соответствующим потокам данных выделяются номера слотов. Устройство связи, которому выделен номер, получает доступ во время слота, соответствующего выделенному номеру, и отправляет кадр P1. Проиллюстрированный пример показывает случай, где устройство связи с выделенным номером слота 2 отправляет кадр P1.

Фиг.7 является видом, показывающим пример сигналов разрешения конфликтов соответствующих приоритетных групп, выдаваемых в течение промежутка времени PGA. В показанном здесь примере в качестве приоритетных групп определены четыре уровня групп с PG0 по PG3. Два бита (общим числом из четырех типов) информации передаются в качестве сигналов уведомления, исходя из наличия или отсутствия сигналов в течение двух периодов PGA0 и PGA1 разрешения конфликтов, заданных для промежутка времени PGA, тем самым уведомляя о приоритетных группах, выделенных для передачи данных соответствующим устройствам связи. В данном случае приоритетная группа PG3, обладающая правами доступа наивысшего приоритета, отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи сигнала в течение периода PGA0 и сигнала в течение PGA1. Следующая приоритетная группа PG2 отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи сигнала в течение периода PGA0 и отсутствия сигнала в течение периода PGA1. Приоритетная группа PG1 после следующей отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи отсутствия сигнала в течение периода PGA0 и сигнала в течение периода PGA1. Приоритетная группа PG0, обладающая правами доступа самого низкого приоритета, отправляет сигнал разрешения конфликтов, соответствующий себе, посредством передачи отсутствия сигнала в течение периода PG0 и отсутствия сигнала в течение периода PGA1. Устройства связи отправляют сигналы разрешения конфликтов, исходя из соответствующих приоритетных групп. Устройства связи, принадлежащие к приоритетной группе с высоким приоритетом, получают возможность осуществления передачи в течение последующего периода разрешения конфликтов на основе слотов. Преимущественным является задание одного периода разрешения конфликтов (каждый из периодов PGA0 и PGA1) в промежутке времени PGA в минимальный период времени, который включает в себя время, требуемое для выполнения переключения между передачей и приемом, предполагаемое время задержки передачи и время для обнаружения сигнала, что позволяет выполнить надежное обнаружение сигнала разрешения конфликтов. Несмотря на то, что периоды разрешения конфликтов в промежутке времени PGA установлены в количестве двух и в данном варианте осуществления приоритетные группы установлены в количестве четырех, периоды разрешения конфликтов могут быть изменены таким образом, чтобы составлять три периода разрешения конфликтов и восемь приоритетных групп. Предпочтительным является использование, в качестве сигнала разрешения конфликтов, сигнала, который может быть обнаружен в короткий период времени. Как правило, используется сигнал, обладающий тем же форматом, что и сигнал преамбулы. Сигнал преамбулы добавляется к заголовку кадра.

В варианте осуществления приоритетные группы устанавливаются на основании приоритета, который соответствует приоритету, установленному заранее в соответствии с типом данных. Приоритетные группы могут изменяться в соответствии с условиями трафика сети и подобного. Приоритет и приоритетная группа могут устанавливаться, не исходя из данных, а для каждого отдельного устройства связи (например, из расчета на термина