Лакунарный гетерополианион структуры кеггина на основе вольфрама для гидрокрекинга
Иллюстрации
Показать всеИзобретение предназначено для химической промышленности и может быть использовано в катализаторах процессов гидрокрекинга, гидроконверсии, гидроочистки. Для получения гетерополисоединения, состоящего из никелевой соли лакунарных гетерополианионов типа Кеггина, содержащей вольфрам, к гетерополивольфрамовым кислотам добавляют x+y/2 эквивалентов гидроксида бария. Затем катионы Ba2+ замещают катионами Ni2+ в результате ионного обмена на катионообменных смолах, предварительно подвергнутых обмену с катионами Ni2+. Полученное гетерополисоединение имеет формулу Nix+y/2AW11-yO39-5/2y,zH2O, а в одном из вариантов имеет формулу Nix+1AW9O34,zH2O, где А выбрано из фосфора, кремния и бора, y=0 или 2, x=3,5, если А означает фосфор, x=4, если А означает кремний, x=4,5, и z есть число от 0 до 36. Атомы никеля не замещают атомы вольфрама, а находятся в положении противоиона в структуре указанного соединения. Изобретения обеспечивают высокое отношение Ni/W и выход более 80%. 5 н. и 6 з.п. ф-лы, 2 ил., 4 табл., 4 пр.
Реферат
Настоящее изобретение описывает гетерополисоединение, состоящее из никелевой соли лакунарного гетерополианиона типа Кеггина, содержащего в своей структуре вольфрам, формулы
Nix+y/2AW11-yO30-5/2y,zH2O
в которой Ni означает никель,
A выбран из фосфора, кремния и бора,
W означает вольфрам,
O означает кислород,
y=0 или 2,
x=3,5, если A означает фосфор,
x=4, если A означает кремний,
x=4,5, если A означает бор, и
в дальнейшем x=m/2+2,
и z есть число от 0 до 36, и m равно 3, если A означает фосфор, m равно 4, если A означает кремний, и m равно 5, если A означает бор,
причем указанное гетерополисоединение не содержит атомов никеля как замещение атома вольфрама в своей структуре, а указанные атомы никеля находятся в положении противоиона в структуре указанного соединения.
Настоящее изобретение описывает также способ получения указанного гетерополисоединения, состоящего из никелевой соли лакунарных гетерополианионов типа Кеггина, содержащих в своей структуре вольфрам.
Объектом настоящего изобретения является также катализатор, содержащий указанное гетерополисоединение, и способы гидрокрекинга, гидроконверсии и/или гидроочистки, в которых применяются указанные катализаторы.
В частности, изобретение относится к гидрокрекингу углеводородного сырья, содержащего, например, ароматические, и/или олефиновые, и/или нафтеновые, и/или парафиновые соединения, в том числе сырье, полученное в процессе Фишера-Тропша и возможно содержащее металлы, и/или азот, и/или кислород, и/или серу.
Целью процесса гидрокрекинга является в основном получение средних дистиллятов, то есть фракций с начальной точкой кипения по меньшей мере 150°C и конечной, доходящей до начальной точки кипения кубового остатка, например, ниже 340°C или же ниже 370°C.
Изобретение относится также к гидроочистке такого углеводородного сырья, как нефтяные погоны, фракции, полученные из угля, или углеводороды, полученные из природного газа. Это углеводородное сырье содержит азот, и/или серу, и/или ароматические, и/или олефиновые, и/или нафтеновые, и/или парафиновые соединения, причем указанное сырье возможно содержит металлы, и/или кислород, и/или серу. Под гидроочисткой понимаются реакции гидрирования, гидрообессеривания, гидродеазотирования, гидродезоксигенирования, гидродеароматизации и гидродеметаллировании.
Предшествующий уровень техники
Гидрокрекинг тяжелых нефтяных фракций является очень важным способом переработки нефти, который позволяет получать из малоценного лишнего сырья более легкие фракции, такие, как бензины, реактивное топливо и легкие газойли, которого добиваются нефтепереработчики, чтобы адаптировать свою продукцию к структуре спроса. Некоторые способы гидрокрекинга позволяют получать также сильно очищенный кубовый остаток, который может давать отличную основу для масел. По сравнению с каталитическим крекингом, преимущество каталитического гидрокрекинга состоит в том, что он дает средние дистилляты, реактивное топливо и газойли очень высокого качества. Напротив, полученный бензин имеет октановое число намного более низкое, чем получаемое при каталитическом крекинге.
Гидрокрекинг является способом, гибкость которого достигается тремя основными элементами, которыми являются используемые рабочие условия, типы применяемых катализаторов и тот факт, что гидрокрекинг углеводородного сырья может быть проведен в одну или два стадии.
Все катализаторы гидрокрекинга, использующиеся в процессах гидрокрекинга, являются бифункциональными катализаторами, сочетающими кислотную функцию с гидрирующей-дегидрирующей функцией. Кислотная функция обеспечивается подложками, удельная поверхность которых варьируется обычно от 150 до 800 м2/г, и которые имеют поверхностную кислотность, такие, как галогенированные оксиды алюминия (в частности, хлорированные или фторированные), комбинации оксидов бора и алюминия, аморфные мезопористые алюмосиликаты и цеолиты. Гидрирующая-дегидрирующая функция обеспечивается либо одним или несколькими металлами группы VIB периодической системы элементов, либо сочетанием по меньшей мере одного металла группы VIB периодической системы с по меньшей мере одним металлом группы VIII.
Равновесие между двумя, кислотной и гидрирующей-дегидрирующей функциями является одним из параметров, которые регулируют активность и селективность катализатора. Слабая кислотная функция и сильная гидрирующая-дегидрирующая функция дают малоактивные катализаторы, работающие обычно при повышенной температуре (больше или равной 390-400°C) и с низкой объемной скоростью подачи (VVH, выраженная в объеме обрабатываемого сырья на единицу объема катализатора в час, обычно меньше или равна 2), но обладающие очень хорошей селективностью по средним дистиллятам (реактивное топливо и газойли). Наоборот, сильная кислотная функция и слабая гидрирующая-дегидрирующая функция дают активные катализаторы, но имеющие не такую хорошую селективность по средним дистиллятам.
Один тип традиционных катализаторов гидрокрекинга имеет в основе умеренно кислые аморфные подложки, такие, например, как алюмосиликаты. Эти системы используются для получения средних дистиллятов хорошего качества и, возможных, базовых масел. Эти катализаторы применяются, например, в двухстадийных способах.
Проблемой, стоящей перед специалистом, является получение высоких каталитических характеристик процессов гидрокрекинга, в частности, что касается активности и селективности по средним дистиллятам, гарантируя удовлетворительное использование в промышленности. Так, хотя хорошие характеристики могут быть получены путем улучшения структурных свойств катализаторов и их пористой матрицы, на которую они нанесены, характеристики этих катализаторов связаны также с природой гидрирующей фазы. Таким образом, гидрирующая активность будет играть очень важную роль в реакциях гидродеазотирования (HDN), гидродеароматизации (HDA), гидрообессеривания (HDS) и в стабильности катализатора.
Пара NiW признана как пара металлов групп VIB и VIII, оптимальная для гидрирования ароматики, а также для гидродеазотирования - ключевых функций для гидрокрекинга. Несмотря на высокое содержание NiW, осажденных "классическим" путем с помощью обычных предшественников (метавольфрамат аммония и нитрат никеля) на подложку и несмотря на параметрические исследования, относящиеся к этапам получения, не достигнут 1) контроль дисперсии, 2) морфология слоев и 3) оптимизация степени промотирования на этих подложках, а это основные критерии для значительного усиления гидрирующей способности активной фазы, а также для повышения выхода средних дистиллятов в процессе гидрокрекинга. Одна из сложных научных задач этих последних лет состоит в оптимизации гидрирующей фазы, нанесенной на различные подложки катализаторов гидрокрекинга.
Желая решить эти задачи, авторы заявки неожиданно обнаружили, что получение оксидов типа NiW, исходя из никелевой соли лакунарного гетерополианиона структуры Кеггина, содержащей вольфрам, осажденных на умеренно кислые аморфные подложки, такие, как подложки типа алюмосиликатов, выгодно в отношении гидрирующей способности: полученные таким образом катализаторы имеют улучшенные каталитические свойства в процессах гидрокрекинга. Так, авторы неожиданно обнаружили, что применение гетерополисоединения формулы Nix+y/2AW11-yO39-5y/2,zH2O, как определено выше, и, в частности, применение гетерополисоединений формулы Ni4SiW11O39 и формулы Ni5SiW9O34 приводит к неожиданным каталитическим характеристикам в гидрокрекинге/гидроконверсии и гидроочистке. Более точно, настоящее изобретение относится к способу получения указанных никелевых солей лакунарных гетерополианионов структуры Кеггина, содержащих W, и к их применению при получении катализаторов. Эти гетерополианионы обнаружены разными физико-химическими методами.
Богатство химии вольфрама позволяет получать более или менее замещенные гетерополивольфрамовые продукты, состоящие из осаждаемых элементов. Так, речь идет о химических объектах, в которых контролируется степень конденсации вольфрамовых октаэдров, и где никель тесно связан со структурой. Эти новые материалы, используемые для получения растворов для пропитки алюмосиликатных подложек, позволяют устранить 3 сформулированные выше проблемы. Действительно, применение никелевых солей этих гетерополианионов позволяет избежать присутствия ионов аммония, которые считаются источником ограничения хорошей дисперсности компонентов с высоким содержанием металлов. Применение этих солей, осажденных на подложку, а также дополнительные обработки, проводимые на этапах получения, позволят получить лучший контроль дисперсности металлов в состоянии оксидов и состоянии сульфидов и, таким образом, лучшую морфологию дисульфидных слоев. С другой стороны, использование гетерополивольфраматов позволяет облегчить взаимодействие металл-промотор, помещая их в одну и ту же молекулярную частицу, что позволит контролировать степень промотирования сульфидного катализатора, а также увеличить число активных центров.
Поликонденсированные звенья, включающие никель и вольфрам, известны, назовем [PNiW11(H2O)O39]n- (Santos I.C.M.S et al. Association of Keggin-type anions with cationic meso-substitυted porphyrins: synthesis, characterization and oxidative catalytic studies Journal of Molecular Catalysis, Vol 231, 2005, pp 35-45) за его применение в катализе окисления в гомогенной фазе, или же [SiNiW11O39]m- (Niu J.Y., Wang Z.L, Wang J.P., Two one-dimensional monosubstituted heteropolytungstates based on Keggin anion units, Journal of Solid State Chemistry, Vol 177, N 10, (2004), 3411).
Выгода от гетерополианионов уже упоминалась в уровне техники. Например, документ US 2547380 упоминает выгодное применение солей гетерополикислот и металлов группы VIII, таких, как кобальтовые или никелевые соли фосформолибденовой кислоты или кремнемолибденовой кислоты. В этом патенте гетерополикислота всегда содержит фосфор или кремний, причем последний является центральным атомом структуры. Недостатком этих соединений является то, что они приводят к низким атомным отношениям (элемент группы VIII/элемент группы VI). В качестве примера, фосфомолибдат кобальта, формулы …, имеет отношение Co/Mo 0,125.
Патентная заявка FR A 2749778 описывает преимущества от гетерополианионов общей формулы MxAB12O4, в которой M есть кобальт или никель, A означает фосфор, кремний или бор, и B означает молибден или вольфрам, x принимает значение 2 или больше, если A означает фосфор, 2,5 или больше, если A означает кремний, и 3 или больше, если A означает бор. Преимущества этих структур по сравнению со структурами, раскрытыми в документе US 2547380, состоят в том, что достигаются более высокие атомные отношения (элемент группы VIII/элемент группы VI), а также в том, что они приводят к более эффективным катализаторам. Это повышение отношения получено благодаря присутствию по меньшей мере части молибдена или вольфрама в валентности, ниже ее нормального значения шесть, какое получается из состава, например, фосфомолибденовой, фосфорновольфрамовой, кремнемолибденовой или кремневольфрамовой кислоты.
Патентная заявка FR A 2764211 описывает синтез и применение гетерополианионов формулы MxAB11O40M'C(Z-2x), в которой M есть кобальт или никель, A означает фосфор, кремний или бор, и B означает молибден или вольфрам, M' означает кобальт, железо, никель, медь или цинк, и C есть ион H+ или катион алкиламмония, x принимает значение от 0 до 4,5, z означает число от 7 до 9. Таким образом, эта формула соответствует формуле, заявленной в изобретении FR A 2749778, но в которой атом M' замещен атомом B. Достоинством этой последней формулы является то, что она приводит к атомным соотношениям между элементами группы VIII и группы VI, которые могут доходить до 0,5. Однако, хотя отношение (элемент группы VIII)/(элемент группы VI) в этом случае повышено, способ получения, описанный в патенте FR A 2764211, требует 2 и даже 3 ионных обмена и, следовательно, 2 и даже 3 фильтрации с выходами, не превышающими 80% на каждом этапе фильтрации. Наконец, то, что часть атомов M находится в положении замещения, а не является противоионами, ограничивает солюбилизацию соединений согласно изобретению FR A 2764211, в сравнении с гетерополисоединением согласно настоящему изобретению, которое имеет такое же число атомов B и M+M', но в котором все атомы M находятся в положении противоионов и окружены 6 молекулами воды в октаэдрическом окружении. Таким образом, соединения, описанные в патенте FR A 2764211, растворимы хуже, чем гетерополисоединения согласно настоящему изобретению, при одинаковом содержании атомов B и атомов M. Если соединения являются менее растворимыми, то при одинаковой подложке с соединениями согласно патенту FR A 2764211 невозможно осадить столько же предшественников за одну пропитку, сколько с соединениями по настоящему изобретению.
Так как гидрирующая активность напрямую связана с количеством осажденной активной фазы, преимущество настоящего изобретения заключается в синтезе этих новых гетерополисоединений и в оригинальности способа их получения, позволяющего получить эти соединения при высоком отношении Ni/W и с выходом более 80%.
Описание изобретения
Настоящее изобретение описывает гетерополисоединение, состоящее из никелевой соли лакунарного гетерополианиона типа Кеггина, содержащего в своей структуре вольфрам, формулы
Nix+y/2AW11-yO39-5/2y,zH2O | (I) |
в которой Ni означает никель,
A выбран из фосфора, кремния и бора,
W означает вольфрам,
O означает кислород,
y=0 или 2,
x=3,5, если A означает фосфор,
x=4, если A означает кремний,
x=4,5, если A означает бор, и
в дальнейшем x=m/2+2,
и z есть число от 0 до 36, и m равно 3, если A означает фосфор, m равно 4, если A означает кремний, и m равно 5, если A означает бор,
причем указанное гетерополисоединение не содержит атомов никеля как замещение атома вольфрама в своей структуре, а указанные атомы никеля находятся в положении противоиона в структуре указанного соединения.
Согласно изобретению, указанные гетерополисоединения не имеют атомов никеля как замещение атома вольфрама. Атомы никеля всегда находятся в структуре в положении противоиона, причем, что выгодно, благодаря способу получения.
Согласно одному предпочтительному варианту осуществления, гетерополисоединение состоит из никелевой соли лакунарного гетерополианиона типа Кеггина, содержащего в своей структуре вольфрам, имеющей следующую формулу
NixAW11O39,zH2O
в которой Ni означает никель,
A есть группа, выбранная из фосфора, кремния и бора,
W означает вольфрам,
O означает кислород,
x есть число, равное 3,5, если группа A означает фосфор, равное 4, если группа A означает кремний, или равное 4,5, если группа A означает бор,
и z есть число от 0 до 36,
причем указанное гетерополисоединение не содержит атомов никеля как замещение атома вольфрама в своей структуре, а указанные атомы никеля находятся в положении противоионов в структуре указанного соединения.
Является очень предпочтительным, когда указанное гетерополисоединение является соединением формулы Ni4SiW11O39.
Согласно другому предпочтительному варианту осуществления, гетерополисоединение, состоящее из никелевой соли лакунарного гетерополианиона типа Кеггина, содержащего в своей структуре вольфрам, имеет следующую формулу
Nix+1AW9O34,zH2O
в которой Ni означает никель,
A означает группу, выбранную из фосфора, кремния и бора,
W означает вольфрам,
O означает кислород,
x есть число, равное 3,5, если группа A означает фосфор, равное 4, если группа A означает кремний, или равное 4,5, если группа A означает бор, и z есть число от 0 до 36,
причем указанное гетерополисоединение не содержит атомов никеля как замещение атома вольфрама в своей структуре, а указанные атомы никеля находятся в положении противоиона в структуре указанного соединения.
Является очень предпочтительным, когда указанное гетерополисоединение является соединением формулы Ni5SiW9O34.
Указанные гетерополисоединения согласно изобретению благоприятно растворимы в водной среде. Предпочтительно, они выделены и проанализированы.
Гетерополисоединения формулы (I) успешно могут быть проанализированы в твердой форме или в растворе. Анализы гетерополисоединений формулы (I) методами 31P-ЯМР (ядерный магнитный резонанс P), 29Si-ЯМР (ядерный магнитный резонанс Si) и 11B-ЯМР (ядерный магнитный резонанс B) не выявили никаких переходов в диапазоне между 300 и 600 м.д. Переход при таком химическом сдвиге был бы признаком того, что парамагнитный никель находится в структуре как замещение атома вольфрама, что не так в случае гетерополисоединений согласно изобретению.
Применение водных растворов указанных гетерополисоединений для пропитки пористых кислых подложек, предпочтительно кислой пористой минеральной матрицы и предпочтительно матриц типа алюмосиликатов или цеолитного типа, разведенных в оксиде алюминия, благоприятно приводит к катализаторам гидрокрекинга, имеющим повышенную гидрирующую активность.
Таким образом, объектом настоящего изобретения является также катализатор, содержащий указанное гетерополисоединение и, возможно, по меньшей мере одну кислую пористую минеральную матрицу.
Одной из главнейших характеристик катализаторов, к которым относится настоящее изобретение, является наличие, по меньшей мере в части, указанных элементов никеля и вольфрама в виде гетерополисоединения согласно изобретению.
Согласно одному предпочтительному варианту осуществления, катализатор находится в объемной форме. В этом случае он благоприятно содержит, в сухом состоянии, в вес.% от полной массы катализатора, от 0,01 до 100%, предпочтительно от 0,05 до 100%, еще более предпочтительно от 0,1 до 100% по меньшей мере указанного гетерополисоединения согласно изобретению, включающего по меньшей мере никель и по меньшей мере вольфрам и имеющего описанную выше структуру (I).
Согласно второму предпочтительному варианту осуществления, указанный катализатор является нанесенным катализатором, причем подложка образована из по меньшей мере одной кислой пористой минеральной матрицы, предпочтительно аморфной или слабокристаллической, выбранной из смесей оксида кремния с оксидом алюминия, кристаллических или некристаллических алюмосиликатов, мезопористых или нет, легированных (B, F, P) оксидов алюминия, из группы, образованной семейством нецеолитных кристаллических молекулярных сит, таких, как мезопористые оксиды кремния, силикалит, алюмосиликофосфаты, алюмофосфаты, ферросиликаты, силикоалюминаты титана, боросиликаты, хромосиликаты и алюмофосфаты переходных металлов (в том числе кобальта).
Кислая пористая минеральная матрица благоприятно может также содержать, в дополнение к по меньшей мере одному из названных выше соединений, по меньшей мере одну простую синтетическую или натуральную глину типа диоктаэдрического филосиликата 2:1 или триоктаэдрического филосиликата 3:1, такую, как каолинит, антигорит, хризотил, монтмориллонит, бейделлит, вермикулит, тальк, гекторит, сапонит, лапонит. Эти глины при необходимости могут быть деламинированы. Благоприятно можно также применять смеси алюмосиликата и глины.
Матрица благоприятно может также включать, в дополнение к по меньшей мере одному из названных выше соединений, по меньшей мере одно соединение, выбранное из группы, образованной семейством молекулярных сит типа кристаллического алюмосиликата, синтетических и натуральных цеолитов, таких, как цеолит Y, фторированный цеолит Y, цеолит Y, содержащий редкие земли, цеолит 10X, цеолит L, мелкопористый морденит, крупнопористый морденит, цеолиты омега, NU-10, ZSM-5, ZSM-48, ZSM-22, ZSM-23, ZBM-30, EU-1, EU-2, EU-11, бета, цеолит A, NU-87, NU-88, NU-86, NU-85, IM-5, IM-12, IZM-2 и ферьерит.
Из цеолитов обычно предпочтительно используют цеолиты, у которых отношение атомов каркаса кремний/алюминий (Si/Al) выше примерно 3:1.
Благоприятно использовать цеолиты со структурой фожазита, в частности, стабилизованные и ультрастабилизованные (USY) цеолиты Y, в форме либо по меньшей мере частично прошедшей через обмен с катионами металлов, например, катионами щелочноземельных металлов и/или с катионами редкоземельных металлов с атомными номерами с 57 по 71 включительно, либо в водородной форме (Zeolite Molecular Sieves Structure, Chemistry and Uses, D.W. BRECK, J.WILLEY and sons, 1973).
Предпочтительно, нанесенный катализатор содержит, в расчете на полную массу катализатора, NiO: от 0,01% до 25 вес.%, предпочтительно от 0,1 до 10 вес.%, WO3: от 4,99 до 50 вес.%, от полной массы катализатора, предпочтительно от 9,99 до 40 вес.%, и от 25 до 95 вес.% по меньшей мере одной кислой пористой минеральной матрицы, предпочтительно от 50 до 90 вес.% указанной матрицы.
Указанные катализаторы предпочтительно могут быть проанализированы методами ИК-, ЯМР-спектроскопии и спектроскопии рентгеновского рассеяния и путем элементного анализа с помощью рентгеновской флуоресценции.
Методы определения характеристик
Основные характеристики гетерополисоединения со структурой формулы (I), а именно, положение атомов никеля как противоиона в указанном гетерополисоединении и степень конденсации, то есть содержание октаэдров W в указанном гетерополисоединении из октаэдров вольфрама в структуре может быть определено по ЯМР 31P, 29Si, 11B, по спектроскопии комбинационного рассеяния и по рентгеновской флуоресценции (РФ).
Ядерный магнитный резонанс (RMN) является спектроскопическим методом, предназначенным для анализа структуры молекул, содержащих ядра с ненулевым спином. На резонансную частоту облучаемого ядра будет напрямую влиять его химическое окружение, поэтому, исходя из спектра, можно дойти до структуры или при недостатке получить частичную информацию о структуре. Наиболее изученными ядрами являются 1H, 13C1 14N, но ЯМР-анализ может также применяться к ядрам 31P, 29Si, 11B или же 183W.
Спектроскопия комбинационного рассеяния является неразрушающим методом анализа, который позволяет определить молекулярные структуры, исследовать аморфные или кристаллические системы и который особенно чувствителен к мелким структурам и, следовательно, вполне подходит для характеризации гетерополианионов.
Распределение и локализация составных элементов гидрирующей фазы может быть определена такими методами, как микрозонд Кастаинга (профиль распределения различных элементов), просвечивающая электронная микроскопия в сочетании с рентгенографическим анализом компонентов катализаторов (EDX), или же также путем установления картографии распределения элементов, присутствующих в катализаторе, с помощью электронного микрозонда. Эти методы позволяют обнаружить присутствие этих экзогенных элементов, добавленных после синтеза аморфного материала с иерархической и организованной структурой пористости, содержащего кремниевый компонент в катализаторе согласно изобретению. Этими методами может быть определено распределение и локализация вольфрама, никеля и групп, образованных элементами P, B и Si.
Суммарный состав катализатора по изобретению может быть определен рентгеновской флуоресценцией (РФ) на катализаторе в порошкообразном состоянии или атомно-адсорбционным анализом (AA) после кислотного травления катализатора.
Другой объект изобретения относится к способу получения указанного гетерополисоединения, состоящего из никелевой соли лакунарных гетерополианионов типа Кеггина, содержащей в своей структуре вольфрам, по одному из п.п.1-5, включающему следующие этапы:
1) синтез гетерополианиона структуры Кеггина, содержащего вольфрам, формулы:
Bax+y/2AW11-yO39-5/2y,zH2O | (I') |
в которой Ba есть барий, A выбран из фосфора, кремния и бора, W означает вольфрам, O означает кислород, y=0 или 2, x=3,5, если A означает фосфор, 4, если A означает кремний, 4,5, если A означает бор, и в дальнейшем x=m/2+2, и z есть число от 0 до 30,
реакцией гетерополивольфрамовых кислот HmAW12O40, в которых A выбран из фосфора, кремния и бора, H означает водород, W означает вольфрам, O означает кислород, и m равно 3, если A означает фосфор, m равно 4, если A означает кремний, и m равно 5, если A означает бор, к которым добавляют x+y/2 эквивалентов гидроксида бария (Ba(OH)2), чтобы получить соединения формулы Bax+y/2AW11-yO39-5/2y,zH2O (I') согласно следующему уравнению:
HmAW12O40+((m/2+2)+y/2)Ba(OH)2 Ba(m/2+2+y/2)AW11-yO39-5/2y+(y+1)HWO4 -+(y+1)H++(m+1-y/2)H2O
2) образование никелевой соли гетерополианиона структуры Кеггина, содержащей вольфрам, формулы Nix+y/2AW11-yO39-5/2y,zH2O (I), исходя из гетерополианиона структуры Кеггина, содержащего вольфрам, полученного на этапе 1), путем замещения катионов Ba2+ катионами Ni2+ в результате ионного обмена на катионообменных смолах, причем указанные катионообменные смолы предварительно подвергают обмену с катионами Ni2+.
Согласно одному предпочтительному варианту осуществления способа получения, полученный на этапе 1) гетерополианион структуры Кеггина, содержащий вольфрам, является гетерополианионом формулы BaxAW11O39,zH2O, а никелевая соль гетерополианиона структуры Кеггина, содержащего вольфрам, есть соединение формулы NixAW11O39,zH2O.
Согласно одному предпочтительному варианту осуществления способа получения, полученный на этапе 1) гетерополианион структуры Кеггина, содержащий вольфрам, является гетерополианионом формулы Bax+1AW9O34,zH2O, а никелевая соль гетерополианиона структуры Кеггина, содержащего вольфрама, есть соединение формулы Nix+1AW9O34,zH2O.
Согласно этапу 1) способа получения указанного гетерополисоединения по изобретению, гетерополифольфрамовые кислоты HmAW12O40, определенные выше, предпочтительно мгновенно растворяются при контакте с водой.
Введение гидроксида бария - основного соединения, благоприятно делает раствор менее кислым, и октаэдры вольфрама в исходных гетерополифольфрамовых кислотах деконденсируются, образуя соединения AW11O39 2x- или AW9O34 2(x+1)-, в которых, соответственно, A означает фосфор, когда исходной гетерополифольфрамовой кислотой является H3PW12O40, A означает кремний, когда исходной гетерополифольфрамовой кислотой является H4SiW12O40, и в котором A означает бор, когда исходной гетерополифольфрамовой кислотой является H5BW12O40. Тогда гетерополианионные структуры благоприятно окружены ионами Ba2+, чтобы компенсировать отрицательный заряд. Соединения формулы (I') благоприятно выпадают в осадок мгновенно или сразу после концентрирования раствора. Затем раствор предпочтительно фильтруют, и соединения формулы (I') предпочтительно выделяют.
Согласно этапу 2) способа получения указанного гетерополисоединения по изобретению, речь идет о замене всех катионов Ba2+ на катионы Ni2+, чтобы получить соединение формулы (I) из соединения (I'). Соединения формулы (I') благоприятно снова переводят в раствор при желаемой концентрации.
Ионный обмен на втором этапе 2 является процессом, благодаря которому ионы Ba2+ в положении противоиона в соединениях формул (I') и (II') в растворе благоприятно удаляются из указанного раствора в результате адсорбции на ионообменной смоле, чтобы заменить их на эквивалентное количество других ионов с таким же зарядом, выделяемых указанной смолой, здесь: катионы Ni2+. Ионы с противоположными зарядами, здесь: анионы формулы AW11O39 2x- или AW9O34 2(x+1)- (где A есть фосфор, кремний или бор), не затрагиваются, и указанные лакунарные анионные структуры типа Кеггина полностью сохраняются.
Для ускорения обмена ионообменные смолы благоприятно являются тонкодисперсными, чтобы иметь максимальную поверхность контакта с раствором; таким образом, используются ионообменные смолы с очень мелкими зернами.
Предпочтительно, используемые катионообменные смолы представляют собой кислые катионообменные смолы, функциональными группами которых благоприятно являются анионы типа сульфоната -SO3 -, карбоксилата -CO2 -, аминодиацетата -N(CH2CO2)2 -, фосфоната -PO3 2- или фосфината >PO2 -, и т.д.
Предпочтительно используются сильно кислые сульфоновые ионообменные смолы. В таком случае смолы благоприятно находятся в виде сульфоната полистирола, сшитого дивинилбензолом. Эти смолы выбираются предпочтительно за их разницу сродства между разными катионами, причем сродства расположены в таком порядке: H+<Na+<Ni2+<Ba2+. Вообще говоря, отмечалось, что когда хотят увеличить разницу сродства между несколькими ионами для одного и того же типа смол, необходимо повысить степень сшивки смолы.
Согласно этапу 2) указанного способа получения, указанные катионообменные смолы сначала подвергают обмену с катионами Ni2+.
Действительно, на покупной смоле, обычно поставляемой в протонированной форме (H+) или в форме Na+, необходимо провести обмен на ионы Ni2+, вводимые с помощью концентрированного раствора соли. Обычно сродство к катиону естественно повышается с ростом его заряда, и, таким образом, смола имеет следующий порядок сродства: H+<Ni2+ и Na+<Ni2+. Таким образом, указанный выше обмен облегчается. Этап 2 (обмен ионов Ba2+ в соединениях формулы (I') и (II')) в действительности проводится только тогда, когда в смоле полностью прошел обмен на ионы Ni2+.
Первая реакция обмена, которая даст смолу для реакции на этапе 2, благоприятно описывается уравнением:
2R-Na++Ni2+<->(R-)2Ni2++2Na+,
в которой R- означает например, сульфонатный центр SO3 -.
Таким образом, реакция обмена, которая осуществляется в ходе второго этапа, благоприятно записывается в виде:
(R-)2Ni2++Ba2+<->(R-)2Ba2++Ni2+
где R- означает, например, сульфонатный центр SO3 -.
Раствор на выходе из ионообменной смолы затем можно с выгодой использовать для прямой пропитки по меньшей мере одной подложки, образованной из по меньшей мере одной кислой пористой минеральной матрицы, или, факультативно, может предпочтительно выпариваться, чтобы сгустить раствор.
Нанесенные катализаторы согласно изобретению могут затем быть приготовлены любыми способами, известными специалисту, так как основные характеристики относительно положения никеля и степени конденсации октаэдров вольфрама в катализаторе в сухом состоянии получены.
Согласно изобретению, нанесенные катализаторы по настоящему изобретению готовятся в два этапа. Первый этап состоит в получении соли, соответствующей гетерополианиону, отвечающему формуле (I), состоящему, согласно способу получения указанного, определенного выше, гетерополисоединения, состоящего из никелевой соли лакунарных гетерополианионов типа Кеггина, содержащей в своей структуре вольфрам, а второй этап состоит в пропитке подложки.
Введение гетерополианиона в подложку, чтобы получить нанесенный катализатор, благоприятно может производиться классическим способом любым методом, известным специалисту, до, во время или после формования подложки. Предпочтительно, гетерополианион вводят в формованную подложку хорошо известным методом сухой пропитки, в котором a) подложку, например, покупной алюмосиликат, благоприятно пропитывают водным раствором, содержащим необходимое количество гетерополианионов и, возможно, молибден и/или вольфрам, введенный в другой форме, и, возможно, другой элемент группы VIII, введенный в другой форме, b) влажное твердое вещество благоприятно оставляют выдерживаться во влажной атмосфере при температуре от 10 до 80°C, c) твердое вещество, полученное на этапе b), предпочтительно сушат при пониженном или не пониженном давлении и при температуре от 50 до 300°C, и d) твердое вещество, полученное на этапе c), обжигают при температуре от 300 до 1000°C, более точно от 300 до 550°C, в течение 1-24 часов, предпочтительно в течение 2-6 часов, в окислительной (например, воздух или кислород), нейтральной (например, азот или аргон) или восстановительной (например, водород) атмосфере.
Чтобы повысить содержание никеля и вольфрама в конечном катализаторе, можно провести несколько пропиток. В этом возможном варианте катализатор, предварительно пропитанный первый раз, затем предпочтительно сушат в таких же условиях, какие описаны выше и, дополнительно, обжигают в тех же условиях, как описано выше. Затем его преимущественно пропитывают второй раз водным раствором, содержащим гетерополианионы формулы (I). Пропитки можно повторить столько раз, сколько требуется.
Катализаторы согласно изобретению благоприятно могут быть произведены и применяться в виде порошка, уплотненного, измельченного просеянного порошка, лепешек, гранул, таблеток, колец, дроби, колес, сфер или экструдатов, предпочтительно в виде уплотненного, измельченного просеянного порошка, сфер или экструдатов. Однако, выгодно, чтобы катализатор находится в виде экструдатов с диаметром от 0,5 до 5 мм, в частности, от 0,7 до 2,5 мм. Формы являются цилиндрическими (которые могут быть полыми или нет), скрученными цилиндрическими, многодольчатыми (например 2, 3, 4 или 5 лепестков) кольцевыми. Предпочтительно применяется цилиндрическая форма, но могут использоваться и любые другие формы.
Объектом настоящего изобретения является также применение указанного катализатора, содержащего указанное гетерополисоединение в процессе гидрокрекинга, гидроконверсии и/или гидроочистки.
Катализаторы, применяющиеся в области гидрокрекинга, являются бифункциональными катализаторами, сочетающими кислотную функцию (вносимую подложкой) и гидрирующую-дегидрирующую функцию (обеспечиваемую сульфидами металлов). Кислотная функция участвует в реакциях изомеризации и крекинга, тогда как гидрирующая-дегидрирующая функция будет участвовать в реакциях собственно гидроочистки, то есть HDN, HDS и HDA (гидродеароматизация).
Любая реакция гидрокрекинга начинается с этапа, запускающего реакцию гидрирования или реакцию дегидрирования, в которой участвует металлический гидрирующей-дегидрирующей центр.
Так, первый этап крекинга парафина начинается с образования олефина из парафина через реакцию дегидрирования.
Первый этап крекинга ароматического ядра начинается с гидрирования ароматического цикла, так как бензольное ядро труднее крекировать, чем такое же гидрированное ядро.
Гидрокрекинг вакуумных дистиллятов (DSV) является ключевым способом, избирательно приводящим к средним дистиллятам (газойль и керосин) отличного качества. Селективность катализатора будет определяться выбором баланса между силой и числом кислотных центров и качеством гидрирующей функции. Так, слабая крекирующая функция с сильной гидрирующей функцией позволит избежать избыточного крекинга и позволит иметь более высокую селективность по средним дистиллятам. Для сравнения, сильная крекирующая функция со слабой гидрирующей функцией будет способствовать избыточному крекингу и образованию легких фракций и даже газов.
Наконец, качество фракции средних дистиллятов сильно зависит от гидрирующей-дегидрирующей функции и ее способности гидрировать ароматические циклы и повышать отношение H/C. Точка появления копоти у керосинов (PF>25 мм) обусловлена, в частности, ограниченным содержанием ароматики, не превышающим 20%. Цетановое число газойля (IC≥51) также обусловлено низким содержанием ароматики, иначе не достигается соответствие техническим требованиям.
Именно по всем этим причинам, относящимся к идее катализатора, эксперт будет стараться получить как можно более сильную гидрирующую-дегидрирующую функцию.
Способы обработки углеводородного сырья согласно изобретению
Катализаторы согласно изобретению с выгодой применяются для обработки углеводородных фракций, обычно в присутствии водорода, при температуре выше