Анти-mif антитела

Иллюстрации

Показать все

Изобретение относится к области биотехнологии и иммунологии. Предложено моноклональное антитело и его антиген-связывающие части, которые специфически связывают C-концевую или центральную область фактора ингибирования миграции макрофагов (MIF). Анти-MIF антитело и его антиген-связывающая часть дополнительно ингибируют биологическую функцию MIF человека. Также описаны выделенная тяжелая и легкая цепь иммуноглобулинов, полученных из анти-MIF антител, и молекулы нуклеиновых кислот, кодирующие такие иммуноглобулины. Кроме того, раскрыт способ идентификации анти-MIF антител, фармацевтические композиции, содержащие эти антитела, и способ применения этих антител и композиций для лечения заболеваний, связанных с MIF. 9 н. и 13 з.п. ф-лы, 10 ил., 16 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к моноклональным антителам и их антиген-связывающим частям, которые специфически связывают С-концевую часть или центральную область фактора ингибирования миграции макрофагов (MIF). Эти анти-MIF антитела и их антиген-связывающие части дополнительно ингибируют биологическую функцию MIF человека. Изобретение также относится к выделенным тяжелым и легким цепям иммуноглобулинов, полученных из анти-MIF антител, и молекулам нуклеиновых кислот, кодирующим такие иммуноглобулины. Настоящее изобретение также относится к способу идентификации анти-MIF антител, фармацевтическим композициям, содержащим эти антитела, и способу применения этих антител и композиций для лечения заболеваний, связанных с MIF.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Фактор ингибирования миграции макрофагов (MIF) представляет собой цитокин, первоначально выделенный благодаря своей способности ингибировать случайную миграцию макрофагов in vitro (Bloom et al. Science 1966, 153, 80-2; David et al. PNAS 1966, 56, 72-7). Хотя MIF был известен с 1966 года, его точная функция в большинстве клеток не была известна, но, по-видимому, MIF является ключевым регулятором, функционирующим в начале каскада врожденного и приобретенного иммунного ответа.

кДНК MIF человека была клонирована в 1989 году (Weiser et al., PNAS 1989, 86, 7522-6), а местоположение его гена было картировано на 22 хромосоме. Продуктом гена MIF является аминокислотный белок с молекулярной массой 12,5 кД. Белок является высоко консервативным: гомология по последовательности между MIF человека, мыши, крысы и быка составляет 90-96%. Однако с другими белками MIF не имеет существенной гомологии. Трехмерная структура MIF не похожа на структуру любого другого цитокина или гипофизарного гормона. Белок кристаллизуется в виде тримера из идентичных субъединиц. Каждый мономер содержит две антипараллельные альфа-спирали, которые упакованы против четырех параллельных бета-слоев. Мономер имеет два дополнительных бета-слоя, которые взаимодействуют с бета-слоями прилегающих субъединиц, образуя границу между мономерами. Три бета-слоя расположены так, что они образуют бочку, включающую доступный для растворителей канал, проходящий через центр белка вдоль молекулярной оси симметрии третьего порядка (Sun et al. PNAS 1996, 93, 5191-5196).

Было опубликовано, что секрецию MIF макрофагами индуцируют очень низкие концентрации глюкокортикоидов (Calandra et al. Nature 1995, 377, 68-71). Однако как провоспалительный цитокин MIF также противодействует эффектам (является контр-регулятором) глюкокортикоидов и стимулирует секрецию других цитокинов, таких как фактор некроза опухолей TNF-α и интерлейкин IL-1β (Baugh et al. Crit Care Med 2002, 30, S27-35), что позволяет предположить его участие в патогенезе воспалительных и иммунных заболеваний. MIF также напрямую ассоциирован с ростом лимфомы, меланомы и рака толстой кишки (Nishihira et al. J Interferon Cytokine Res. 2000, 20:751-62).

MIF является медиатором многих патологических состояний, и, поэтому, ассоциирован с множеством заболеваний, включая воспалительное заболевание кишечника (IBD), ревматоидный артрит (RA), синдром острой дыхательной недостаточности (ARDS), астму, гломерулонефрит, IgA-нефропатию, рак, инфаркт миокарда (MI) и сепсис.

Против рекомбинантного MIF человека были получены поликлональные и моноклональные анти-MIF антитела (Shimizu et al., FEBS Lett. 1996, 381, 199-202; Kawaguchi et al., J. Leukoc. Biol. 1986, 39, 223-232; и Weiser et al., Cell. Immunol. 1985, 90, 167-78).

В терапии было предложено использовать анти-MIF антитела для ингибирования высвобождения TNF-α. Было опубликовано, что группа Calandra et al. (J. Inflamm. 1995. 47, 39-51) использовала антитела к MIF для защиты животных от септического шока, экспериментально вызванного грам-положительными и грам-отрицательными бактериями. Было предложено использовать анти-MIF антитела в качестве терапевтического средства для модулирования продукции цитокинов при септическом шоке и других воспалительных заболеваниях.

В патенте США № 6645493 раскрыты моноклональные анти-MIF антитела, полученные из клеток гибридомы, которые нейтрализуют биологическую активность MIF. На животной модели можно показать, что эти мышиные анти-MIF антитела обладают полезным эффектом при лечении эндотоксинового шока. Некоторые из описанных антител к MIF (III. D.9, XIV.14.3 и XIV.15.5) использовались в настоящем изобретении для сравнительных экспериментов.

В US 2003/0235584 раскрыты способы получения высокоаффинных антител к MIF с использованием животных, у которых проведен гомозиготный нокаут гена MIF.

В 1994 г. группой Galat et al. был описан фактор, ингибирующий гликозилирование (GIF) (Eur. J. Biochem. 1994, 224, 417-21). В настоящий момент известно, что MIF и GIF идентичны. Группой Watarai et al. (PNAS 2000, 97, 13251-6) были описаны поликлональные антитела, связывающие различные эпитопы GIF, для идентификации биохимической природы пост-трансляционной модификации GIF в клетках Ts. Группой Watarai et al. (PNAS 2000, 97, 13251-6) было опубликовано, что GIF присутствует в различных конформационных изоформах in vitro. Один тип изомера возникает в результате химической модификации единственного остатка цистеина. Химическая модификация приводит к конформационным изменениям в белке GIF и меняет его биологическую функцию.

Принимая во внимание сложную роль MIF в различных заболеваниях, весьма желательно выяснить функции эпитоп-специфичных антител к MIF и их применение в терапии. Таким образом, для лечения заболеваний и состояний, опосредованных MIF, необходимы эпитоп-специфичные анти-MIF антитела, которые ингибируют биологическую функцию MIF человека.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к антителам и их антиген-связывающим частям, которые специфично связывают С-концевую или центральную область фактора ингибирования миграции макрофагов (MIF).

Изобретение дополнительно относится к молекулам нуклеиновых кислот, кодирующим эти антитела или их антиген-связывающие части, а также к векторам, включающим такую нуклеиновую кислоту, и к клеткам-хозяевам, включающим такой вектор, а также к способам рекомбинантного получения полипептидов, кодируемых молекулами нуклеиновых кислот.

Изобретение также относится к фармацевтическим композициям, содержащим анти-MIF антитело или его антиген-связывающую часть. Фармацевтическая композиция может также содержать фармацевтически приемлемый носитель или другие терапевтические средства.

Изобретение также относится к применению анти-MIF антитела или его антиген-связывающей части в изготовлении лекарственного средства для лечения иммунологических заболеваний, таких как воспалительные заболевания и гиперпролиферативные нарушения.

Изобретение дополнительно относится к анти-MIF антителу или его антиген-связывающей части для применения в лечении иммунологических заболеваний, таких как воспалительные заболевания и гиперпролиферативные нарушения.

Изобретение также относится к способам лечения ряда иммунологических заболеваний и состояний, таких как воспалительные заболевания и гиперпролиферативные нарушения, с помощью эффективного количества анти-MIF антитела или его антиген-связывающей части.

Изобретение также относится к способам диагностики. Анти-MIF антитело или его антиген-связывающую часть можно использовать для детекции MIF в биологическом образце.

Изобретение дополнительно относится к способу идентификации анти-MIF антитела, способного ингибировать активный MIF и вызывать полезный эффект в животной модели.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 показана аминокислотная последовательность вариабельной области легкой цепи анти-MIF антитела человека по изобретению.

На Фиг.2 показана аминокислотная последовательность вариабельной области тяжелой цепи анти-MIF антитела человека по изобретению.

На Фиг.3 показана ДНК-последовательность и ее трансляция вариабельной области легкой цепи анти-MIF антител человека по изобретению.

На Фиг.4 показана ДНК-последовательность и ее трансляция вариабельной области тяжелой цепи анти-MIF антител человека по изобретению.

На Фиг.5 показано конкурентное связывание мышиного антитела III. D.9 относительно контрольного антитела (C3) и анти-MIF антитела, Bax94. При увеличении количества антитела Вах94 можно наблюдать явную конкуренцию.

На Фиг.6 показано, что антитело Вах94 (точечная линия) и антитело Вах152 (пунктирная линя) увеличивают выживаемость и задерживают время смерти в животной модели перитонита по сравнению с контрольным антителом (С3).

На Фиг.7 показано дифференциальное связывание антитела Вах94 с активным и неактивным MIF. Антитело Вах94 связывает активный MIF в прямом ELISA, при этом не связывая неактивный MIF.

На Фиг.8 приведена таблица, в которой обобщены in vitro свойства анти-MIF антител.

На Фиг.9 показаны проапоптотические эффекты анти-MIF антител на клетки. Показана активность клеточной каспазы-3 (эффекторной каспазы) после обработки клеток РС-3 антителами. Анализ проводили в трех повторах, и данные представлены в виде среднего значения ± SD (стандартное отклонение).

На Фиг.10 показан анти-инвазивные эффекты анти-MIF антител. Исследовали инвазию клеток рака простаты PC-3 через поры покрытых матригелем вкладышей Transwell™. Подсчитывали число проникших клеток в видимом поле (микроскопа при 400-кратном увеличении). Данные представлены в виде среднего ± SD из 3-10 подсчетов клеток в видимом поле, а также показаны значимые различия.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения и общие методики

Если в настоящем документе не указано иное, то научные и технические термины, используемые применительно к настоящему изобретению, будут иметь значение, обычно понимаемое средними специалистами в данной области. Обычно описанными в настоящем документе номенклатурами, используемыми применительно к культивированию клеток и тканей, молекулярной биологии, иммунологии, микробиологии, генетики и химии белка и нуклеиновых кислот (а также используемыми методиками) являются хорошо известные и обычно применяемые в данной области. Способы и методики по настоящему изобретению обычно проводят стандартными способами, хорошо известными в данной области и описанными в ряде общих и более конкретных источниках, на которые даны ссылки и которые описаны в настоящей спецификации, если не указано иное. См., например, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y. (1989); Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992); и Harlow and Lane Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y. (1990); которые включены в настоящее описание путем ссылки.

«MIF» или «фактор ингибирования миграции макрофагов» относится к белку, который известен как ключевой медиатор в иммунном и воспалительном ответе, особенно в качестве конт-регулятора действия глюкокортикоидов. MIF включает MIF млекопитающих, в частности, MIF человека (первичный номер доступа в базе данных Swiss-Prot: P14174), у которого мономерная форма кодирована в виде 115-аминокислотного белка, а продуцируется в виде 114-аминокислотного белка вследствие отщепления первого метионина. «MIF» также включает «GIF» (фактор, ингибирующий гликозилирование) и другие формы MIF, такие как слитые белки MIF. Нумерация аминокислот MIF начинается с N-концевого метионина (аминокислота 1) и заканчивается С-концевым аланином (аминокислота 115).

Термин «активный MIF» относится к природным конформационным изоформам MIF, которые важны вследствие своих биологических функций. Активный MIF включает изоформы, которые находятся на поверхности клеток (таких как ТНР1 и т.п.). Активный MIF также включает изоформы MIF, встречающиеся в сыворотке млекопитающих после бактериальной инфекции.

«Антитело» относится к интактному антителу и антиген-связывающей части, которая конкурирует с интактным антителом за специфическое связывание. В общем, см. Fundamental Immunology, Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989)) (включенную путем ссылки). Термин «антитело» включает полученные генно-инженерными способами формы, такие как химерные или гуманизированные антитела.

Термин «антиген-связывающая часть» антитела относится к одному или нескольким фрагментам антитела, которые сохраняют способность специфически связывать антиген (например, MIF). Антиген-связывающие части могут быть получены с помощью методик рекомбинантных ДНК или ферментативного или химического расщепления интактных антител. Антиген-связывающие части включают Fab, Fab', F(ab')2, Fv и определяющую комплементарность область (CDR), одноцепочечные антитела (scFv), химерные антитела, диатела и полипептиды, которые содержат, по меньшей мере, часть антитела, достаточный для специфического связывания антигена с полипептидом. Начиная с N-конца и до С-конца оба зрелых вариабельных домена легкой и тяжелой цепей содержат области FR1, CDR1, FR2, CDR2, FR3, CDR3 и FR4. Распределение аминокислот по доменам дано в соответствии с определениями, изложенными в Kabat, Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987 and 1991)), Chothia et. al. J. Mol. Biol. 196:901-917 (1987), или Chothia et al., Nature 342:878-883 (1989). Антитело или его антиген-связывающая часть может быть модифицировано или связано с другой функциональной молекулой (например, другим пептидом или белком). Например, антитело или его антиген-связывающая часть может быть функционально связано с одной или несколькими молекулами, такими как другое антитело (примером является антитело с двойной специфичностью или диатело), или детектируемым агентом, цитотоксическим агентом, фармацевтическим агентом и/или линкерной молекулой.

Термин «антитело человека» относится к антителу, в котором последовательности вариабельных и константных доменов являются последовательностями человека. Термин охватывает антитела с последовательностями, полученными из генов человека, но которые были изменены, например, для уменьшения возможной иммуногенности, увеличения аффинности, удаления цистеинов, которые могут вызывать нежелательный фолдинг белков, и т.д. Термин охватывает такие антитела, полученные рекомбинантным способом в клетках организмов отличных от человека, которые могут давать не типичное для клеток человека гликозилирование.

Термин «гуманизированное антитело» относится к иммуноглобулинам, цепям иммуноглобулинов или их фрагментам (таким как Fv, Fab, Fab', F(ab')2, или другие антиген-связывающие части антител), которые содержат последовательности из иммуноглобулинов организмов, отличных от человека.

Термин «химерное антитело» относится к антителу, которое содержит области антител одного или нескольких различных биологических видов.

Термин «выделенное антитело» или «выделенная его антиген-связывающая часть» относится к антителу или его антиген-связывающей части, которые были идентифицированы и выделены из источника получения антител, такого как библиотека фагового дисплея или В-клеточный репертуар.

Термин «KD» относится к константе равновесия диссоциации Fab-части конкретного антитела с соответствующим антигеном.

Термины «центральная области» и «С-концевая область» MIF относятся к области MIF человека, включающей аминокислоты 35-68 и 86-115, соответственно.

Термин «эпитоп» включает любую белковую детерминанту, способную специфически связывать иммуноглобулин или фрагмент антитела. Эпитопные детерминанты обычно состоят из химически активных поверхностных группировок молекул, таких как экспонированные аминокислоты, аминосахара или другие углеводные боковые цепи, и обычно имеют определенные трехмерные структурные характеристики, а также определенные характеристики заряда.

Термин «вектор» относится к молекуле нуклеиновой кислоты, способной переносить другую нуклеиновую кислоту, с которой она связана. В некоторых вариантах осуществления изобретения вектор представляет собой плазмиду, т.е. кольцевую двухцепочечную петлю ДНК, в которую можно лигировать дополнительные фрагменты ДНК.

Термин «клетка-хозяин» относится к клеточной линии, способной продуцировать рекомбинантный белок после введения экспрессионного вектора. Термин «рекомбинантная клеточная линия» относится к клеточной линии, в которую введен рекомбинантный экспрессионный вектор. Следует понимать, что «рекомбинантная клеточная линия» означает не только конкретную используемую клеточную линию, но также и потомство такой клеточной линии. Поскольку в последующих поколениях могут возникнуть некоторые модификации вследствие либо мутации, либо влияния внешней среды, такое потомство в реальности может быть неидентично родительской клетке, но все равно включено в объем термина «рекомбинантная клеточная линия», используемого в настоящем описании.

Термин «фармацевтически приемлемый носитель» относится к любому и всем растворителям, дисперсионным средам, оболочкам, антибактериальным и противогрибковым агентам, изотоническим и задерживающим абсорбцию агентам, и т.п., которые являются физиологически совместимыми.

Анти-MIF антитела

В одном варианте осуществления изобретение относится к выделенным моноклональным антителам или их антиген-связывающим частям, которые специфически связывают С-концевую или центральную области MIF человека и дополнительно ингибируют биологическую функцию MIF. В некоторых вариантах осуществления изобретения моноклональными антителами является моноклональные антитела человека. В других вариантах осуществления изобретения моноклональными антителами являются гуманизированные моноклональные антитела.

В некоторых вариантах осуществления изобретения легкая цепь анти-MIF антитела содержит аминокислотную последовательность, которая тождественна аминокислотной последовательности VL антитела Bax8 (SEQ ID NO: 1), антитела Bax69 (SEQ ID NO: 2), антитела Bax74 (SEQ ID NO: 3), антитела Bax94 (SEQ ID NO: 4), антитела Bax152 (SEQ ID NO: 5), антитела BaxA10 (SEQ ID NO: 6), или аминокислотной последовательности, которая имеет 85%, предпочтительно, 90% гомологии по последовательности с указанными аминокислотными последовательностями. В некоторых вариантах осуществления изобретения легкая цепь содержит аминокислотную последовательность от начала CDR1 до конца CDR3 любого одного из указанных антител. В некоторых вариантах осуществления изобретения легкая цепь анти-MIF антитела содержит, по меньшей мере, CDR1, CDR2 или CDR3 легкой цепи аминокислотных последовательностей, показанных на Фиг.1.

В некоторых вариантах осуществления изобретения тяжелая цепь содержит аминокислотную последовательность вариабельного домена (VH) антитела Bax8 (SEQ ID NO: 7), антитела Bax69 (SEQ ID NO: 8), антитела Bax74 (SEQ ID NO: 9), антитела Bax94 (SEQ ID NO: 10), антитела Bax152 (SEQ ID NO: 12), антитела BaxA10 (SEQ ID NO: 12), или аминокислотной последовательности, которая имеет 85%, предпочтительно, 90% гомологии по последовательности с указанными аминокислотными последовательностями. В некоторых вариантах осуществления изобретения тяжелая цепь содержит аминокислотную последовательность от начала CDR1 до конца CDR3 любого одного из указанных антител. В некоторых вариантах осуществления изобретения тяжелая цепь анти-MIF антитела содержит, по меньшей мере, CDR1, CDR2 или CDR3 тяжелой цепи аминокислотных последовательностей, показанных на Фиг.2.

Класс и подкласс анти-MIF антител

Анти-MIF антитело по изобретению представляет собой выделенное моноклональное антитело. Анти-MIF антитело может быть молекулой IgG, IgM, IgE, IgA или IgD. В других вариантах осуществления изобретения анти-MIF антитело является IgG и представляет собой подкласс IgG1, IgG2, IgG3 или IgG4. В других вариантах осуществления изобретения антитело принадлежит к подклассу либо IgG1, либо IgG4. В других вариантах осуществления изобретения антитело принадлежит к подклассу IgG4. В некоторых вариантах осуществления изобретения антитело IgG4 имеет единственную мутацию, меняющую серин (серин 228, по схеме нумерации Kabat) на пролин. Соответственно, субпоследовательность CPSC в Fc-области IgG4 становится СРРС, которая соответствует последовательности в IgG1 (Angal et al. Mol. Immunol. 1993, 30, 105-108).

Эпитопы MIF, узнаваемые анти-MIF антителами

В некоторых вариантах осуществления изобретение относится к анти-MIF антителам или их антиген-связывающим частям, специфически связывающим области 35-68-й или 86-115-й аминокислот MIF человека, соответственно, предпочтительно, анти-MIF антитела специфически связывают области от 50-й до 68-й или от 86-й до 102-й аминокислоты, соответственно, и ингибируют биологическую функцию MIF человека.

В других вариантах осуществления изобретение относится к анти-MIF антителам, которые специфически связывают активный MIF и дополнительно ингибируют биологическую функцию MIF. В некоторых вариантах осуществления изобретения активный MIF является мембраносвязанным.

Неожиданно оказалось, что в изучении связывания с MIF человека анти-MIF антитела по изобретению способны конкурировать с анти-MIF антителом III.D.9. Конкуренцию с III.D.9 можно определить, как описано в примере 5.

Аффинность связывания анти-MIF антител с MIF человека

Изобретение относится к анти-MIF антителам или их антиген-связывающим частям, которые связывают MIF человека с KD 5×10-7 M или меньше. В других вариантах осуществления изобретения антитела связывают MIF человека с KD 5×10-8 M или меньше, 5×10-9 M или меньше или 5×10-10 M или меньше.

Аффинность связывания анти-MIF антител или их антиген-связывающих частей с MIF человека можно определить способами, известными в данной области. Например, аффинность связывания можно измерить с помощью поверхностного плазменного резонанса (BIACORE). В примере 10 приведен способ определения констант аффинности анти-MIF антител с помощью методики BIACORE.

В некоторых вариантах осуществления изобретение дополнительно относится к анти-MIF антителам или их антиген-связывающим частям, которые связывают активный MIF с KD меньше 500 нМ и дополнительно ингибируют биологическую функцию MIF человека. В некоторых вариантах осуществления изобретения анти-MIF антитела или их антиген-связывающие части связывают активный MIF с KD меньше 50 нМ.

Получение анти-MIF антител

Анти-MIF антитела или их антиген-связывающие части по настоящему изобретению можно получить многими способами, известными специалисту в данной области, такими как скрининг библиотек фагового дисплея или фрагментов антител. Можно использовать различные форматы библиотек фагового дисплея, например, библиотеки scFv- или Fab-фрагментов и т.п. Скрининг библиотеки фагового дисплея проводят для поиска фрагментов антител с желаемой аффинностью к некоторым эпитопам, и генетический материал выделяют из соответствующего клона. В последовательных раундах создания и скрининга библиотек можно выделить фрагмент антитела с увеличенной аффинностью по сравнению с аффинностью исходно выделенного фрагмента антитела. Аффинность идентифицированного анти-MIF фрагмента можно дополнительно повысить с помощью созревания аффинности.

Нуклеиновые кислоты, векторы, клетки-хозяева и рекомбинантные способы изготовления анти-MIF антител

Изобретение дополнительно относится к молекулам нуклеиновых кислот, кодирующим анти-MIF антитела или их антиген-связывающие части по настоящему изобретению, а также к векторам, включающим такую нуклеиновую кислоту, и к клеткам-хозяевам, содержащим такой вектор, а также к способам рекомбинантного получения полипептида, кодируемого молекулой нуклеиновой кислоты.

В некоторых вариантах осуществления изобретения ДНК-последовательность, кодирующая VL-область анти-MIF антитела, включает нуклеотидную последовательность, которая тождественна последовательности VL антитела Bax8 (SEQ ID NO: 13), антитела Bax69 (SEQ ID NO: 14), антитела Bax74 (SEQ ID NO: 15), антитела Bax94 (SEQ ID NO: 16), антитела Bax152 (SEQ ID NO: 17), антитела BaxA10 (SEQ ID NO: 18), показанных на Фиг.3, или последовательности, которая имеет 85%, предпочтительно, 90% гомологии по последовательности с любой из указанных нуклеотидных последовательностей.

В некоторых вариантах осуществления изобретения ДНК-последовательность, кодирующая VH-область анти-MIF антитела, включает нуклеотидную последовательность, которая тождественна последовательности VH антитела Bax8 (SEQ ID NO: 19), антитела Bax69 (SEQ ID NO: 20), антитела Bax74 (SEQ ID NO: 21), антитела Bax94 (SEQ ID NO: 22), антитела Bax152 (SEQ ID NO: 23), антитела BaxA10 (SEQ ID NO: 24), показанных на Фиг.4, или последовательности, которая имеет 85%, предпочтительно, 90% гомологии по последовательности с любой из указанных нуклеотидных последовательностей.

Получение анти-MIF антител по настоящему изобретению включает любой способ получения рекомбинантной ДНК с помощью генной инженерии, например, посредством обратной транскрипции РНК и/или амплификации ДНК и клонирования в экспрессионный вектор.

В некоторых вариантах осуществления изобретения вектор является вирусным вектором, в котором дополнительные сегменты ДНК можно лигировать в вирусный геном. В некоторых вариантах осуществления изобретения вектор способен к автономной репликации в клетке-хозяине, в которую он введен (например, бактериальные векторы, имеющие бактериальную точку инициации репликации, или эписомальные векторы млекопитающих). В других вариантах осуществления изобретения вектор (например, неэписомальные векторы млекопитающих) может встраиваться в геном клетки-хозяина после введения в клетку-хозяина, и, таким образом, может реплицироваться вместе с геномом хозяина. Более того, некоторые векторы способны направлять экспрессию генов, с которыми они функционально связаны. Такие векторы именуются в настоящем описании как «рекомбинантные экспрессионные векторы» (или просто, «экспрессионные векторы»).

Анти-MIF антитела можно получить с помощью обычных экспрессионных векторов, таких как бактериальные векторы (например, pBR322 и его производные) или эукариотические векторы. Эти последовательности, кодирующие антитело, могут быть представлены с регуляторными последовательностями, которые регулируют репликацию, экспрессию и/или секрецию из клетки-хозяина. Эти регуляторные последовательности, включают, например, промоторы (например, промоторы CMV или SV40) и сигнальные последовательности. Экспрессионные векторы также могут включать селекционные и амплификационные маркеры, такие как ген дигидрофолатредуктазы (DHFR), гигромицин-B-фосфотрансферазы и тимидинкиназы. Используемые компоненты векторов, такие как селекционные маркеры, репликоны, энхансеры можно либо приобрести в продаже, либо получить с помощью стандартных способов. Векторы могут быть сконструированы для экспрессии в различных клеточных культурах, например, в клетках млекопитающих, таких как CHO, COS, HEK293, NS0, фибробласты, клетках насекомых, дрожжей и бактерий, таких как E. coli. В некоторых случаях используют клетки, которые позволяют оптимальное гликозилирование экспрессированного белка.

Ген легкой цепи анти-MIF антитела и ген тяжелой цепи анти-MIF антитела можно встроить в отдельные векторы, или можно встроить оба гена в один экспрессионный вектор. Гены антитела встраивают в экспрессионный вектор стандартными способами, например, лигированием по комплементарным сайтам рестрикции на фрагменте гена антитела и векторе, или лигированием по «тупым» концам, если сайты рестрикции отсутствуют.

Получение анти-MIF антител или их антиген-связывающих частей может включать любой известный в данной области способ введения рекомбинантной ДНК в эукариотические клетки с помощью трансфекции, например, посредством электропорации или микроинъекции. Например, рекомбинантную экспрессию анти-MIF антитела можно получить введением экспрессионной плазмиды, содержащей кодирующую анти-MIF антитело последовательность ДНК под контролем одной или нескольких регуляторных последовательностей, таких как сильный промотор, в подходящую клеточную линию-хозяина с помощью соответствующего способа трансфекции, что в результате приводит к клеткам, имеющим введенные последовательности, стабильно интегрированные в геном. Липофекционный способ является примером способа трансфекции, который можно использовать по настоящему изобретению.

Получение анти-MIF антител может также включать любой известный в данной области способ культивирования указанных трансформированных клеток, например, непрерывным или периодическим способом, и экспрессию анти-MIF антитела, например, конститутивную или индуцируемую.

Клеткой-хозяином по настоящему изобретению может быть любая эукариотическая клетка. В одном варианте осуществления изобретения клеткой является клетка млекопитающего со способностью проводить пост-трансляционные модификации анти-MIF антител. Например, указанную клетку млекопитающего получают из клеточной линии млекопитающего, как, например, клеточной линии, выбранной из группы, состоящей из клеток SkHep, CHO, HEK293 и ВНК. В одном варианте осуществления изобретения анти-MIF антитело экспрессируется в клеточной линии СНО, лишенной DHFR, например, DXB11, с добавлением G418 в качестве селекционного маркера. При введении рекомбинантных экспрессионных векторов, кодирующих гены антител, в клетки-хозяева млекопитающих антитела получают культивированием клеток-хозяев в течение времени, достаточного для экспрессии антитела в клетках-хозяевах или секреции антитела в культуральную среду, в которой растут клетки-хозяева.

Анти-MIF антитела можно выделить из культуральной среды с использованием стандартных способов очистки белков.

В дополнение, получение анти-MIF антител может включать любой известный в данной области способ очистки антител, например, с помощью анион-обменной хроматографии или аффинной хроматографии. В одном варианте осуществления изобретения анти-MIF антитело можно очистить из супернатантов культуры клеток с помощью гель-фильтрации.

Свойства анти-MIF антител

Изобретение относится к анти-MIF антителам или их антиген-связывающей части, которые обладают, по меньшей мере, одним из следующих свойств:

а) связываются с С-концевой или центральной областью MIF человека;

б) ингибируют подавляющую активность глюкокортикоидов (GCO);

в) ингибируют пролиферацию клеточных линий, таких как фибробласты или раковые клетки (например, NIH/3T3 или PC-3);

г) связываются с активным MIF;

д) не связываются с неактивным MIF;

е) конкурируют с мышиным анти-MIF антителом III.D.9.

В некоторых вариантах осуществления изобретения активным MIF является изоформа активного MIF, которая возникает в результате обработки MIF человека мягкими окислителями, такими как цистин, или в результате иммобилизации MIF человека на подложке, такой как планшет для ELISA или шарики. В других вариантах осуществления изобретения активным MIF является изоформа активного MIF, которая встречается in vivo после бактериальной инфекции у животных. В других вариантах осуществления изобретения активным MIF является изоформа активного MIF, которая встречается in vivo на поверхности клеток (например, THP1, CFB).

В некоторых вариантах осуществления изобретения неактивным MIF является восстановленный MIF (например, описанный в примере 7) или внутриклеточный MIF.

В других вариантах осуществления изобретения анти-MIF антитела или их антиген-связывающую часть связывают активный MIF с KD меньше 500 нМ.

Фармацевтические композиции анти-MIF антител и способы лечения

Изобретение также относится к композициям, содержащим анти-MIF антитело или его антиген-связывающую часть, для лечения субъекта, нуждающегося в лечении связанных с MIF заболеваний, а именно, иммунологических заболеваний, таких как воспалительные заболевания и гиперпролиферативные нарушения.

В некоторых вариантах осуществления изобретения субъектом, нуждающимся в лечении, является человек. Гиперпролиферативные нарушения, такие как раковые заболевания, которые можно лечить с помощью анти-MIF антител по изобретению, могут затрагивать любую ткань или орган и включают, но не ограничены этим, раковые заболевания головного мозга, легких, сквамозных клеток, мочевого пузыря, желудка, поджелудочной железы, молочных желез, головы, шеи, печени, почек, яичников, простаты, толстой и прямой кишки, пищевода, гинекологический рак, рак носоглотки или щитовидной железы, меланомы, лимфомы, лейкемии или множественные миеломы. В частности, анти-MIF антитела по изобретению пригодны для лечения карцином молочных желез, простаты, толстой кишки и легких.

Изобретение также охватывает способы лечения у субъекта, включая человека, воспалительных заболеваний, таких как васкулит, артрит, сепсис, септический шок, эндотоксиновый шок, синдром токсического шока, приобретенный синдром дыхательной недостаточности, гломерулонефрит, воспалительное заболевание кишечника, болезнь Крона, язвенный колит, перитонит, нефрит, атопический дерматит, астма, конъюнктивит, жар, малярия или псориаз, которые включают стадию введения указанному субъекту, нуждающемуся в этом, терапевтически эффективного количества анти-MIF антитела или его антиген-связывающей части.

В других вариантах осуществления изобретения композицию, содержащую указанное анти-MIF антитело по изобретению, используют для лечения воспалительного заболевания, выбранного из группы, состоящей из гломерулонефрита, воспалительного заболевания желудка, нефрита и перитонита.

Лечение может также включать введение одного или нескольких анти-MIF антител по изобретению или их антиген-связывающих частей, отдельно или с фармацевтически приемлемым носителем. Некоторыми примерами фармацевтически приемлемых носителей являются вода, солевой раствор, фосфатно-солевой буфер, декстроза, глицерин, этанол и т.п., а также их комбинации. Во многих случаях в композицию предпочтительно вводить изотонические агенты, например, сахара, многоатомные спирты, такие как маннит, сорбит, или хлорид натрия. Дополнительными примерами фармацевтически приемлемых веществ являются увлажнители или минорное количество вспомогательных веществ, таких как увлажнители или эмульгаторы, консерванты или буферные вещества, которые увеличивают срок хранения или эффективность антитела.

Анти-MIF антитела по изобретению или содержащие их фармацевтические композиции можно вводить в комбинации с одним или несколькими другими терапевтическими, диагностическими или профилактическими средствами. Дополнительные терапевтические средства в зависимости от заболевания включают другие анти-неопластические, противоопухолевые, антиангиогенные, химиотерапевтические средства или стероиды.

Фармацевтические композиции по данному изобретению могут находиться в различных формах, например, в жидкой, мягкой или твердой лекарственных формах, таких как жидкие растворы (например, растворы для инъекции или инфузии), дисперсии или суспензии, таблетки, пилюли, порошки, липосомы и суппозитории. Предпочтительная форма зависит от предполагаемого пути введения и терапевтического применения. Обычные предпочтительные композиции представляют собой растворы для инъекции или инфузии, такие как композиции, аналогичные используемым для пассивной иммунизации у людей. Предпочтительным путем введения является парентеральный (например, внутривенный, подкожный, интраперитонеальный, внутримышечный). В предпочтительном варианте осуществления изобретения антитело вводят с помощью внутривенной инфузии или инъекции. В другом предпочтительном варианте осуществления изобретения антитело вводят с помощью внутримышечной или подкожной инъекции. Для опытного специалиста в данной области будет очевидно, что путь и/или вид введения будут варьировать в зависимости от желаемых результатов.

Анти-MIF антитело можно вводить однократно, но более предпочтительно многократное введение. Например, антитело можно вводить от трех раз ежедневно до одного раза в шесть месяцев или через больший интервал времени. Введение можно осуществлять по схеме, такой как введение три раза в день, дважды в день, один раз в день, один раз в два дня, один раз в три дня, один раз в неделю, один раз в две недели, один раз в месяц, один раз в два месяца, один раз в три месяца и один раз в шесть месяцев.

Изобретение также охватывает применение анти-MIF антитела или его антиген-связывающего фрагмента в изготовлении лекарственного средства для лечения иммунологических заболеваний, таких как воспалительные заболевания и гиперпролиферативные нарушения.

Изобретение дополнительно охватывает применение анти-MIF антитела или его антиген-связывающего фрагмента в лечении иммунологических заболеваний, таких как воспалительные заболевания и гиперпролиферативные нарушения.

Изобретение также охватывает применение анти-MIF антитела или его антиген-связывающего фрагмента в спо