Устройство регулирования анемометра с проволочкой

Иллюстрации

Показать все

Изобретение относится к области приборостроения и может быть использовано при выполнении анемометрических измерений. Заявлен анемометрический зонд с проволочкой или с n (n≥1) проволочками, параллельными между собой, для измерения вблизи стенки, содержащий для каждой проволочки два стержня (4, 6) крепления проволочки. Конец каждого стержня содержит плоскую зону (43) позиционирования и крепления проволочки и прямой участок проволочки (2), закрепленный пайкой на указанных плоских зонах (43) позиционирования и крепления проволочки. Технический результат - повышение точности данных. 3 н. и 16 з.п. ф-лы, 21 ил.

Реферат

Область техники, к которой относится изобретение

Изобретение относится к области зондов для выполнения анемометрических измерений вблизи стенки.

В частности, изобретение относится к зондам или устройствам типа анемометра с горячей проволочкой или анемометра с холодной проволочкой.

Изобретение также относится к способу изготовления такого зонда.

Изобретение также относится к устройству регулирования питания и измерения такого зонда.

Уровень техники

Следует кратко напомнить принцип работы анемометра с горячей проволочкой: согласно этой технологии, очень тонкую металлическую проволочку, как правило, диаметром порядка 2-5 мкм нагревают за счет эффекта Джоуля. Если ее поместить в поток, температура которого ниже температуры проволочки, то она охлаждается за счет принудительной конвекции. Флуктуации скорости и/или температуры текучей среды потока приводят к изменениям температуры проволочки и, следовательно, к изменениям ее электрического сопротивления. Именно эти последние изменения и используют при измерениях.

Электрическая энергия, создаваемая на проволочке и передающаяся в дальнейшем от нее к окружающей среде, может выдаваться электронной схемой по-разному, что позволяет выделить три типа анемометров:

- анемометр постоянного тока,

- анемометр постоянной температуры,

- анемометр постоянного напряжения.

Измерения, осуществляемые вблизи стенки, являются очень специфическими, так как присутствие стенки влияет на измерение скорости. Это выражается в переоценке значения скорости.

Физически эту переоценку можно объяснить следующим образом. Вследствие перегрева проволочку окружает диффузионное тепловое пятно. Когда расстояние между проволочкой и стенкой становится меньше размера этого горячего пятна, которое охватывает проволочку, происходит передача энергии стенке. Для проволочки это выражается в увеличении отдаваемой энергии, которое по отношению к калибровочному значению, полученному без стенки, соответствует увеличению измеряемой скорости. Это явление увеличения скорости проявляется, начиная с безразмерного расстояния от стенки порядка y+=6 (где y+ определяют как произведение динамической скорости на расстояние до стенки, поделенное на кинематическую вязкость). Были разработаны различные аналитические поправки для корректировки измерений, подвергающихся влиянию этого явления наведения пристенного мостика. Все эти методы корректировки имеют один большой общий недостаток в том смысле, что все они (без исключения) построены на ожидаемом результате. Следовательно, их невозможно применять при неустановившемся потоке.

Известный зонд, описанный в документе Ligrani et Bradshow, 1987 и схематично показанный на фиг.1, содержит металлическую проволочку 200 (горячая проволочка диаметром 0,625 мкм) из платинового сплава с 10% родия. Через эту металлическую проволочку в ее активной части 600 (нагреваемая длина) проходит электрический ток, и она имеет U-образную форму.

Эту проволочку крепят на концах двух заостренных стержней 400, 600, скрепленных между собой аральдитовым клеем 450. Крепление на концах стержней производят пайкой (оловом) в двух местах спая 220.

Промежуток е между концами двух стержней составляет примерно 0,5 мм.

Как показано на фиг.1, чтобы нейтрализовать эффект блокировки, который появляется из-за такой близости стержней, проволочка образует плоскость, наклоненную под углом α примерно 15° относительно плоскости, образованной концами 400, 600. Эффект блокировки представляет собой возмущение в потоке из-за слишком близкого расположения концов стержней. Это возмущение влияет на любое измерение, производимое на уровне активной части 600.

Таким образом, задача состоит в создании зонда, позволяющего улучшить характеристики вышеуказанного зонда. В частности, зонд, показанный на фиг.1, характеризуется проблемами вибрационной стойкости и чувствительности.

Другим аспектом измерений рассматриваемого типа является эффект фильтрации. Этот эффект проявляется, когда активная зона является слишком большой, что дает усредненное или интегрированное измерение вместо точечного измерения.

Решением, позволяющим ограничить это явление фильтрации, является уменьшение промежутка между стержнями, чтобы уменьшить длину проволочки. Однако, как было указано выше, при этом появляется эффект блокировки из-за влияния на поток чрезмерной близости стержней, что пояснено авторами Comte-Bellot et al. в статье под названием "On aerodynamic disturbances caused by single hot-wire probes", ASME, J.Applied Mechanics, vol. 38,767-774, 1971.

Среди имеющихся на рынке устройств, таких как зонды, продаваемые компаниями Dantec или TSI, невозможно найти зонды, позволяющие решить вышеуказанные проблемы.

Таким образом, известные зонды, в том числе имеющиеся в продаже анемометрические устройства (как правило, зонд на 2.5 мкм, объединенный с анемометром постоянной температуры), не достаточны для мелкомасштабных измерений турбулентности и совсем не подходят для измерений вблизи стенки, которые нам необходимо производить.

Наконец, производство зонда этого типа связано со многими технологическими проблемами, большинство из которых пока не решены.

Таким образом, одной из задач, которую призвано решить настоящее изобретение, является разработка способа производства, позволяющего воспроизводимо получать зонд с отличными характеристиками.

Другой задачей изобретения является создание устройства регулирования и питания анемометра с проволочкой постоянного тока.

Частным вариантом работы является так называемый режим работы «с холодной проволочкой». Речь идет о работе на постоянном токе, когда ток питания проволочки является очень слабым.

В этих известных устройствах источник питания содержит большой резистор R, последовательно соединенный с проволочкой, чтобы сохранять постоянную силу тока Iw в этой проволочке при изменениях скорости потока. Проволочку интегрируют в мост Уитстона, чтобы точно измерять ее сопротивление Rw; в вершине моста получают выходной сигнал.

Анемометр постоянного тока имеет следующие преимущества. Он обеспечивает свободный выбор перегрева, что представляет особый интерес при исследовании флуктуации температуры. Можно также измерять фоновый шум, заменив проволочку неподвижным резистором, и вносить затем необходимые поправки в измерения. Однако приходится значительно усиливать выходные сигналы. Полоса пропускания при этом принципе измерения обусловлена тепловой инерцией проволочки.

В этом типе устройства ток питания проволочки стремятся понижать в сторону нулевого значения, чтобы как можно меньше ее нагревать. Таким образом, проволочка не охлаждается за счет конвекции (поскольку она не нагревается) и становится чувствительной только к температуре Т окружающей среды через значение своего сопротивления Rпроволочки в соответствии с отношением:

Rпроволочки=R0[1+α(Т-Т0)],

где R0 является сопротивлением зонда при контрольной температуре, а α является коэффициентом изменения сопротивления в зависимости от температуры.

В устройстве этого типа отклонение температуры является незначительным, а ток питания проволочки очень слабым. Он служит только для измерения напряжения на контактах проволочки, чтобы получить значение ее сопротивления. Как правило, он составляет примерно от 50 до 200 мА. Таким образом, нагрев проволочки за счет эффекта Джоуля является ничтожным, что и дает основание называть этот анемометр термометром с холодной проволочкой.

Проблема устройства этого типа состоит в следующем: измеряемая температура претерпевает отклонения, поэтому зонд необходимо объединять с термопарой для получения измерения средней температуры.

Раскрытие изобретения

Задача изобретения состоит в устранении вышеуказанных недостатков, присущих известным устройствам.

Поставленная задача решена в устройстве регулирования анемометра с проволочкой (проволочного анемометра) постоянного тока, содержащем:

- средства питания и средства для регулирования тока питания проволочки и контрольного резистора,

- средства для получения разности между сигналом на контактах проволочки зонда и сигналом на контактах контрольного резистора,

- средства для поддержания постоянной температуры устройства.

Это устройство регулирования можно применять для описанного выше зонда или для другого типа анемометрического зонда. Однако с описанным выше зондом были получены особенно интересные результаты.

Проволочка и контрольный резистор установлены, например, по схеме токового зеркала.

Предпочтительно средства регулирования тока питания содержат регулировочный транзистор, установленный как диод, и потенциометр.

Поставленная задача решена также в термоанемометре с холодной проволочкой, содержащем:

- анемометр, например, имеющий описанную выше конструкцию,

- и описанное выше устройство регулирования.

Согласно частному варианту осуществления, анемометр с проволочкой согласно изобретению содержит:

а) два стержня крепления проволочки, при этом конец каждого стержня содержит плоскую зону позиционирования и крепления проволочки,

б) прямой участок проволочки, закрепленный пайкой на указанных плоских зонах позиционирования и крепления проволочки.

Концы стержней могут отстоять друг от друга на расстояние, по меньшей мере, равное 4 мм.

Проволочка может содержать центральный сердечник диаметром d, составляющим от 0,35 до 0,6 мкм, и оболочку, удаляемую на участке проволочки, называемом чувствительной зоной, длиной от 0,4 мм до 0,5 мм.

Проволочку можно закрепить на стержнях пайкой посредством припоя типа олово-свинец.

Чтобы устранить проблему поломки активной части проволочки, она может содержать изгиб.

Стержни можно закрепить на корпусе зонда, оборудованном оболочкой, гасящей вибрации.

Поставленная задача решена также в способе измерения температуры в потоке текучей среды, содержащем применение описанного выше термоанемометра без дополнительной термопары.

В частности, можно измерять изменение температуры и среднюю температуру при помощи термоанемометра в соответствии с настоящим изобретением.

Согласно другому аспекту, изобретение позволяет также выполнить зонд, содержащий проволочки очень небольшого диаметра в сочетании с большим промежутком между стержнями.

Так, изобретение позволяет воспроизводимо выполнять зонды с использованием проволочки диаметром 0,35, 0,5 или 0,625 мкм.

Поставленная задача решена также в анемометрическом зонде с n проволочками (n≥1) для измерения вблизи стенки, содержащем, для каждой проволочки:

а) два стержня крепления проволочки, при этом конец каждого стержня содержит плоскую зону позиционирования и крепления проволочки,

б) прямой участок проволочки, закрепленный пайкой на указанных плоских зонах позиционирования и крепления проволочки.

Концы стержней могут отстоять друг от друга на расстояние, по меньшей мере, равное 4 мм.

Предпочтительно проволочка содержит центральный сердечник из платиново-родиевого сплава диаметром d, составляющим от 0,35 до 0,6 мкм, и серебряную оболочку, удаляемую на участке проволочки, называемом чувствительной зоной, длиной, составляющей от 0,4 мм до 0,5 мм.

Зонд в соответствии с настоящим изобретением описанного выше типа может содержать n (n≥2) проволочек, которые могут быть параллельными между собой. Например, он содержит 2, или 3, или 4 параллельные между собой проволочки.

Поставленная задача решена также в способе осуществления анемометрического зонда с n проволочками (n≥1) для измерения вблизи стенки, согласно которому:

а) позиционируют прямой участок проволочки, содержащей металлический сердечник, окруженный защитной оболочкой, на двух стержнях, при этом конец каждого стержня содержит плоскую зону позиционирования и крепления проволочки,

б) крепят пайкой проволочку на каждом из стержней,

в) удаляют часть оболочки для оголения активной измерительной зоны проволочки.

Предпочтительно этап б) содержит выполнение изгиба проволочки. Согласно варианту осуществления, этот этап б) содержит:

- выполнение первого спая на первом стержне,

- относительное раздвигание концов двух стержней,

- выполнение второго спая на втором стержне,

- отпускание концов двух стержней.

Согласно варианту осуществления, этап в) содержит травление оболочки проволочки для получения активной измерительной зоны, например:

- первый этап травления кислотой,

- затем второй этап электрохимического травления.

Можно произвести измерение сопротивления проволочки для определения на ней длины травления. Кроме того, травление можно осуществлять при помощи петли, образованной нитью, на которой можно удерживать каплю жидкости травления.

В способ получения проволочки в соответствии с настоящим изобретением можно ввести этап отжига при температуре, по существу превышающей температуру, при которой будет использоваться проволочка.

Что касается пайки, ее можно осуществлять при помощи пистолета с горячим воздухом или при помощи лазера.

Перед этапом а) можно ввести предварительный этап правки проволочки.

Перед этапом б) можно ввести этап механического натяжения проволочки с усилием менее нескольких грамм, например 6 г, или 5 г, или 4 г.

Изобретение относится также к способу измерения анемометрических величин, в частности, вблизи стенки, содержащему применение зонда в соответствии с настоящим изобретением.

Краткое описание чертежей

На фиг.1 показан известный зонд с горячей проволочкой;

на фиг.2А-2Е показан зонд согласно изобретению;

на фиг.3А-3В показаны другие типы зонда согласно изобретению, содержащего две проволочки или более двух проволочек;

на фиг.4-10 показаны этапы осуществления зонда согласно изобретению;

на фиг.11 показана схема питания и измерения, которую можно использовать в рамках настоящего изобретения;

на фиг.12 и 13 показаны кривые измерения в соответствии с настоящим изобретением для термоанемометра согласно изобретению.

Осуществление изобретения

Пример зонда в соответствии с настоящим изобретением показан на фиг.2А-2Е.

Согласно этому примеру, зонд содержит проволочку 2, натянутую между заостренными концами двух металлических стержней 4, 6, имеющих продолжение в изолирующем корпусе 10 цилиндрической формы, предпочтительно из керамики.

В частности, корпус 10 зонда представляет собой керамический цилиндр диаметром, например, составляющим от 2 до 4 мм, в который в качестве стержней 4, 6 вставлены иглы из нержавеющей стали, например, диаметром от 0,2 мм до 0,4 мм.

Проволочку 2 позиционируют на частях стержней, которые выполняют плоскими, как показано на фиг.2С, где представлен вид сбоку формы стержня перед (пунктирная линия), а затем после (сплошная линия) утонения. Позицией 43 обозначена плоская часть стержня 4, на которой пайкой крепят конец проволочки 2. Другой стержень 6 имеет такую же концевую конструкцию. Концевые конструкции получают за счет одновременного утонения двух концов на правильной плите. Полученные таким образом две плоские зоны образуют единую плоскость. Это позиционирование способствует идеальному выравниванию проволочки. Таким образом, каждый стержень содержит корпус 41 по существу цилиндрического сечения, при этом цилиндр на конце является усеченным плоскостью 43, которая пересекает направление АА', вдоль которого практически проходит стержень. Ось АА' является осью симметрии вращения в случае стержня цилиндрической формы (фиг.2В).

Кроме того, проволочка 2 характеризуется очень точным выравниванием, порядка одной сотой мм. В отличие от известной конструкции зонда (например, представленной выше со ссылками на фиг.1) прямой участок проволочки 2 позиционируют на стержнях 4, 6. При этом нет необходимости изгибать проволочку в виде "U", как показано на фиг.1, поскольку такой изгиб влияет на точность и на воспроизводимость устройства.

Пайку проволочки 2 на стержнях 4, 6 производят с использованием припоя типа сплава олово-свинец.

Выступающая наружу длина L стержней приблизительно равна 15 мм, и разделяющее их расстояние D по существу равно или превышает 5 мм, предпочтительно составляет от 5 мм до 8 мм для потоков пограничного слоя до скоростей потока, меньших или слегка превышающих 12 м/с. Однако, в ситуации сильного сдвига, например, на границе струи, нормального поведения добиваются только тогда, когда промежуток между стержнями не превышает 4 мм. При значении более 4 мм, учитывая недостаточную жесткость серебряной оболочки проволочки 2 (структура которой будет описана ниже), возбуждение сдвига наводит колебания большой амплитуды на уровне проволочки, которые приводят к ее разрыву.

Чтобы снизить риск разрыва активной части проволочки во время манипуляций, корпус зонда закрывают трубкой 12 из эластомерного материала, поглощающего волны или вибрации, которые могут распространиться в сторону очень хрупкой проволочки 2.

По сути дела проволочка 2 является нитью, содержащей центральную часть 20 из платины или из платиново-родиевого сплава, охваченную оболочкой 22 из серебра, которая может иметь диаметр от 30 до 80 мкм, как показано на фиг.2D.

Диаметр центральной части 20 является очень небольшим, меньшим 0,635 мкм или 0,6 мкм, например 0,35 мкм или 0,5 мкм. Предпочтительно используемой проволочкой является проволочка типа «волластоновской нити» из платиново-родиевого сплава (Pt-10%Rh). Нитью с таким диаметром невозможно манипулировать без риска повреждения. Эту манипуляцию позволяет осуществлять серебряная оболочка диаметром 30-80 мкм, которая окружает проволочку (фиг.2D).

Такая проволочка обеспечивает точечное измерение в большей степени, чем в известных устройствах, так как можно ограничить зону 14 измерения, локально удалив оболочку проволочки, как показано на фиг.2Е. В результате получают активную длину 1, составляющую от 0,4 мм до 0,5 мм. Меньшая активная длина отрицательно сказывается на измерении, так как краевые явления, связанные с концами 22', 22" оболочки на границах зоны 14 измерения, будут слишком большими. Этот аспект проиллюстрирован фиг.2Е, где четко видны активная часть 14 и серебряная оболочка 22.

На фиг.2А указанная активная часть 14 не видна, так как ширина этой активной части (от 0,4 мм до 0,5 мм) является незначительной по сравнению с промежутком Е между концами стержней 4, 6 (по меньшей мере, 5 мм).

Отношение 1/d активной длины проволочки к ее диаметру по существу составляет от 600 до 1500. Сверх этого предела точечный характер измерения исчезает: появляются уже упомянутые ранее эффекты фильтрации или усредненного измерения. При соотношении в пределах между 600 и 1500 удовлетворяется условие двухмерности, то есть очень плоского температурного профиля в активной зоне.

Проволочка 2 соединена со стержнями 4, 6 посредством крепления пайкой серебряной оболочки 22 на этих стержнях.

Зонд в соответствии с настоящим изобретением обладает свойствами локализации без эффекта фильтрации (за счет точечного измерения, достигаемого благодаря очень малой ширине зоны 14 измерения), без эффекта блокировки (благодаря удаленности между концами стержней). Кроме того, этот зонд является стойким к вибрациям. Таким образом, зонд в соответствии с настоящим изобретением позволяет измерять физические величины максимально близко к стенке без погрешностей, то есть без необходимости внесения поправок. Для интервала скорости ниже 10 м/с можно достигать y+ ≈ 2 без внесения поправки. При этом y+ определяют как произведение динамической скорости на расстояние до стенки, поделенное на кинематическую вязкость.

Изобретение относится не только к зонду с одной проволочкой, но также к зонду со многими проволочками.

Объектом настоящего изобретения является также двойной зонд, например, объединяющий параллельные между собой горячую проволочку 2 и холодную проволочку 2' с промежутком между двумя проволочками порядка 0.3 мм и показанный сбоку на фиг.3А (проволочки видны только сбоку, то есть каждая проволочка 2, 2' на этой фигуре, так же как и на фиг.3В, соответствует точке). Другие позиции соответствуют фиг.2А-2Е и обозначают те же элементы. В этом варианте осуществления предусмотрены две пары стержней: уже описанная пара 4, 6, на которой пайкой закреплена проволочка 2, и другая пара 4', 6', на которой пайкой закреплена проволочка 2'.

На фиг.3В показан тройной зонд, объединяющий три параллельные проволочки 2, 2', 2". Здесь тоже позиции соответствуют фиг.2А-2Е и обозначают те же элементы. В этом варианте осуществления имеются три пары стержней: уже описанная пара 4, 6, на которой пайкой закреплена проволочка 2, и другая пара 4', 6' (при этом на фиг.3В виден только стержень 4'), на которой пайкой закреплена проволочка 2', а также третья пара 4", 6" (при этом на фиг.3В виден только стержень 4"), на которой пайкой закреплена проволочка 2". Такой тройной зонд предпочтительно работает с горячей проволочкой в центре (проволочка 2') и двумя холодными проволочками с двух сторон (проволочки 2 и 2"), которые дают информацию о направлении потока.

В двойном зонде или, в целом, в зоне с n проволочками, по меньшей мере, одна из проволочек или каждая проволочка имеет вышеупомянутые характеристики и закреплена, как указано выше, на паре стержней с уплощенными концевыми частями, которые можно выполнить, как уже было указано выше.

Далее следует описание способа изготовления зонда в соответствии с настоящим изобретением. Он относится к выполнению зонда только с одной проволочкой, но его можно применять для выполнения зонда с любым числом параллельных проволочек, если только не указано иное.

Предпочтительно все операции осуществляют с применением бинокулярной лупы, учитывая размер элементов и требуемую точность. Эта лупа или любое другое выбранное или эквивалентное оптическое средство позволяет наблюдать предметы с точностью до 1/100 мм.

Сначала стержни 4, 6 неподвижно соединяют с корпусом 10, 12 зонда. Для позиционирования этих стержней в нем выполняют отверстия или пазы. В случае необходимости, эти стержни вставляют в корпус зонда при помощи шаблона, чтобы они выступали из корпуса зонда на одинаковую длину.

Паяное соединение между электрическими проводами питания 19, 19' (фиг.2А) (именно через эти средства соединения в проволочку 2 проходит ток) и стержнями 4, 6 может находиться в пазу, или в отверстиях корпуса 10, или снаружи. Пайку этого соединения выполняют во время этого подготовительного этапа.

Запечатывание стержней в держателе можно осуществить путем нанесения бетона, схватывание которого совместимо с керамикой. Испытания показали, что клей, например, типа аральдита тоже может хорошо обеспечивать эту функцию запечатывания, сохраняя некоторую эластичность, которая может представлять интерес для поглощения вибраций и для защиты зонда.

После оборудования стержнями 4, 6 корпус 10 зонда можно поместить в амортизирующий чехол 12 из эластомера, чтобы ограничить вибрации, которые могут повредить активную часть проволочки, которая является очень тонкой.

Перед операцией пайки проволочки 2 готовят также конец стержней 4, 6 для обеспечения получения хорошей контактной поверхности. Для этого производят легкую абразивную обработку конца стержней при помощи мелкой наждачной бумаги, которую можно разместить на правильной плите, для получения плоской части 43 на их конце, как показано на фиг.2С для стержня 4. Таким образом, в конечном итоге получают контакт между цилиндром (проволочка) и плоскостью (уплощенный конец 43 стержня), позволяющий производить точное позиционирование проволочки и обеспечивающий контролируемое растекание припоя на этой поверхности в момент расплавления. Без этой плоской поверхности 43 на конце каждого из стержней контакт между цилиндром, образованным проволочкой, и конусом (заостренный конец каждой иглы 4, 6) усложнит установку на место проволочки 2, приведет к ее неточности и, кроме того, создаст риск протекания припоя под стержень.

После этой абразивной обработки зонд помещают в держатель для изготовления.

Для пайки проволочки стержни 4, 6 зачищают, чтобы гарантировать оптимальную смачиваемость. Для снятия различных оксидов и обеспечения схватывания с припоем производят лужение концов стержней при помощи паяльной пасты 29 (марка: Castolin 157А), наносимой на лист нержавеющей стали при помощи паяльника 3, как показано на фиг.4. После этого стержни очищают при помощи ацетона.

На фиг.5 показан корпус 10, 12 зонда со стержнями 4, 6, готовыми для соединения с проволочкой 2 зонда. Корпус зонда устанавливают на систему микрометрических плит, не показанную на фигуре, которые позволяют осуществлять сверхточные перемещения в двух или трех измерениях с точностью до одной сотой миллиметра.

Используемая проволочка с оболочкой 22, как правило, намотана в бобины диаметром в несколько сантиметров. Этот тип намотанной упаковки приводит к деформации проволочки, которая является достаточно значительной и стойкой, поскольку проволочка имеет небольшой диаметр. Поэтому предпочтительно прокатывать вручную проволочку на плоской опоре, чтобы свести к минимуму кривизну, остающуюся по причине «памяти материала», который долгое время остается намотанным.

Как показано на фиг.6А и 6В, держатель, который позволяет производить пайку проволочки на стержнях 4, 6, содержит неподвижный вертикальный рычаг 49 и второй рычаг 51 по существу такого же размера, установленный на поворотной связи 53, которая позволяет наклонять его в вертикальной плоскости, перпендикулярной к поворотной оси. Этот держатель оборудован двумя микрометрическими плитами 69, 71, позволяющими контролировать позиционирование каждого из рычагов и, следовательно, выравнивание проволочки 2, а также ее натяжение. Каждая плита позволяет осуществлять исключительно точные перемещения в одном, двух или трех измерениях с точностью до одной сотой миллиметра.

Для крепления проволочки 2 пайкой предварительно производят лужение концов рычагов 49, 51. Затем оба рычага 49, 51 отодвигают от держателя на расстояние примерно в двадцать миллиметров. Проволочку крепят пайкой посредством оловянного припоя на двух рычагах, следя, чтобы подвижный рычаг оставался в вертикальном положении.

Чтобы контролировать натяжение проволочки 2, подвижный рычаг 51 располагают таким образом, чтобы он образовал угол β, составляющий 45° с нормалью. Вес этого рычага 51 определяют так, чтобы в этом положении усилие натяжения на проволочку составляло примерно 4 г. Это значение было определено в результате многочисленных испытаний, предназначенных для получения воспроизводимого натяжения проволочки 2. Затем рычаг 49 опускают при помощи вертикальной микрометрической плиты 69 так, чтобы оба рычага оказались на одном уровне и чтобы проволочка находилась максимально близко к горизонтали.

Приблизив вручную держатель, на котором находится подготовленная проволочка, ее вводят в контакт со стержнями 4, 6, как показано на фиг.7, при помощи микрометрических плит.

После завершения этой операции проволочку 2 и первый стержень (например, стержень 4) обезжиривают при помощи ацетона. При этом на соединение между проволочкой 2 и этим первым стержнем наносят совсем маленькую точку припоя при помощи кончика иглы. Этот припой, который, как будет показано ниже, выполнен на основе свинца, состоит из микрошариков диаметром 15 мкм из разных элементов (Sn 62%; Pb 36%; Ag 2%), выбранных в таком "сочетании, чтобы получить низкую точку плавления.

Затем припой расплавляют, например, при помощи горячего воздушного паяльника 81 (фиг.8). На этой стадии проволочку 2 неподвижно соединяют со стержнем 6, а затем производят пайку на втором стержне 6.

Однако проволочка 2, натянутая между стержнями 4, 6, является очень чувствительной к малейшим вибрациям, тем более, что диаметр используемой проволочки 2 является очень незначительным. Многочисленные испытания показали, что даже при самом осторожном монтаже может произойти повреждение зонда с натянутой проволочкой.

Чтобы повысить механическую прочность зондов, в момент изготовления проволочке 2 придают небольшой изгиб или кривизну.

Для этого металлический штырь 91, изогнутый на своем конце, приближают к стержню 6, с которым еще не соединили проволочку 2 (фиг.9А). Приведя его в контакт со стержнем 6, конец этого стержня отводят в направлении, по существу параллельном проволочке 2, на расстояние, например, около 20 мкм при помощи микрометрической плиты, на которой установлен штырь 91. Затем можно приступить к креплению пайкой проволочки 2 так же, как и для первого стержня.

После завершения пайки штырь 91 отводят, и стержень 6 возвращается в свое первоначальное положение относительно другого стержня 4. При этом проволочка 2 получает небольшую кривизну или прогиб порядка нескольких сотых миллиметра, например менее 2/100 мм или менее 4/100 мм, в плоскости, по существу перпендикулярной к оси корпуса 10 зонда. Эта кривизна не влияет на осуществляемые в дальнейшем анемометрические измерения и придает проволочке гибкость, которая позволяет ей поглощать механические напряжения или вибрации. Полученная кривизна не влияет на указанное выше условие выравнивания, так как она является очень незначительной.

На фиг.9В показаны два конца двух стержней 4, 6 в положении, раздвинутом при помощи инструмента 91 (на этой фигуре не показан). При этом проволочка лежит на двух стержнях, она уже закреплена пайкой на стержне 6, но не закреплена еще на стержне 4.

На фиг.9С показаны два конца двух стержней 4, 6 и проволочка 2 после выполнения второй пайки и удаления инструмента 91. Оба конца двух стержней 4, 6 восстановили свое положение равновесия. Проволочка закреплена пайкой, но получила небольшую кривизну, что на фиг.9С показано в преувеличенном виде. На этой фигуре показаны два положения 2, 21 проволочки, соответственно с кривизной в сторону низа и в сторону верха фигуры.

Затем проволочку 2 обрезают при помощи бритвенного лезвия на уровне стержней, чтобы можно было убрать систему держателя проволочки и распаять концы проволочки, оставшиеся на этом держателе. Эту операцию распайки между проволочкой и рычагом осуществляют после обрезания проволочки. Действительно, проволочка является очень хорошим проводником тепла, и если направить конец паяльника на один из рычагов 49, 51 держателя проволочки, проводимое тепло размягчит спай «стержень 4, 6 - проволочка 2», находящийся всего в нескольких миллиметрах, поглотит натяжение и изгиб или кривизну, приданную проволочке, как было пояснено выше, и, следовательно, поставит под сомнение успех реализации зонда.

После установки проволочки между стержнями можно оголить активную часть, которая будет служить для измерения.

Для этого можно произвести травление активной части 14 (фиг.2Е) проволочки. Это травление осуществляют путем точечного растворения серебряной оболочки 20 путем химического или электрохимического травления.

На эту оболочку воздействуют азотной кислотой. Для этого можно использовать две технологии: струйную и капельную. В первом случае миллиметровую струю кислоты направляют на проволочку, тогда как во втором случае формируют каплю кислоты, которую медленно вводят в контакт с проволочкой. От первого способа отказались, так как он является разрушительным для проволочки, и, когда эта проволочка имеет небольшой диаметр, контакт со статичной каплей оказывается более подходящим к ее низкой механической прочности.

Длину l травления определяют в зависимости от диаметра d проволочки с учетом того, что, если необходимо обеспечить однородный температурный профиль на проволочке во время ее использования в режиме горячей проволочки, соотношение l/d, превышающее 250, позволяет ограничить влияние теплопроводности на концах активной части на измерение (для данного материала и, следовательно, для данной холодной длины). Измерив сопротивление проволочки, получают указание на протравливаемую длину при помощи следующего отношения:

где ρ является удельным электрическим сопротивлением материала, в данном случае платиново-родиевого сплава (ρ=1,9·10-7 Ом·м). Это сопротивление измеряют во время травления проволочки.

С проволочками диаметром 0,35 мкм и 0,5 мкм при длине травления от 0,4 мм до 0,5 мм по существу получают:

при диаметре 0,35 мкм: 1150<1/d<1400;

при диаметре 0,5 мм: 800<1/d<1000.

Используемая в данном случае система содержит нить 101 (фиг.10) в несколько сотых миллиметра из нержавеющей стали. Конец нити образует петлю, которая позволяет удерживать каплю 102. Эту каплю из чистой азотной кислоты наносят на петлю при помощи шприца. Затем петлю и каплю приближают при помощи микроманипуляторов, чтобы капля вошла в контакт с протравливаемой проволочкой 2.

При помощи плит для микроперемещений осуществляют возвратно-поступательное движение для растворения серебра оболочки 22. После насыщения капли серебром нить удаляют и заменяют ее другой каплей азотной кислоты. Этот процесс повторяют, пока не появится платиново-родиевая проволочка 20 и пока не начнет изменяться сопротивление. Длину травления регулируют в зависимости от сопротивления зонда. Как правило, для проволочки диаметром 0,5 мкм сопротивление составляет 500 Ом, а для проволочки диаметром 0,35 мкм сопротивление составляет 1 кОм, что соответствует длине травления 5-6 десятых миллиметра и соотношению l/d порядка 1100 и 1600 соответственно.

После завершения травления кислотой производят другое травление, на этот раз электрохимическим способом, чтобы освободить оголенную проволочку от любых следов серебра. Действительно, если на проволочке остается серебро, оно будет перемещаться по границе зерна платина-родий и влиять на изменение значения сопротивления. В этом случае будет невозможно вернуться к первоначальной калибровке и осуществлять правильные измерения.

Таким образом, простую электрическую цепь, состоящую из батареи, потенциометра и выключателя, соединяют с одной стороны с металлической петлей, содержащей каплю, и с другой стороны с двумя соединительными проводами 19, 19' (фиг.2А), соединенными с двумя стержнями 4, 6 (чтобы избежать любой асимметрии поведения капли). После этого, как и в предыдущем случае, формируют каплю 102 азотной кислоты, разбавленной до 5%. Как и предыдущие капли, ее приближают таким образом, чтобы проволочка погрузилась внутрь капли. Затем замыкают выключатель на короткое время, так как в масштабе проволочки дегазация происходит очень быстро и интенсивно. После этой операции проволочку промывают при помощи капли деминерализованной воды, чтобы удалить с проволочки остаточную кислоту.

В рамках описанного выше способа формируют каплю, размер которой зависит от размера петли и от сил поверхностного натяжения.

Затем можно произвести отжиг зонда: через проволочку 2 пропускают ток, рассчитываемый в зависимости от сопротивления зонда. Таким образом, температуру проволочки доводят по существу до значения, превышающего температуру, при которой она должна работать. Разность температуры между проволочкой и окружающим воздухом получают при помощи следующего отношения:

где R0 является сопротивлением зонда при окружающей температуре, α является коэффициентом изменения сопротивления в зависимости от температуры (1,6·10-3 K-1 для Pt-10%Rh) и где Rпроволочки является сопротивлением проволочки, нагретой до температуры T+ΔТ, определяемой при помощи закона Ома.

Эта операция обеспечивает диффузию последних следов серебра в кристаллической структуре платиново-родиевой проволочки. Если травление было произведено правильно, остаточное серебро присутствует в очень незначительном количестве, по истечении суток проволочка стабилизируется, и ее сопротивление больше не меняется.

Активная часть 14 датчика в соответствии с настоящим изобретением в основном состоит из проволочки очень малого диаметра порядка нескольких десятых мкм (фиг.2Е). Эта проволочка не обладает механической прочностью или имеет очень невысокую механическую прочность.

Необходимо достичь очень точного выравнивания между двумя участками оболочки 22, которые находятся