Система и способ оценки пользователей для фильтрации сообщений
Иллюстрации
Показать всеИзобретение относится к системам и способам фильтрации сообщений на основе отчетов пользователей. Технический результат настоящего изобретения заключается в идентификации сообщений, относящихся к различным категориям, таким как, например, категория сообщений, содержащих спам, на основе отчетов пользователей. При вынесении решения о соответствии сообщения определенной категории, отчеты пользователей по данному сообщению учитываются в зависимости от репутации каждого из пользователей, приславшего отчет. Репутация пользователя в настоящем изобретении рассчитывается как с учетом активностей пользователя, касающихся всех аспектов компьютерной безопасности, так и с учетом достоверности присланных им отчетов. 2 н. и 23 з.п. ф-лы, 10 ил.
Реферат
Область техники
Настоящее изобретение относится к системам и способам фильтрации сообщений на основе отчетов пользователей.
Уровень техники
В условиях широкого развития новых видов Интернет-рекламы, спам остается одним из наиболее популярных для заказчиков благодаря низким затратам на рекламу. По различным оценкам в последние несколько лет доля спама составляет 70-80% от общего объема всего почтового графика Интернета.
Под спамом понимается массовая рассылка коммерческой и иной рекламы или иного вида сообщений (информации) лицам, не выражавшим желания их получать. Первоначально термин «спам» употреблялся применительно к рассылке электронных писем, однако со временем для распространения спама стали применять и другие способы, такие как, например, средства мгновенного обмена сообщениями (IM), веб-сайты (социальные сети и сайты знакомств, Интернет-блоги и Интернет-форумы), а также SMS- и MMS-сообщения.
В результате своего широкого распространения из обычного вида Интернет - рекламы спам постепенно вырос в серьезную техническую и экономическую проблему. Предпосылкой этому стало то, что большой объем спама приводит к увеличению нагрузки на каналы передачи данных, росту объема Интернет-графика, оплачивать который приходится пользователю, а также к тому, что некоторое количество своего рабочего времени сотрудникам компаний и организаций приходится тратить на отсеивание сообщений, содержащих спам. Кроме того, по причине анонимности спам-рассылок, с каждым годом спам все больше теряет свою рекламную составляющую и все больше используется для мошеннических целей. Например, широко известны случаи использования спам-рассылок с целью выманивания денег у получателей письма (так называемые «нигерийские письма»), для осуществления попыток заполучить номера кредитных карточек или паролей доступа к системам онлайновых платежей получателей письма (данный вид мошенничества известен под названием «фишинг»), а также для распространения вредоносных программ.
Таким образом, необходимость борьбы со спамом становится очевидной. В настоящее время существует достаточно большое количество методов противодействия спаму. К ним относится, например, метод использования черных списков, суть которого заключается в блокировании сообщений, которые приходят с адресов, внесенных в список. Хотя данный метод обеспечивает 100%-ый отсев писем, полученных с адреса, который внесен в список, применение его может привести к большому числу ложных срабатываний, так как существует вероятность того, что вместе с адресами отправителей спам-сообщений при заполнении в список попадут и легитимные адреса. Другой способ борьбы со спамом использует технологию, которая предполагает выявление в потоке почты массовых сообщений, абсолютно идентичных или различающихся незначительно. Для построения работоспособного «массового» анализатора требуются огромные потоки почты, поэтому данную технологию могут предложить только те производители анти-спам решений, продукцию которых используют крупные почтовые провайдеры. Недостатком данного способа является то, что большинство легитимных сервисов, таких как, например, сервисы подписки на новости или обновления, также используют массовую рассылку, и, следовательно, могут быть признаны при использовании данного способа источниками спам-рассылки. Еще одним методом борьбы со спамом является метод проверки заголовков сообщений, при котором блокируются сообщения с ошибками в заголовках, присущими сообщениям, написанным при помощи специальных программ для генерации спам-сообщений и их мгновенного распространения. Недостаток данного метода заключается в том, что его эффективность падает по мере того, как указанные программы совершенствуются и, соответственно, допускают меньше ошибок в заголовках сообщений.
Также для противодействия спаму существует метод серых списков, при использовании которого для каждого входящего сообщения формируется отказ со специальным кодом ошибки. В этом случае программное обеспечение, используемое для рассылки спама, в отличие от стандартных почтовых сервисов, не производит повторную попытку отправить то же самое сообщение, что и используется в качестве критерия для определения легитимных сообщений. Таким образом, в случае если отправитель повторяет свою попытку послать сообщение в течение определенного промежутка времени, данное сообщение принимается, а сам отправитель вносится в белый список. Однако данное решение неприемлемо для многих пользователей, так как при его использовании обеспечивается задержка доставки любых сообщений.
Еще одним методом противодействия спаму является метод контентной фильтрации, технология которого заключается в использовании специальных спам-фильтров, анализирующих все части входящих сообщений, включая графические. По результатам анализа может быть сформирован лексический вектор либо вычислен спам-вес сообщения. На основании указанных величин выносится решение о том, что сообщение содержит либо не содержит спам. Данные методы определения спама раскрыты в патенте на полезную модель №85247 «Идентификация спама с помощью лексических векторов» и в патенте на изобретение US 7836061 «Method and system for classifying electronic text messages and spam messages». Зачастую для настройки спам-фильтра используются специальные антиспам-лаборатории, которые занимаются созданием и совершенствованием правил фильтрации, используемых спам-фильтрами. Так как лица, занимающиеся рассылкой спама, непрерывно предпринимают попытки обойти защиту спам-фильтров, процесс совершенствования правил фильтрации спама также является непрерывным, а эффективность использования спам-фильтров зависит от своевременности обновления указанных правил.
Как видно из обзора методов противодействия спаму, среди них не существует решения, позволяющего блокировать сообщения, содержащие спам, со 100%-ой эффективностью. В связи с этим в целях поддержания правил фильтрации сообщений в состоянии, обеспечивающем наибольшую эффективность противодействия современным спам-атакам в условиях динамичного и непрерывного изменения способов построения спам-сообщений, целесообразно создать такое решение, в котором в дополнение к автоматическим методам изменение правил фильтрации будет происходить с учетом статистики получения спам-сообщений большим числом пользователей.
В настоящее время существуют решения, в которых данная возможность реализована.
Так, в заявке US 20100153394 описаны система и способ изменения правил определения спама в спам-фильтрах на основе отзывов пользователей. Письма, прошедшие проверку спам-фильтра, который установлен на почтовом сервере, доставляются пользователям. После этого каждый из пользователей может отправить на сервер отчет о том, что определенное письмо содержит спам. На основе данных отчетов правила определения спама в спам-фильтре изменяются таким образом, чтобы в дальнейшем определять указанные письма как спам. Кроме того, в одном из частных методов реализации данного изобретения для изменения правил на основе отчетов множества пользователей применяется также база данных репутаций пользователей. Перед тем как изменить правила определения спама на основе отчета того или иного пользователя, система определяет, какая у данного конкретного пользователя репутация. Репутация пользователя может быть повышена либо понижена в зависимости от того, являются ли переданные им отчеты о пропущенном спаме достоверными или нет.
Патент US 7373385 описывает способ идентификации спама на основе отчетов пользователей. Идея заключается в использовании совместной анти-спам системы, к которой подключены пользователи электронной почты. В случае если пользователи получают письма, содержащие спам, они имеют возможность сообщить об этом системе. На основе количества отчетов пользователей и коэффициентов доверия каждого из пользователей каждому письму присваивается рейтинг, который сравнивается с пороговым значением, после чего делается вывод, содержит ли письмо спам или нет. Коэффициент доверия пользователя вычисляется на основе статистки отправленных им отчетов. В случае если пользователь присылает недостоверные отчеты, его коэффициент доверия падает, и отчеты данного пользователя не учитываются при вычислении рейтинга письма.
Изобретение, описанное в патенте US 7937468, предназначено для увеличения скорости принятия решения о наличии в сообщении спама на основе отзывов пользователей. При помощи статического анализа с учетом количества самых ранних отчетов, присланных пользователями, описываемая система прогнозирует общее количество отзывов о том, что сообщение содержит либо не содержит спам. На основе прогноза выносится соответствующий вердикт. Кроме того, при оценке отзывов и вынесении решения система также учитывает репутацию пользователей, которая показывает, насколько отзывы данных пользователей достоверны.
Изобретение, описанное в заявке US 20040177110, предназначено для обучения спам-фильтров с помощью отзывов пользователей. Перед пользователями ставится задача определить, содержит ли то или иное письмо спам или нет. На основе отзывов пользователей спам-фильтры усовершенствуют правила, используемые в своей работе. В изобретении также предусмотрена перекрестная проверка пользователей с последующим исключением из статистики отзывов тех пользователей, которые не прошли проверку.
В целях повышения эффективности фильтрации в большинстве указанных систем учет мнения каждого из пользователей при вынесении решения о том, содержит ли сообщение спам или нет, происходит в зависимости от репутации того или иного пользователя. При этом репутация для каждого из пользователей вычисляется на основе статистики достоверности присланных им уведомлений о том, что сообщение содержит спам. Данный подход целесообразен, однако обладает недостатками. Во-первых, при использовании данного подхода пользователи, которые отправляют отчет о спаме впервые, обладают низкой с точки зрения системы репутацией не зависимо от того, каков их реальный уровень знаний. Во-вторых, для того, чтобы статистика достоверности присланных пользователем отчетов позволяла судить о его реальном уровне знаний, необходимо получить достаточно большое количество отчетов, для чего требуется большое количество времени, особенно в случае, когда пользователь работает с сообщениями, уже прошедшими предварительную автоматическую фильтрацию, и, следовательно, не содержащими большое количество спама.
Поэтому, хотя изобретения, перечисленные в указанных выше патентах и заявках, направлены на решение определенных задач в области фильтрации сообщений на основе отчетов пользователей, они имеют один общий недостаток - используемый в них подход к дифференциации пользователей достаточно поверхностный и в большинстве случаев не позволяет судить об их реальном уровне знаний. Настоящее изобретение позволяет произвести более глубокую оценку уровня знаний пользователей и, соответственно, более эффективно решить задачу фильтрации сообщений.
Раскрытие изобретения
Настоящее изобретение предназначено для фильтрации сообщений, на основе отчетов пользователей.
Технический результат настоящего изобретения заключается в идентификации сообщений, относящихся к различным категориям, таким как, например, категория сообщений, содержащих спам, на основе отчетов пользователей.
Система категоризации сообщений, получаемых группой пользователей, которая содержит: коллективную базу данных правил фильтрации, предназначенную для хранения правил фильтрации и передачи указанных правил средству распространения правил фильтрации; средство распространения правил фильтрации, предназначенное для передачи компьютерным устройствам пользователей правил фильтрации сообщений из коллективной базы данных правил фильтрации; базу данных репутаций пользователей, предназначенную для хранения веса репутации каждого из пользователей и передачи информации о значениях веса репутации пользователей средству обработки отчетов; средство обработки отчетов, предназначенное для:
- получения отчетов пользователей о том, что определенное сообщение относится к определенной категории;
- вычисления веса сообщения по данной категории на основе количества присланных пользователями отчетов и веса репутации каждого пользователя, приславшего отчет;
- вынесения решения о том, что сообщение относится к данной категории на основании превышения вычисленным весом сообщения по данной категории заданного порога;
- изменения на основании вынесенного решения правил фильтрации в коллективной базе данных правил фильтрации;
- распространения измененных правил фильтрации из коллективной базы данных правил фильтрации, с помощью средства распространения правил фильтрации, между компьютерными устройствами пользователей.
В частном случае реализации системы средство обработки отчетов и средство распространения правил фильтрации связаны с установленной на компьютерном устройстве каждого пользователя системой фильтрации сообщений, которая содержит: средство отправки отчетов, с помощью которого пользователь имеет возможность отправить средству обработки отчетов системы усовершенствования правил фильтрации отчет о том, что полученное им сообщение относится к определенной категории; базу данных правил фильтрации, предназначенную для хранения правил фильтрации сообщений; фильтр сообщений, предназначенный для фильтрации входящих сообщений в соответствии с правилами, хранимыми в базе данных правил фильтрации; средство изменения правил фильтрации, предназначенное для изменения правил фильтрации в базе данных правил фильтрации в соответствии с правилами, полученными от средства распространения правил фильтрации.
В другом частном случае реализации системы пользователь с помощью средства изменения правил фильтрации имеет возможность изменять правила фильтрации в базе данных правил фильтрации.
В еще одном частном случае реализации системы база данных репутаций пользователей связана с системой оценки репутаций пользователей, которая содержит: средство задания правил, предназначенное для задания перечня действий пользователя и правил, в соответствии с которыми будет изменен вес репутации пользователя, совершившего действие из указанного перечня; базу данных правил репутации, предназначенную для хранения заданных действий и соответствующих им правил изменения веса репутации; средство подсчета репутаций пользователей, предназначенное для получения уведомлений о совершенных пользователями действиях из заданного перечня и изменения веса репутации каждого из пользователей в базе данных репутаций пользователей в соответствии с заданными правилами; средство распространения регистрируемых действий, предназначенное для передачи компьютерным устройствам пользователей перечня заданных действий, необходимых для регистрации.
В другом частном случае реализации системы система оценки репутаций пользователей содержит также базу данных аномальных действий, предназначенную для хранения информации о действиях, которые отрицательно влияют на репутацию пользователя, совершившего данное действие.
В еще одном частном случае реализации системы одной из категорий сообщений является категория сообщений, содержащих спам.
Способ категоризации сообщений, получаемых группой пользователей, в котором: распространяют между компьютерными устройствами пользователей правила фильтрации из коллективной базы данных правил фильтрации; получают отчеты пользователей о том, что определенное сообщение относится к определенной категории; вычисляют вес сообщения по данной категории на основе количества присланных пользователями отчетов и веса репутации каждого пользователя, приславшего отчет; выносят решение о том, что сообщение относится к данной категории на основании превышения вычисленным весом сообщения по данной категории заданного порога; изменяют на основании вынесенного решения правила фильтрации в коллективной базе данных правил фильтрации; распространяют между компьютерными устройствами пользователей измененные правила фильтрации из коллективной базы данных правил фильтрации.
В частном случае реализации способа вес сообщения по определенной категории вычисляют с использованием следующих инструментов: нечеткая логика; имитационное моделирование; искусственные нейронные сети; метод опорных векторов.
В другом частном случае реализации способа репутация пользователя зависит от следующих факторов: включение пользователем дополнительных модулей антивирусного приложения, которые отключены по умолчанию; повышение уровня безопасности каждого из модулей в настройках; увеличение пользователем частоты антивирусных проверок в настройках расписания; увеличение пользователем частоты обновления антивирусных баз; использование пользователем в веб-обозревателе дополнительных надстроек, повышающих безопасность при работе в сети Интернет; изменение пользователем настроек веб-обозревателя, с целью повышения безопасности при работе в сети Интернет; тематика посещаемых сайтов; тематика запускаемых на компьютерном устройстве пользователя приложений и программ; регулярное пополнение баз анти-спам фильтра и родительского контроля; продолжительность использования антивирусного приложения пользователем; проведение антивирусных проверок компьютерной системы по требованию; антивирусная проверка съемных носителей информации; частота попадания в компьютерную систему вредоносных файлов.
В еще одном частном случае реализации способа на компьютерном устройстве пользователя отправляют отчет о том, что полученное сообщение относится к определенной категории; производят фильтрацию входящих сообщений в соответствии с правилами фильтрации в базе данных правил фильтрации; изменяют правила фильтрации в базе данных правил фильтрации в соответствии с измененными правилами, полученными из коллективной базы данных фильтрации.
В другом частном случае реализации способа изменяют правила фильтрации в базе данных правил фильтрации в соответствии с требованиями пользователя.
В еще одном частном случае реализации способа задают перечень действий пользователей и правила, в соответствии с которыми будет изменен вес репутации пользователя, совершившего действие из указанного перечня; распространяют между компьютерными устройствами пользователей перечень заданных действий, необходимых для регистрации; регистрируют на компьютерном устройстве пользователя действия пользователя из заданного перечня; отправляют уведомления о зарегистрированных действиях пользователя; изменяют вес репутации пользователя согласно заданным правилам на основе информации о действиях пользователя из полученных уведомлений.
В другом частном случае реализации способа задают перечень аномальных действий, которые отрицательно влияют на репутацию пользователя, совершившего данное действие.
В еще одном частном случае реализации способа для снижения веса репутации пользователя аномальное действие учитывают только после того, как количество аномальных действий, совершенных данным пользователем, превысит установленное значение.
В другом частном случае реализации способа к аномальным действиям пользователя относятся: слишком быстрая категоризация сообщений; слишком частая категоризация сообщений; категоризация сообщений в неуместное время; необоснованно частый запуск антивирусной проверки по требованию; отправка отчетов о сетевых атаках, которые не были зарегистрированы сетевым экраном; отсутствие открытия пользователем окна интерфейса антивирусного приложения при поступающих отчетах об использовании пользователем антивирусного приложения; отсутствие антивирусных проверок при поступающих отчетах об их проведении; отсутствие событий на устройствах ввода при совершении пользователем различных действий; использование приложений, которые не являются активными во время использования; использование приложений, которые не являются запущенными.
В еще одном частном случае реализации способа аномальные действия не учитываются при расчете веса репутации данного пользователя.
В другом частном случае реализации способа производят изменение веса репутации пользователей также на основе достоверности отправленных ими отчетов.
В еще одном частном случае реализации способа производят вычисление значений веса репутации пользователей отдельно для каждой заданной категории сообщений.
В другом частном случае реализации способа вычисляют вес сообщения по определенной категории на основе количества присланных пользователями отчетов и веса репутации по данной категории каждого пользователя, приславшего отчет.
В еще одном частном случае реализации способа учитывают отчеты, отправленные только теми пользователями, у которых вес репутации превышает определенное пороговое значение.
В другом частном случае реализации способа распространяют правила фильтрации систем фильтрации сообщений, установленных на компьютерных устройствах пользователей, имеющих самый высокий репутационный вес, среди остальных пользователей группы.
В еще одном частном случае реализации способа одной из категорий сообщений является категория сообщений, содержащих спам.
В другом частном случае реализации способа в качестве сообщений может выступать голосовой спам.
В еще одном частном случае реализации способа отчеты пользователей содержат уникальный идентификатор отправителя голосового спама, а правила фильтрации в коллективной базе данных правил фильтрации изменяют за счет внесения в черный список уникальных идентификаторов отправителей тех объектов голосового спама, вычисленный спам-вес которых превысил заданный порог.
В другом частном случае реализации способа правила фильтрации в коллективной базе данных правил фильтрации дополнительно изменяют путем использования поисковых роботов, предназначенных для поиска в сети Интернет информации об отправителях спам-сообщений с целью добавления ее в коллективную базу данных правил фильтрации.
Краткое описание чертежей
Дополнительные цели, признаки и преимущества настоящего изобретения будут очевидными из прочтения последующего описания осуществления изобретения со ссылкой на прилагаемые чертежи, на которых:
Фиг.1 показывает структурную схему системы фильтрации спама, в которой правила фильтрации задаются пользователем.
Фиг.2 показывает образное представление облачного сервиса.
Фиг.3 показывает структурную схему системы усовершенствования правил фильтрации на основе отчетов пользователей.
Фиг.4 показывает алгоритм работы системы усовершенствования правил фильтрации на основе отчетов пользователей.
Фиг.5 показывает структурную схему системы фильтрации спама на компьютерном устройстве пользователя, являющегося клиентом облачного сервиса.
Фиг.6 показывает структурную схему системы оценки репутаций пользователей.
Фиг.7 показывает пример построения базы данных правил репутации.
Фиг.8 показывает алгоритм работы системы оценки репутаций пользователей.
Фиг.9 показывает структурную схему системы отправки уведомлений на компьютерном устройстве пользователя, являющегося клиентом облачного сервиса.
Фиг.10 показывает пример компьютерной системы общего назначения.
Хотя изобретение может иметь различные модификации и альтернативные формы, характерные признаки, показанные в качестве примера на чертежах, будут описаны подробно. Следует понимать, однако, что цель описания заключается не в ограничении изобретения конкретным его воплощением. Наоборот, целью описания является охват всех изменений, модификаций, входящих в рамки данного изобретения, как это определено в приложенной формуле.
Описание вариантов осуществления изобретения
Объекты и признаки настоящего изобретения, способы для достижения этих объектов и признаков станут очевидными посредством отсылки к примерным вариантам осуществления. Однако настоящее изобретение не ограничивается примерными вариантами осуществления, раскрытыми ниже, оно может воплощаться в различных видах. Приведенное описание предназначено для помощи специалисту в области техники для исчерпывающего понимания изобретения, которое определяется только в объеме приложенной формулы.
На Фиг.1 показана структурная схема простейшей системы фильтрации спама, в которой правила фильтрации задаются пользователем. Сообщения 100, примером которых могут быть электронные письма, SMS- или MMS-сообщения, поступают на проверку в спам-фильтр 130 системы фильтрации спама 120, которая в общем случае установлена на компьютерном устройстве 110 пользователя 160. В качестве компьютерного устройства 110 может выступать, например, персональный компьютер или мобильное устройство, такое как ноутбук, планшетный компьютер или мобильный телефон. Спам-фильтр 130 определяет параметры поступивших сообщений 100 и проверяет наличие соответствий между указанными параметрами и хранимыми в базе данных правил фильтрации 140. В случае если соответствия между параметрами какого-либо сообщения 100 и параметрами, хранимыми в базе данных 140, будут найдены, к указанному сообщению будет применено заданное действие (например, помещение в карантин или удаление сообщения). В случае если соответствий найдено не будет, сообщение 100 будет передано пользователю 160. При этом если сообщение, содержащее спам, будет пропущено системой фильтрации спама 120 и передано пользователю 160, пользователь 160 имеет возможность изменить правила фильтрации в базе данных 140 с помощью средства изменения правил 150 с целью не допустить в дальнейшем прохождения аналогичных сообщений через систему фильтрации спама 120.
Так как в абсолютном большинстве случаев спам-рассылки имеют массовый характер, целесообразно применить подход, в котором изменение правил фильтрации в системе фильтрации спама 120, установленной на компьютерном устройстве 110 пользователя 160, производится на основании статистики спам-сообщений, полученных и обработанных большим числом пользователей. Данный подход можно реализовать, предоставив определенной группе пользователей возможность отправки отчетов о том, что полученное ими сообщение содержит спам, централизованной системе. В этом случае указанная централизованная система может производить обработку полученных отчетов и, на основании результатов данной обработки, централизованно менять правила фильтрации систем фильтрации спама 120 на компьютерных устройствах 110 всех пользователей группы. Таким образом, в случаях, когда часть пользователей определенной группы получает идентичные спам-сообщения и отправляет отчеты об этом централизованной системе, изменение правил фильтрации систем фильтрации спама 120 на компьютерных устройствах 110 всех пользователей группы обеспечивает гарантию того, что остальная часть пользователей группы аналогичные спам-сообщения не получит. Централизация системы обработки спама может быть достигнута путем использования облачного сервиса.
На Фиг.2 показано образное представление облачного сервиса. Сам облачный сервис 200 представлен в виде программно-аппаратных ресурсов 210, которые предоставляются пользователям компьютерных устройств 110. При этом наличие нескольких источников используемых ресурсов 210 с одной стороны позволяет повышать доступность системы клиент-сервер за счет возможности масштабирования при повышении нагрузки, а с другой - снижать риск неработоспособности виртуального сервера в случае выхода из строя какого-либо из ресурсов 210, так как вместо вышедшего из строя ресурса возможно автоматическое подключение виртуального сервера к резервным ресурсам.
На Фиг.3 представлена структурная схема системы усовершенствования правил фильтрации на основе отчетов пользователей. Каждый из пользователей компьютерных устройств 110, которые являются клиентами облачного сервиса 200, при получении сообщения, содержащего спам, имеет возможность отправить отчет об этом системе усовершенствования правил фильтрации 300, которая является частью облачного сервиса 200. Данные отчеты пользователей о спам-сообщениях поступают на средство обработки отчетов 310 системы усовершенствования правил фильтрации 300. Для количественной характеристики вероятности нахождения в сообщении спама средство обработки отчетов 310 для каждого сообщения, по которому был получен отчет, вычисляет величину, которую можно назвать спам-весом сообщения. Спам-вес сообщения вычисляется на основе количества присланных отчетов по данному сообщению, а также на основе величины, характеризующей уровень знаний и репутацию каждого пользователя, приславшего отчет, которую условно можно назвать весом репутации пользователя. Вес репутации вычисляется для каждого пользователя с целью категоризации всех пользователей - клиентов облачного сервиса по уровню знаний и репутации, вычисленное значение веса репутации хранится в базе данных репутаций пользователей 320. Методы вычисления веса репутации, используемые в рассматриваемом изобретении, будут раскрыты далее. Основная идея вычисления спам-веса сообщения на основе количества присланных отчетов и веса репутации каждого пользователя, приславшего отчет, состоит в том, что отчеты пользователей, которые имеют более высокий вес репутации, повышают спам-вес сообщения в большей степени, чем отчеты пользователей, имеющих низкий вес репутации. В одном из вариантов реализации может быть задан порог таким образом, что отчеты, присланные пользователями, чей вес репутации ниже заданного порога, при вычислении спам-веса сообщения учитываться не будут. При этом возможен случай, когда отчеты пользователей, имеющих вес репутации ниже заданного порога, не учитываются при вычислении спам-веса сообщения, а отчеты пользователей, имеющих вес репутации выше заданного порога, учитываются таким образом, что отчеты пользователей, которые имеют более высокий вес репутации, повышают спам-вес сообщения в большей степени, чем отчеты пользователей, имеющих более низкий вес репутации. Например, если заданное условное пороговое значение веса репутации составляет пятьдесят единиц из ста возможных, то отчеты пользователей с условным значением репутации ниже пятидесяти единиц при расчете спам-веса сообщения учитываться не будут, а отчет пользователя с условным значением репутации, равным девяноста пяти единицам, изменит спам-вес сообщения в большей степени, чем отчет пользователя с условным значением репутации, равным пятидесяти одной единице. Вычисление спам-веса сообщения на основе количества присланных пользователями отчетов о том, что в данном сообщении содержится спам, и на основе веса репутации каждого пользователя, приславшего отчет, производится по заранее заданному алгоритму с использованием таких аппаратов, как, например, нечеткая логика, имитационное моделирование, искусственные нейронные сети, метод опорных векторов. После того как спам-вес сообщения вычислен, его значение сравнивается с установленным порогом, на основании чего средство обработки отчетов 310 выносит решение о том, что сообщение содержит или не содержит спам. На основании вынесенного решения средство обработки отчетов 310 производит изменения в коллективной базе данных 330, куда вносит параметры рассматриваемого сообщения и присваивает ему соответствующую решению категорию. После этого средство распространения правил 340 отправляет измененные правила фильтрации из коллективной базы данных фильтрации 330 на все компьютерные устройства 110 пользователей, являющихся клиентами облачного сервиса 200. Таким образом, измененные правила из коллективной базы данных правил фильтрации 330 мигрируют на базы данных фильтрации 140 компьютерных устройств 110 пользователей, являющихся клиентами облачного сервиса 200. Кроме того, при возникновении ситуации, когда некоторое количество пользователей отправило отчеты о том, что определенное сообщение содержит спам, а средством обработки отчетов 310 вынесено решение о том, что сообщение не содержит спам, средство обработки отчетов 310 имеет возможность произвести изменения в базе данных репутаций пользователей 320 с целью уменьшения значения веса репутации каждого из пользователей, приславшего недостоверный отчет, на заданное значение. Соответственно, если средством обработки отчетов 310 вынесено решение о том, что сообщение содержит спам, средство обработки отчетов 310 имеет возможность произвести изменения в базе данных репутаций пользователей 320 с целью увеличения значения веса репутации каждого из пользователей, приславшего достоверный отчет, на заданное значение.
На Фиг.4 показан алгоритм работы системы усовершенствования правил фильтрации на основе отчетов пользователей. На этапе 410 средство обработки отчетов 310 системы усовершенствования правил фильтрации 300 получает отчеты пользователей о том, что определенное сообщение содержит спам. На этапе 420 средство обработки отчетов 310 находит в базе данных репутаций пользователей 320 вес репутации каждого пользователя, приславшего отчет. На основе количества присланных пользователями отчетов и на основе веса репутации каждого пользователя, средство обработки отчетов 310 на этапе 430 вычисляет спам-вес данного сообщения, после чего на этапе 440 определяет, превысило ли значение вычисленного спам-веса заданный порог. В случае если порог превышен, средство обработки отчетов 310 выносит решение о том, что сообщение содержит спам, и на этапе 445 производит соответствующие изменения в коллективной базе данных фильтрации 330, после чего на этапе 455 средство распространения правил 340 производит отправку измененных правил фильтрации всем компьютерным устройствам 110 пользователей, которые являются клиентами облачного сервиса 200. Кроме того, на этапе 465 средство обработки отчетов 310 в базе данных репутаций пользователей 320 увеличивает на заданное значение вес репутации каждого из пользователей, приславшего достоверный отчет о том, что сообщение содержит спам. В случае если вычисленное значение спам-веса не превысило заданный порог, средство обработки отчетов 310 выносит решение о том, что сообщение не содержит спам, и на этапе 470 в базе данных репутаций пользователей 320 уменьшает на заданное значение вес репутации каждого из пользователей, приславшего недостоверный отчет о том, что сообщение содержит спам.
Подход к изменению правил в коллективной базе данных правил фильтрации 330, описанный выше, является основным для настоящего изобретения. В частном случае реализации изобретения параметром сообщения, по которому сообщение идентифицируется как содержащее спам, является уникальный идентификатор отправителя. Примером уникального идентификатора отправителя для сообщений электронной почты является адрес электронной почты отправителя, для SMS- и MMS-сообщений - номер мобильного телефона отправителя. При этом в открытом доступе в сети Интернет существуют ресурсы, на которых хранится и постоянно пополняется информация, содержащая уникальные идентификаторы отправителей спам-сообщений. Поэтому в данном частном случае реализации изобретения информация в коллективной базе данных правил фильтрации 330 может дополнительно пополняться при помощи поискового робота (так называемого краулера) - программы, предназначенной для перебора страниц в сети Интернет с целью поиска необходимой информации и передачи ее в базу данных 330.
Стоит также отметить, что в рассматриваемом изобретении спам является одной из множества возможных категорий сообщений. Поэтому отчет пользователя о том, что сообщение содержит спам, является способом, с помощью которого данный пользователь уведомляет систему о том, что, по его мнению, данное сообщение относится к спаму, как к одной из возможных категорий. При необходимости перечень тех категорий, о принадлежности к которым определенных сообщений пользователь имеет возможность уведомить систему с помощью отчетов, может быть