Композиция автомобильного топлива
Изобретение относится к применению полимерной присадки, улучшающей индекс (ИВ), в композиции дизельного автомобильного топлива для улучшения характеристики приемистости двигателя внутреннего сгорания, в котором находится композиция дизельного топлива, или двигателя внутреннего сгорания, который находится в автомобиле с приводом от такого двигателя, где полимерная присадка, улучшающая ИВ, содержит блочный сополимер, который содержит один или несколько блоков мономеров, выбранных из мономеров этилена, пропилена, бутилена, бутадиена, изопрена и стирола, и концентрация полимерной присадки, улучшающей ИВ, в композиции дизельного топлива составляет от 0,05 до 0,5% по массе. Изобретение также относится к применению присадки, улучающей индекс ИВ, в топливном компоненте для композиции дизельного автомобильного топлива для (i) улучшения характеристики приемистости двигателя внутреннего сгорания, в котором находится композиция дизельного автомобильного топлива, содержащая указанный компонент, или двигателя внутреннего сгорания, где полимерная присадка, улучшающая ИВ, содержит блочный сополимер, который содержит один или несколько блоков мономеров, выбранных из мономеров этилена, пропилена, бутилена, бутадиена, изопрена и стирола, и концентрация полимерной присадки, улучшающей ИВ, в композиции дизельного топлива составляет от 0,05 до 0,5% по массе. Использование присадки позволяет улучшать индекс вязкости (ИВ) композиции автомобильного топлива с целью улучшения характеристики приемистости двигателя внутреннего сгорания, в который вводится топливная композиция, или автомобиля с таким приводом. 2 н. и 3 з.п. ф-лы, 26 табл., 7 пр.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к композициям автомобильного топлива, их получению и применению и к способам улучшения рабочих характеристик двигателей внутреннего сгорания, в том числе дизельных двигателей.
Уровень техники
Многие автомобильные двигатели оборудованы турбонаддувом, что улучшает их выходную мощность за счет увеличения количества воздуха, поступающего в камеру сгорания. Обычно работа турбонаддува регулируется с помощью системы управления двигателем автомобиля.
Хотя часто можно улучшить рабочие характеристики менее сложных двигателей за счет оптимизации состава и/или свойств топлива, поступающего внутрь двигателя, для современных двигателей с турбонаддувом такие варианты улучшения характеристик за счет топливной композиции становятся более ограниченными, поскольку системы управления двигателем часто программируются с целью компенсации изменений в подаче топлива.
В документе WO-A-2005/054411 описано применение компонента, повышающего вязкость композиции дизельного топлива, с целью улучшения тягового усилия автомобиля (ТУ А) и/или приемистости дизельного двигателя, в который подается эта композиция. В документе приведены примеры улучшения среднего времени ускорения при широко открытой дроссельной заслонке (ШОД), во всем диапазоне числа оборотов двигателя, приблизительно от 1300 об/мин и выше, и в испытании тягового усилия автомобиля (ТУ А) в установившемся режиме, при постоянном числе оборотов двигателя 2000 об/мин и выше, для двигателей с турбонаддувом, а также без турбонаддува. Компоненты, применяемые для повышения вязкости композиции топлива, включают компоненты углеводородного дизельного топлива, такие как, в частности, компоненты дизельного топлива, произведенные в синтезе Фишера-Тропша, и масла, которые могут иметь минеральное или синтетическое происхождение, и также могут быть произведены в синтезе Фишера-Тропша.
С целью оказания существенного эффекта на вязкость топлива и, следовательно, на рабочие характеристики двигателя обычно необходимо использовать такие дополнительные компоненты в концентрации, по меньшей мере, 5% по массе, и часто выше. Однако некоторые из добавок, особенно при повышенных концентрациях, оказывают отрицательное воздействие на другие свойства топлива, например, дистилляции или свойства текучести при низких температурах, что может затруднить соответствие показателей полученной топливной композиции заданным техническим условиям.
Повышение вязкости композиции автомобильного топлива не является тривиальной задачей. Введение дополнительных топливных компонентов, как предложено в документе WO-A-2005/054411, может повлиять на эксплуатацию нефтеперерабатывающего завода и на системы подачи, хранения и распределения топлива. Это может повысить затраты на поставку топлива, и для некоторых это может быть очень трудно реализовать, если, например, изготовитель слабо контролирует само базовое топливо. Кроме того, довольно очевидно, что компоненты, повышающие вязкость, также могут иметь ограниченную доступность.
Кроме того, отмечается, что в документе WO-A-2005/054411 отсутствуют конкретные данные об улучшении характеристики приемистости при пониженном числе оборотов двигателя. К тому же, именно при малых скоростях водитель мог бы наиболее вероятно заметить улучшение приемистости двигателя.
Было бы желательно иметь возможность дополнительного улучшения эксплуатационных характеристик автомобильного двигателя с турбонаддувом путем изменения состава и/или свойств дизельного топлива, поступающего внутрь двигателя, поскольку можно ожидать, что это обеспечит более простой, гибкий и экономически эффективный способ оптимизации эксплуатации, чем путем осуществления структурных или эксплуатационных изменений в самом двигателе.
Краткое раскрытие изобретения
Согласно первому замыслу настоящего изобретения разработано применение присадки, улучшающей индекс вязкости (ИВ) композиции автомобильного топлива, с целью улучшения характеристики приемистости двигателя внутреннего сгорания, в который вводится (или предполагается введение) топливная композиция, или автомобиля с таким приводом. Предпочтительно, композиция топлива представляет собой композицию дизельного топлива, причем двигателем внутреннего сгорания предпочтительно является дизельный двигатель, особенно дизельный двигатель с турбонаддувом.
Термин "дизельный двигатель" означает двигатель внутреннего сгорания с воспламенением от сжатия, который приспособлен для работы на дизельном топливе.
Термин "дизельный двигатель с турбонаддувом" означает дизельный двигатель, который эксплуатируется с турбонаддувом, обычно под контролем электронной системы управления двигателем.
Термин "приемистость" обычно включает в себя реагирование двигателя на открытие дроссельной заслонки, например, степень ускорения двигателя от любого заданного числа оборотов. Термин включает уровень мощности и/или крутящего момента и/или тягового усилия автомобиля (ТУА), развиваемых двигателем при любой заданной скорости. Таким образом, улучшение характеристики приемистости можно проследить по увеличению мощности, и/или крутящего момента, и/или ТУА двигателя при любой заданной скорости.
Настоящее изобретение может быть использовано для улучшения характеристики приемистости при малом числе оборотов двигателя. Термин "малое число оборотов двигателя" обычно означает скорость до 2200 об/мин, в частности до 2000 об/мин, например, от 500 до 2200 об/мин, или от 1200 или 1400 до 2200 об/мин, или от 1200 или 1400 до 2000 об/мин. "Малое число оборотов двигателя" может означать число оборотов двигателя ниже того уровня, при котором система управления двигателем, которая контролирует работу турбонаддува, начинает ограничивать форсированный режим, обеспечиваемый турбонаддувом, и/или регулировать давление воздуха в двигателе с наддувом.
Неожиданно было обнаружено, что даже под контролем системы управления двигателем, для топлив, содержащих присадки, улучшающие ИВ, можно получить преимущества по характеристикам дизельного двигателя с турбонаддувом, и что эти преимущества также могут быть реализованы при малом числе оборотов двигателя (например, в рассмотренных выше диапазонах). Это ни в коей мере нельзя было предвидеть из относящихся к более высоким скоростям данных документа WO-A-2005/054411, которые в случае данных ТУА были получены при фиксированных скоростях, а в случае времени ускорения при ШОД были усреднены по всему диапазону чисел оборотов двигателя вплоть до 3500 об/мин или выше. Преимущества этих характеристик, обеспечиваемые настоящим изобретением, например, могут повлиять на скорость нарастания турбонаддува; наблюдается переходный режим при ускорении от пониженного диапазона скоростей, в то время как описанные в документе WO-A-2005/054411 исследования были направлены скорее на установившийся режим работы двигателя.
Кроме того, можно было бы ожидать, что топливо с повышенной вязкостью могло бы ухудшить характеристики двигателя, например, за счет отрицательного влияния на распыление введенного топлива, таким образом, снижается скорость испарения топлива; в свою очередь, это вызывает потери мощности и/или рост потерь при нагнетании в оборудовании для инжекции топлива. Вместо этого было обнаружено, что выгоды от введения присадки, улучшающей ИВ автомобильного топлива, могут перекрывать любые такие потенциально отрицательные эффекты.
В ходе последующих исследований была выдвинута гипотеза, что повышенная вязкость топлива может вызывать ускорение разгона двигателя с турбонаддувом, который таким образом может достигать максимума скорости при пониженном числе оборотов двигателя. В современном дизельном двигателе с турбонаддувом скорость турбонаддува увеличивается, когда возрастает нагрузка и число оборотов двигателя, пока не будет достигнут заданный максимум скорости турбонаддува. "Раннее" форсирование двигателя, с более быстрым нарастанием скорости турбонаддува при меньшем числе оборотов двигателя, в свою очередь, может вызвать отчетливое улучшение приемистости при меньшем числе оборотов двигателя, что воспринимается водителем как более быстрая "приемистость" или реакция ускорения. Отчасти этот эффект может давать улучшение характеристики приемистости, которое наблюдается при использовании топливной композиции, полученной в соответствии с настоящим изобретением.
Кроме того, в изобретении найдено, что в некоторых случаях система управления двигателем (СУД) может усилить этот эффект. При ускорении с полной нагрузкой использование топлива с повышенной вязкостью может привести к увеличению количества инжектированного топлива, поэтому в выхлопных газах двигателя с турбонаддувом остается больше энергии. В свою очередь, это приводит к более высокому давлению воздуха, поступающего в двигатель, а, следовательно, к всасываемой смеси с повышенным содержанием воздуха. Вероятной реакцией системы управления двигателем на это будет впрыск большего количества топлива, таким образом, движение с турбонаддувом становится еще быстрее. Эта реакция положительной обратной связи прекращается, когда турбонаддув достигает максимальной скорости, и затем система управления двигателем производит контроль, ограничивая турбонаддув и регулируя давление поступающего воздуха. Авторы полагают, что эти эффекты объясняют, почему улучшение характеристик, наблюдаемое при использовании топлива повышенной вязкости, иногда может усиливаться при пониженном числе оборотов двигателя.
При повышенном числе оборотов двигателя давление поступающего воздуха более тщательно регулируется системой СУД, и тогда можно ожидать, что улучшение рабочих характеристик за счет повышенной вязкости топлива будет ослабляться и/или труднее поддаваться обнаружению. Однако было установлено, что присадки, улучшающие ИВ, позволяют сохранить эффект улучшения рабочих характеристик при повышенном числе оборотов двигателя (например, 2000 об/мин или больше, или 2200, или 2500, или даже 3000, или 3200, или 3400, или 3500, или больше), так же как и при пониженном числе оборотов.
Таким образом, настоящее изобретение может быть использовано для того, чтобы форсировать характеристики турбонаддува при малом числе оборотов двигателя, обычно в большей степени, чем можно было ожидать только на основании характеристик топливной композиции, содержащей присадку, улучшающую ИВ.
Настоящее изобретение целесообразно включает использование присадки, улучшающей ИВ, с целью уменьшения числа оборотов двигателя, при котором турбонаддув достигает максимума скорости при ускорении, или увеличения интенсивности, при которой увеличивается скорость турбонаддува (особенно при малом числе оборотов двигателя) или уменьшения времени, необходимого для достижения максимальной скорости турбонаддува. Однако изобретение также может быть использовано для сохранения улучшенных рабочих характеристик при повышенном числе оборотов двигателя, таким образом, идеально перекрывается весь диапазон числа оборотов двигателя.
Настоящее изобретение может включать использование присадки, улучшающей ИВ компонента, с целью уменьшения числа оборотов двигателя, при котором турбонаддув достигает максимума скорости при ускорении, или увеличения интенсивности, при которой увеличивается скорость турбонаддува (особенно при малом числе оборотов двигателя) или уменьшения времени, необходимого для достижения максимальной скорости турбонаддува. Изобретение может быть использовано для увеличения давления подаваемого воздуха (давление форсированного режима) при заданном числе оборотов двигателя, особенно при малом числе оборотов двигателя.
Число оборотов двигателя можно удобно определить путем опроса системы управления двигателем в ходе регулируемых испытаний на разгон. В качестве альтернативы обороты можно измерять с использованием динамометра. Обычно испытания характеристики приемистости проводятся при широко открытой дроссельной заслонке.
Скорость турбонаддува связана с давлением воздуха, поступающего в двигатель (то есть форсированное давление из турбонаддува), которое может быть измерено или с использованием традиционных датчиков давления (например, расположенных в канале воздухоприемника автомобиля с приводом от испытуемого двигателя, сразу после турбонаддува), или в некоторых случаях путем опроса системы управления двигателем. В свою очередь, это позволяет определить момент, когда скорость турбонаддува достигает наибольшего значения, или определить интенсивность роста скорости турбонаддува.
Крутящий момент двигателя можно рассчитать, зная силу, действующую на динамометр колесами автомобиля с приводом от испытываемого двигателя. Этот момент может быть измерен непосредственно с колес такого автомобиля, с использованием соответствующего специального оборудования (например, Kistler™ RoaDyn™). Мощность двигателя можно рассчитать, зная крутящий момент и число оборотов двигателя, как известно из уровня техники. Показатель ТУА можно определить, измеряя силу, действующую, например, на ролик динамометра на шасси, под действием колес автомобиля с приводом от испытуемого двигателя.
Настоящее изобретение может быть использовано для улучшения характеристик приемистости двигателя внутреннего сгорания или автомобиля с таким приводом. Характеристику приемистости можно оценить по ускорению двигателя и регистрации изменения числа оборотов двигателя, мощности, крутящего момента и/или ТУА, давления подаваемого воздуха и/или скорости турбонаддува во времени. Такая оценка может быть удобно осуществлена во всем диапазоне числа оборотов двигателя, если желательно улучшение рабочих характеристик при малой скорости, то оценку можно проводить, например, при числе оборотов от 1200 до 2000 об/мин или от 1400 до 1900 об/мин.
Кроме того, характеристику приемистости можно оценить с помощью водителя с соответствующим опытом, который разгоняет автомобиль с приводом от испытываемого двигателя, например от 0 до 100 км/час, на шоссе. Автомобиль должен быть оборудован соответствующими приборами, такими как спидометр, для того чтобы зарегистрировать изменения приемистости в связи с числом оборотов двигателя.
Обычно улучшение характеристики приемистости может проявляться по уменьшению времени ускорения и/или по одному или нескольким эффектам, которые описаны выше, например, по ускоренному увеличению скорости турбонаддува, или увеличению крутящего момента двигателя, или мощности, или ТУА при любой заданной скорости.
В контексте настоящего изобретения "улучшение" характеристики приемистости включает в себя любую степень улучшения. Аналогично, уменьшение или увеличение измеряемого параметра, - например, времени, необходимого для достижения наибольшего значения скорости турбонаддува, - включает в себя любую степень уменьшения или увеличения, в зависимости от обстоятельств. Улучшение, то есть уменьшение или увеличение - в зависимости от обстоятельств - может быть сопоставлено с соответствующим параметром при использовании топливной композиции до введения присадки, улучшающей ИВ, или при использовании другой аналогичной топливной композиции с меньшей вязкостью. Улучшение может быть сопоставлено с соответствующим параметром, измеренным при работе такого двигателя на другой аналогичной топливной композиции, которую предполагается использовать (например, поставлять на рынок) в двигателях внутреннего сгорания (обычно в дизельных двигателях), до добавления в композицию присадки, улучшающей ИВ.
Например, настоящее изобретение может включать регулирование свойств, и/или характеристик, и/или эффектов композиции топлива, в частности влияния топлива на характеристику приемистости двигателя внутреннего сгорания путем использования присадки, улучшающей ИВ, с целью достижения желательной цели.
Как описано в документе WO-A-2005/054411 (смотрите в частности стр.3, строка 22 до стр.4, строка 17), улучшение характеристики приемистости также может включать смягчение, по меньшей мере частичное, уменьшения, то есть ухудшения характеристики приемистости, вызванного другой причиной, в частности из-за другого топливного компонента или присадки, введенных в композицию топлива. В качестве примера, топливная композиция может содержать один или несколько компонентов, предназначенных для снижения общей плотности топлива с целью снижения уровня выбросов двигателя, образующихся при сгорании; уменьшение плотности может привести к потере мощности двигателя, однако этот эффект может быть преодолен или, по меньшей мере, смягчен, за счет использования присадки, улучшающей ИВ, в соответствии с настоящим изобретением.
Кроме того, улучшение приемистости при пониженной скорости может включать восстановление, по меньшей мере частичное, характеристики приемистости, которая оказалась сниженной по другой причине, такой как использование топлива, содержащего кислородсодержащие соединения (например, так называемое "биотопливо"), или накопление отложений в двигателе, связанных со сгоранием (обычно в топливных инжекторах).
В случае использования настоящего изобретения для увеличения крутящего момента двигателя, обычно в течение периода разгона, при заданном числе оборотов двигателя, это увеличение может составлять по меньшей мере 0,1%, предпочтительно по меньшей мере 0,2, или 0,3, или 0,4, или 0,5%, иногда по меньшей мере 0,6 или 0,7%, по сравнению с увеличением, полученным при работе двигателя на топливной композиции до введения присадки, улучшающей ИВ, и/или при работе двигателя на другой аналогичной топливной композиции (обычно дизельного топлива) с меньшей вязкостью.
Это увеличение может быть сопоставлено с крутящим моментом двигателя, полученным при соответствующей скорости, когда тот же самый двигатель работает на другой аналогичной топливной композиции, которую предполагается использовать (например, поставлять на рынок) в двигателях внутреннего сгорания (обычно дизелях), в том числе в двигателях с турбонаддувом, до добавления в композицию присадки, улучшающей ИВ.
В случае использования настоящего изобретения для увеличения мощности двигателя, обычно в течение периода разгона, при заданном числе оборотов двигателя, это увеличение снова может составлять по меньшей мере 0,1%, предпочтительно по меньшей мере 0,2, или 0,3, или 0,4, или 0,5%, иногда по меньшей мере 0,6 или 0,7%, по сравнению с увеличением, полученным при работе двигателя на топливной композиции до введения присадки, улучшающей ИВ, и/или при работе двигателя на другой аналогичной топливной композиции (обычно дизельного топлива) с меньшей вязкостью. Это увеличение может быть сопоставлено с мощностью двигателя, полученной при соответствующей скорости, когда тот же самый двигатель работает на другой аналогичной топливной композиции, которую предполагается использовать (например, поставлять на рынок) в двигателях внутреннего сгорания (обычно дизелях), в том числе в двигателях с турбонаддувом, до добавления в композицию присадки, улучшающей ИВ.
В случае использования настоящего изобретения для увеличения ТУА двигателя, обычно в течение периода разгона, при заданном числе оборотов двигателя, это увеличение также может составлять по меньшей мере 0,1%, предпочтительно по меньшей мере 0,2, или 0,3, или 0,4, или 0,5%, иногда по меньшей мере 0,6 или 0,7%, по сравнению с увеличением, полученным при работе двигателя на топливной композиции до введения присадки, улучшающей ИВ, и/или при работе двигателя на другой аналогичной топливной композиции (обычно дизельного топлива) с меньшей вязкостью. Это увеличение может быть сопоставлено с тяговым усилием двигателя, полученным при соответствующей скорости, когда тот же самый двигатель работает на другой аналогичной топливной композиции, которую предполагается использовать (например, поставлять на рынок) в двигателях внутреннего сгорания (обычно дизелях), в том числе в двигателях с турбонаддувом, до добавления в композицию присадки, улучшающей ИВ.
В случае использования настоящего изобретения для увеличения давления, форсирующего турбонаддув, в двигателе с турбонаддувом, обычно в течение периода разгона (то есть в ходе нарастания турбонаддува), при заданном числе оборотов двигателя, это увеличение может составлять по меньшей мере 0,3%, предпочтительно по меньшей мере 0,4 или 0,5%, по сравнению с увеличением, полученным при работе двигателя на топливной композиции до введения присадки, улучшающей ИВ, и/или при работе двигателя на другой аналогичной топливной композиции (обычно дизельного топлива) с меньшей вязкостью. Это увеличение может быть сопоставлено с давлением, форсирующим турбонаддув, полученным при соответствующей скорости, когда тот же самый двигатель работает на другой аналогичной топливной композиции, которую предполагается использовать (например, поставлять на рынок) в двигателях внутреннего сгорания (обычно дизелях), в том числе в двигателях с турбонаддувом, до добавления в композицию присадки, улучшающей ИВ.
В случае использования настоящего изобретения для уменьшения времени, необходимого для разгона двигателя от одного до другого заданного числа оборотов двигателя, это снижение может составлять по меньшей мере 0,1%, предпочтительно по меньшей мере 0,2, или 0,3, или 0,4, или 0,5%, иногда по меньшей мере 0,6, или 0,7, или 0,8, или 0,9%, по сравнению с временем разгона при работе двигателя на топливной композиции до введения присадки, улучшающей ИВ, и/или при работе двигателя на другой аналогичной топливной композиции (обычно дизельного топлива) с меньшей вязкостью. Это уменьшение может быть сопоставлено с временем разгона от одного до другого заданного числа оборотов, когда тот же самый двигатель работает на другой аналогичной топливной композиции, которую предполагается использовать (например, поставлять на рынок) в двигателях внутреннего сгорания (обычно дизелях), в том числе в двигателях, до добавления в композицию присадки, улучшающей ИВ. Например, время разгона можно измерять в диапазоне возрастающего числа оборотов двигателя от 300 об/мин или больше, или 400, или 500, или 600, или 700, или 800, или 900, или 1000 об/мин, или больше, например, от 1300 до 1600 об/мин, или от 1600 до 2200 об/мин, или от 2200 до 3000 об/мин, или от 3000 до 4000 об/мин.
Предпочтительно присадка, улучшающая ИВ, используется при минимальной температуре 40°С. Более того, присадка, улучшающая ИВ, предпочтительно используется при минимальном давлении 250 бар.
В соответствии с настоящим изобретением композиция автомобильного топлива, в которой используется присадка, улучшающая ИВ, может быть, например, композицией дизельного топлива, подходящей для применения в дизельном двигателе. Композиция может быть использована, и/или может быть подходящей, и/или приспособленной, и/или предназначается для использования в любом типе двигателя с воспламенением от сжатия, например, в тех, которые описаны ниже. В частности ее можно удобно использовать в дизельном двигателе, оборудованном турбонаддувом.
Применение присадок, улучшающих индекс вязкости (также называются добавками, улучшающими ИВ), уже хорошо известно для рецептур смазочных материалов, где они используются для сохранения вязкости по возможности постоянной в желательном диапазоне температур путем увеличения вязкости при повышенных температурах. Обычно основой присадок служат полимерные молекулы с относительно высокой молекулярной массой и длинной цепью, которые могут образовывать конгломераты и/или мицеллы. Эти молекулярные системы расширяются при повышении температуры, таким образом дополнительно ограничивается их движение относительно друг друга, что в свою очередь повышает вязкость системы.
Известные присадки, улучшающие ИВ, включают полиметакрилаты (ПМА), полиизобутилены (ПИБ), стирол-бутилен/этиленовые блочные сополимеры и некоторые другие сополимеры, в том числе, например, полистирол-полиизопреновые звездообразные ("звездчатые") сополимеры. Обычно их вводят в рецептуры смазочных масел в концентрации между 1 и 20% по массе.
В документе WO-A-01/48120 предложены определенные присадки таких типов для применения в топливных композициях, в том числе в композициях дизельного топлива, с целью улучшения запуска двигателя при повышенных температурах. Однако, насколько известно авторам изобретения, не было предложено их использование для улучшения характеристики приемистости двигателя.
В настоящем изобретении установлено, что присадки, улучшающие ИВ, могут значительно повысить вязкость композиции автомобильного топлива, в частности дизельного топлива, даже при использовании относительно низких концентраций присадок, и, в свою очередь, могут улучшить рабочие характеристики двигателя, в который вводится эта композиция. Эти улучшения рабочих характеристик могут быть особенно заметны при малом числе оборотов двигателя, как более подробно описано ниже. В частности, они могут быть использованы в двигателях с турбонаддувом.
Таким образом, настоящее изобретение может обеспечить эффективный способ улучшения рабочих характеристик двигателя внутреннего сгорания с помощью топлива, введенного в двигатель. Однако в отличие от композиций дизельного топлива, раскрытых в документе WO-A-2005/054411, в настоящем изобретении возможна оптимизация топлива с использованием относительно малых концентраций дополнительных компонентов (то есть концентраций такого порядка, которые применяются скорее для топливных присадок, чем для топливных компонентов, таких как используемые для повышения вязкости, описанные в документе WO-A-2005/054411). В свою очередь это может снизить затраты и упростить процесс получения топлива. Например, это может позволить изменять топливную композицию с целью улучшения последующих рабочих характеристик двигателя за счет введения присадок скорее после нефтеперерабатывающего завода, чем путем изменения содержания базового топлива на месте его получения. Смешивание компонентов базового топлива может быть осуществлено не на всех местоположениях, тогда как введение топливных присадок в относительно малых концентрациях может быть легко осуществлено на топливных складах или в других заправочных пунктах, таких как автоцистерна, баржа или передвижные заправочные пункты, заправочные колонки, потребительские резервуары и автомобили. Кроме того, присадка, которая может использоваться в относительно низких концентрациях, конечно, может транспортироваться, храниться и вводиться в топливную композицию с большей экономической эффективностью, чем топливный компонент, который должен применяться в концентрациях порядка десятка процентов по массе.
Кроме того, применение относительно малых концентраций присадок, улучшающих ИВ, помогает снижать любые нежелательные побочные эффекты, например, воздействие на дистилляцию или свойства текучести при низких температурах, которые вызваны их введением в топливную композицию.
Присадки, улучшающие ИВ, главным образом, получают синтетически, и поэтому они обычно доступны, причем их состав и качество вполне определены, в отличие, например, от повышающих вязкость топливных компонентов минерального происхождения (нефтезаводские потоки), состав которых может изменяться от партии к партии. Кроме того, присадки, улучшающие ИВ, промышленно доступны для использования в смазочных маслах, что и в этом случае может сделать их привлекательной присадкой для нового применения, предложенного в настоящем изобретении. Часто они также имеют меньшую стоимость, в частности в связи с требуемой меньшей концентрацией, чем для других компонентов, повышающих вязкость, таких как минеральные базовые масла.
Дополнительное преимущество настоящего изобретения заключается в том, что присадки, улучшающие ИВ, специально разработаны для повышения вязкости при повышенной температуре. Поскольку увеличение мощности двигателя, благодаря использованию топлив с повышенной вязкостью, связано с условиями системы впрыска топлива, которая обычно эксплуатируется при высокой температуре, полагают, что присадки, улучшающие ИВ, могут обеспечивать более значительные преимущества рабочих характеристик, чем другие традиционные компоненты, повышающие вязкость.
Присадки, улучшающие ИВ и применяемые в топливных композициях в соответствии с настоящим изобретением, по своей природе могут быть полимерами. Например, они могут быть выбраны из:
а) сополимеров на основе стирола, в частности блочных сополимеров, например, таких, которые доступны как присадки Kraton™ D или Kraton™ G (от фирмы Kraton) или как присадки SV™ (от фирм Infineum, Multisol или др.). Конкретные примеры включают сополимеры стирольных и этилен/бутиленовых мономеров, например, полистирол-полиизопреновых сополимеров и полистирол-полибутадиеновых сополимеров. Такие сополимеры могут быть блочными сополимерами, как например, SV™ 150 (полистирол-полиизопреновый двойной блочный сополимер), или присадками Kraton™ (стирол-бутадиен-стирольные тройные блочные сополимеры или стирол-этилен-бутиленовые блочные сополимеры). Они могут быть клиновидными сополимерами, например, стирол-бутадиеновые сополимеры. Они могут быть звездообразными сополимерами, как, например, SV™ 260 (стирол-полиизопреновый звездообразный сополимер);
b) другие блочные сополимеры на основе этилена, бутилена, бутадиена, изопрена или других олефиновых мономеров, например, этилен-пропиленовые сополимеры;
c) полиизобутилены (ПИБ);
d) полиметакрилаты (ПМА);
e) поли-альфа-олефины (ПАО); и
f) их смеси.
Присадки, улучшающие ИВ, могут содержать одно или несколько соединений неорганического происхождения, например цеолиты.
Другие примеры подходящих присадок, улучшающих индекс вязкости, раскрыты в патентах Японии №№954077, 1031507, 1468752, 1764494 и 1751082. Дополнительные примеры включают в себя присадки, улучшающие ИВ, диспергирующего типа, которые включают в себя сополимеризованные полярные мономеры, содержащие атомы азота и кислорода; улучшающие ИВ присадки алкилароматического типа; и определенные присадки, снижающие температуру потери текучести, для которых известно применение в качестве присадок, улучшающих ИВ.
Из указанных выше присадки типов (а) и (b) или их смеси могут быть предпочтительными, в особенности присадки типа (а). Присадки, улучшающие ИВ, которые содержат или в идеале состоят, главным образом, из блочных сополимеров, могут быть предпочтительными, так как обычно они в меньшей степени будут приводить к побочным эффектам, таким как образование осадка и/или пены.
Присадка, улучшающая ИВ, например, может быть блочным сополимером, который содержит один или несколько блоков олефиновых мономеров, обычно выбранных из мономеров - этилена, пропилена, бутилена, бутадиена, изопрена и стирола.
Кинематическая вязкость при 40°С (KB 40, которую измеряют по стандарту ASTM D-445 или EN ISO 3104) присадки, улучшающей ИВ, обычно составляет 40 мм2/с или больше, предпочтительно 100 мм2/с или больше, более предпочтительно 1000 мм2/с или больше. Целесообразно плотность присадки при 15°С (ASTM D-4052 или EN ISO 3675) составляет 600 кг/м3 или больше, предпочтительно 800 кг/м3 или больше. Содержание в ней серы (ASTM D-2622 или EN ISO 20846) обычно составляет 1000 мг/кг или меньше, предпочтительно 350 мг/кг или меньше, более предпочтительно 10 мг/кг или меньше.
Присадка, улучшающая ИВ, может быть заранее растворена в подходящем растворителе, например в масле, таком как минеральное масло или смесь углеводородов, произведенная в синтезе Фишера-Тропша; в топливном компоненте (который и в этом случае может быть или минеральным, или произведенным в синтезе Фишера-Тропша), совместимым с композицией топлива, в котором будет применяться присадка (например, среднедистиллятный топливный компонент, такой как газойль или керосин, когда предполагается использование присадки в композиции дизельного топлива); поли-альфа-олефине; так называемом биотопливе, таком как алкиловый эфир жирной кислоты (АЭЖК), в продукте синтеза Фишера-Тропша с превращением биомассы в синтетическую жидкость, гидрированном растительном масле, в отработанном масле, или масле водорослей, или спирте, таком как этанол; в ароматическом растворителе; любом другом углеводороде или органическом растворителе; или в их смеси. В этой связи предпочтительными растворителями для использования являются минеральные масла на основе компонентов дизельного топлива и растворители, и компоненты, произведенные в синтезе Фишера-Тропша, такие как указанные ниже компоненты "XtL". В некоторых случаях также могут быть предпочтительными растворители типа биотоплива.
Концентрация присадки, улучшающей ИВ, в композиции топлива может доходить до 1% по массе, подходяще до 0,5% по массе, иногда до 0,4, или 0,3, или 0,25% по массе. Концентрация может составлять 0,001% по массе или больше, предпочтительно 0,01% по массе или больше, целесообразно 0,02, или 0,03, или 0,04, или 0,05% по массе или больше, иногда 0,1 или 0,2% по массе или больше. Подходящая концентрация может составлять, например, от 0,001 до 1% по массе, или от 0,001 до 0,5% по массе, или от 0,05 до 0,5% по массе, или от 0,05 до 0,25% по массе, например, от 0,05 до 0,25% по массе или от 0,1 до 0,2% по массе. Неожиданно было установлено, что повышенные концентрации присадок, улучшающих ИВ (например, выше чем 0,5% по массе), не всегда приводят к улучшению рабочих характеристик двигателя и что иногда может наблюдаться оптимум концентрации для любой данной присадки, например, между 0,05 и 0,5% по массе, или между 0,05 и 0,25% по массе, или между 0,1 и 0,2% по массе.
Остальная часть композиции обычно может состоять из одного или нескольких автомобильных базовых топлив, примеры которых более подробно описаны ниже, необязательно вместе с одной или несколькими топливными присадками.
Указанные выше концентрации приведены для самой присадки, улучшающей ИВ, и не учитывают любой растворитель (растворители), которым предварительно разбавлен активный компонент. Концентрации приведены в расчете на массу всей топливной композиции. Если в композиции используется комбинация из двух или более присадок, улучшающих ИВ, такие же диапазоны концентраций могут применяться для всей комбинации, и в этом случае за вычетом любого присутствующего предварительного растворителя (растворителей).
Концентрация присадки, улучшающей ИВ, будет зависеть от желательной вязкости всей топливной композиции, вязкости композиции до введения присадки, вязкости самой присадки и вязкости любого растворителя, в котором используется присадка. Относительные доли присадки, улучшающей ИВ, топливного компонента (компонентов), повышающего вязкость, и любых других присутствующих компонентов или присадок, в композиции автомобильного топлива, полученной в соответствии с настоящим изобретением, также могут зависеть от других желательных свойств, таких как плотность, характеристика выбросов и цетановое число, особенно от плотности.
Неожиданно было установлено, что, по меньшей мере, при относительно низких концентрациях, предложенных в настоящем изобретении, улучшающая ИВ присадка, может увеличивать вязкость топливной композиции, в частности композиции дизельного топлива, в большей степени, чем можно было прогнозировать теоретически, на основе значений вязкости индивидуальных компонентов.
Согласно этой теории вязкость смеси двух или более жидкостей, обладающих различной вязкостью, можно рассчитать, используя трехступенчатую методику (смотрите в книге Хиршфельдера и др., "Молекулярная теория газов и жидкостей" (Hirshfelder et al., Molecular Theory of Gases and Liquids), l-e издание, Wiley (ISBN 0-471-40065-3) и Maples (2000), "Экономика процессов переработки нефти» (Petroleum Refinery Process Economics), 2-e издание, Pennwell Books (ISBN 0-87814-779-9)). На первой ступени необходимо рассчитать индекс вязкости смешения (ИВС) для каждого компонента смеси, с использованием следующего уравнения (известного как уравнение Refutas):
где v означает вязкость соответствующего компонента в сантистоксах (мм2/с), измеренную при одной и той же температуре для каждого компонента.
На следующей ступени рассчитывают ИВС для всей смеси, используя следующее уравнение: