Индуцирующий иммунитет агент

Иллюстрации

Показать все

Изобретение относится к биохимии, в частности к индуцирующему иммунитет агенту, содержащему в качестве активного ингредиента эффективное количество по меньшей мере одного полипептида, обладающего индуцирующей иммунитет активностью, заключающейся в индукции CD8+ цитотоксических Т-клеток, способных разрушать опухолевые клетки, экспрессирующие полипептид CAPRIN-1 человека, и выбранному из следующих полипептидов (а), (b) и (с), или эффективное количество рекомбинантного вектора, содержащего полинуклеотид, кодирующий такой полипептид и способный экспрессировать такой полипептид in vivo:(a) полипептид с любой аминокислотной последовательностью из SEQ ID NO: 43-76 перечня последовательностей;(b) полипептид, который на 85% или более идентичен последовательности полипептида (а); и (c) полипептид с 8-12 аминокислотами, содержащий полипептид (а) или (b). Изобретение относится также к способу индукции иммунитета с использованием указанного агента. Изобретение позволяет расширить арсенал средств для индукции иммунитета. 3 н. и 7 з.п.ф-лы, 5 ил, 6 пр.

Реферат

Область техники

Настоящее изобретение относится к новому индуцирующему иммунитет агенту, который может применяться в качестве терапевтического и/или диагностического средства при раке и тому подобных заболеваниях.

Предшествующий уровень техники

Рак является в целом ведущей причиной смерти. В настоящее время первичной формой методики лечения рака является хирургическое лечение, которое проводится в комбинации с лучевой терапией и химиотерапией. Несмотря на разработку новых хирургических методик и обнаружение новых противораковых средств в последние годы, исходы лечения рака еще остаются неудовлетворительными, за исключением некоторых форм рака. В последние годы были идентифицированы раковые антигены, распознаваемые цитотоксическими Т-клетками, которые реагируют на рак, и гены, кодирующие раковые антигены, наряду с развитием молекулярной биологии и иммунологии рака, и повысились ожидания антиген-специфической иммунотерапии (Tsuyoshi Akiyoshi, Gan to Kagaku Ryouhou (Cancer and Chemotherapy), 1997, vol. 24, pp. 551-519, Cancer and Chemotherapy Publishers Inc., Japan).

Иммунотерапия требует присутствия специфичного для раковых клеток пептида, полипептида или белка, который распознается в качестве антигена-мишени, а также по существу отсутствия его в нормальных клетках с точки зрения облегчения побочных эффектов. В 1991 г. Boon et al. (the Ludwig Institute for Cancer Research, Belgium) выделили антиген человеческой меланомы MAGE1, распознаваемый Т-клетками CD8+ посредством клонирования экспрессии кДНК с использованием аутологичной линии раковых клеток и реактивных в отношении рака Т-клеток (Bruggen P. et al., Science, 254: 1643-1647, 1991). Затем появилось сообщение о методе SEREX (серологической идентификации антигенов экспрессией клонированных рекомбинантных генов), который идентифицирует опухолевой антиген, распознаваемый антителом, продуцируемым в ответ на аутологичный рак, в теле страдающего раком пациента посредством экспрессии клонированных генов (Proc. Natl. Acad. Sci. U.S.A., 92: 11810-11813, 1995; и патент США № 5698396). Некоторые раковые антигены были выделены такими методиками (Int. J. Cancer, 72: 965-971, 1997; Cancer Res., 58: 1034-1041, 1998; Int. J. Cancer, 29: 652-658, 1998; Int. J. Oncol., 14: 703-708, 1999; Cancer Res., 56: 4766-4772, 1996; и Hum. Mol. Genet. 6: 33-39, 1997). Кроме того, было начато клиническое тестирование иммунотерапии рака, нацеленной на некоторые такие антигены.

Известно, что собаки и кошки, как и люди, страдают различными опухолями, такими как рак молочных желез, лейкоз и лимфома, и опухоли занимают высокое место в статистике заболеваний собак и кошек. Однако в настоящее время нет эффективных терапевтических, профилактических или диагностических средств по поводу рака у кошек и собак. Большинство владельцев собак и кошек не замечают опухолей у своих питомцев до тех пор, пока опухоли не становятся запущенными и увеличенными. Даже если опухоли удалены посредством хирургической операции или вводятся лекарственные средства, предназначенные для применения у людей (например, противораковые лекарственные препараты), то опухоли часто уже неизлечимы, и животные часто погибают вскоре после лечения. В таких обстоятельствах, если станут доступными терапевтические, профилактические и диагностические средства по поводу рака, которые эффективны у собак и кошек, то можно ожидать их применения по поводу рака у собак и кошек.

Цитоплазматический и связанный с пролиферацией белок 1 (CAPRIN-1) экспрессирован, когда покоящиеся нормальные клетки активируются или подвергаются клеточному делению. CAPRIN-1 представляет собой внутриклеточный белок, который, как известно, образует внутриклеточные стрессовые гранулы с РНК в клетке и связан с регуляцией транспорта и трансляции мРНК. CAPRIN-1 также известен под многими другими названиями, и их примеры включают заякоренный GPI мембранный белок 1 и мембранный компонентный поверхностный маркерный белок 1 (M11S1). CAPRIN-1 имеет названия, которые передают впечатление, что он был известен как клеточный мембранный белок. Такие другие названия происходят из сообщения о том эффекте, что последовательность гена CAPRIN-1 имеет область связывания GPI, и он представляет собой мембранный белок, экспрессированный в линии клеток, полученной из толстой кишки (J. Biol. Chem., 270: 20717-20723, 1995). Однако позднее стало известно, что последовательность гена CAPRIN-1 в этом сообщении была неправильной, и в последовательности гена делеция одного нуклеотида из последовательности гена CAPRIN-1, в настоящее время зарегистрированная в Генном Банке или тому подобном, вызывает сдвиг рамки, посредством этого приводя к делеции 80 аминокислот из C-конца, и поэтому полученный артефакт (74 аминокислоты) представлял собой связывающую GPI область, упомянутую в указанном выше сообщении. Кроме того, было также известно, что последовательность гена CAPRIN-1, указанная в сообщении, также имела ошибку на стороне 5', и произошла делеция 53 аминокислотных остатков из N-конца (J. Immunol., 172: 2389-2400, 2004). Сообщалось также что белок, кодируемый последовательностью гена CAPRIN-1, в настоящее время зарегистрированный в Генном Банке или тому подобном, не является клеточным мембранным белком (J. Immunol., 172: 2389-2400, 2004).

На основании сообщения в публикации J. Biol. Chem., 270: 20717-20723, 1995, о том, что CAPRIN-1 представляет собой клеточный мембранный белок, в документах US 2008/0075722 и WO 2005/100998 описано, что CAPRIN-1 может быть мишенью терапии рака в виде клеточного мембранного белка под названием M11S1. Однако они не включают какие-либо определенные описания в разделе «Примеры». Однако как сообщалось в публикации J. Immunol., 172: 2389-2400, 2004, со времени подачи заявки US 2008/0075722 было принято считать, что CAPRIN-1 не экспрессирован на клеточной поверхности. Очевидно, что описания документов US 2008/0075722 и WO 2005/100998, основанные только на неправильной информации о том, что CAPRIN-1 представляет собой клеточный мембранный белок, не следует понимать как общее техническое представление в данной области. Кроме того, нет сообщений о том, что уровень экспрессии CAPRIN-1 выше в раковых клетках, таких как клетки рака молочной железы, чем в нормальных клетках.

КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Проблема, подлежащая решению изобретением

Целью настоящего изобретения является выявление нового полипептида, который может применяться в качестве терапевтического и/или профилактического средства по поводу рака и обеспечение применения такого полипептида в качестве индуцирующего иммунитет агента.

Средства для решения проблемы

Заявители провели концентрированные исследования и затем получили кДНК, кодирующие белки, которые связываются с антителами в сыворотке, полученной из пораженного раком живого организма, способом SEREX с использованием библиотеки кДНК, полученной из ткани семенников собак, и сыворотки собаки, страдающей раком молочной железы, и получили собачий полипептид CAPRIN-1, имеющий аминокислотную последовательность, показанную SEQ ID NO:6, 8, 10, 12 и 14, с использованием таких кДНК. Используя также человеческий гомологичный ген полученного гена, заявители получили полипептид CAPRIN-1 человека, имеющий аминокислотную последовательность, показанную SEQ ID NO:2 и 4. Далее они обнаружили, что такие полипептиды CAPRIN-1 были специфически экспрессированы при раке молочной железы, опухоли мозга, лейкозе, лимфоме, раке пищевода и колоректальном раке. Кроме того, они обнаружили, что введение таких полипептидов CAPRIN-1 в живые организмы приводит к индукции иммуноцитов против полипептидов CAPRIN-1 в живых организмах и обратному развитию опухолей в живых организмах, экспрессирующих гены CAPRIN-1. Кроме того, заявители обнаружили, что антитела против таких полипептидов CAPRIN-1 разрушают раковые клетки, которые экспрессируют гены CAPRIN-1, и вызывают противоопухолевые эффекты in vivo. Это привело к созданию настоящего изобретения.

Соответственно, настоящее изобретение имеет следующие признаки.

(1) Индуцирующий иммунитет агент, содержащий в качестве активного ингредиента по меньшей мере один полипептид, обладающий индуцирующей иммунитет активностью, и выбранный из следующих полипептидов (a), (b) и (c), или рекомбинантный вектор, содержащий полинуклеотид, кодирующий такой полипептид, и способный экспрессировать такой полипептид in vivo:

(a) полипептид по меньшей мере из семи соседних аминокислот аминокислотной последовательности, показанной четным номером SEQ ID, выбранной из SEQ ID NO:2-30, перечисленных в разделе "Список последовательностей";

(b) полипептид по меньшей мере из семи соседних аминокислот, имеющий идентичность с полипептидом (a) 90% или более; и

(c) полипептид, содержащий полипептид (a) или (b) в качестве его частичной последовательности.

(2) Индуцирующий иммунитет агент по п.(1), где полипептид (b) представляет собой полипептид, имеющий идентичность последовательности с полипептидом (a), 95% или более.

(3) Индуцирующий иммунитет агент по п.(1), где полипептид, обладающий индуцирующей иммунитет активностью, представляет собой полипептид по меньшей мере из семи соседних аминокислот аминокислотной последовательности, показанной любым четным номером SEQ ID, выбранной из SEQ ID NO:2-30, перечисленных в разделе "Список последовательностей", или полипептид, содержащий такой полипептид в качестве его частичной последовательности.

(4) Индуцирующий иммунитет агент по п.(3), где полипептид, обладающий индуцирующей иммунитет активностью, представляет собой полипептид, содержащий аминокислотную последовательность, показанную любым четным номером SEQ ID, выбранную из SEQ ID NO:2-30, перечисленных в разделе "Список последовательностей".

(5) Индуцирующий иммунитет агент по п.(3), где полипептид, обладающий индуцирующей иммунитет активностью, представляет собой полипептид по меньшей мере из семи соседних аминокислот в области аминокислотных остатков (aa) от 41 до 400 или аминокислотных остатков (aa) от 503 до 564 аминокислотной последовательности, показанной любым четным номером SEQ ID, выбранной из SEQ ID NO:2-30, перечисленных в разделе "Список последовательностей", за исключением SEQ ID NO:6 и SEQ ID NO:18, или полипептид, содержащий такой полипептид в качестве его частичной последовательности.

(6) Индуцирующий иммунитет агент по п.(5), где полипептид, обладающий индуцирующей иммунитет активностью, представляет собой полипептид аминокислотной последовательности, показанной любой SEQ ID NO:43-76, перечисленных в разделе "Список последовательностей", или полипептид из 8-12 аминокислот, содержащий аминокислотную последовательность, показанную любой из SEQ ID NO:43-76 в разделе "Список последовательностей", в качестве его частичной последовательности.

(7) Индуцирующий иммунитет агент по любому из пп.(1)-(6), который содержит в качестве активного ингредиента один или множество типов таких полипептидов.

(8) Индуцирующий иммунитет агент по п.(7), где полипептид представляет собой агент для обработки антиген-представляющей клетки.

(9) Индуцирующий иммунитет агент по любому из пп.(1)-(7), который предназначен для применения при лечении или профилактике рака у животных.

(10) Индуцирующий иммунитет агент по п.(9), где рак представляет собой рак молочной железы, опухоль мозга, лейкоз, лимфому, рак легких, рак пищевода или колоректальный рак.

(11) Индуцирующий иммунитет агент по п.(9), где животное представляет собой человека, собаку или кошку.

(12) Индуцирующий иммунитет агент по любому из пп.(1)-(11), который, кроме того, содержит иммунопотенцирующее средство.

(13) Индуцирующий иммунитет агент по п.(12), где иммунопотенцирующее средство представляет собой по меньшей мере один адъювант или цитокин, выбранный из группы, состоящей из неполного адъюванта Фрейнда, монтанида, поли IC (полиинозинокую-полицитидиновую кислоту) и ее производное, олигонуклеотид CpG-олигонуклеотид, интерлейкин 12, интерлейкин 18, интерферон α, интерферон β, интерферон ω, интерферон γ и лиганд Flt3.

(14) Выделенная антиген-презентирующая клетка, содержащая комплекс указанного выше полипептида, обладающего индуцирующей иммунитет активностью, и молекулу HLA (человеческого лейкоцитарного антигена).

(15) Выделенная Т-клетка, которая селективно связывается с комплексом указанного выше полипептида, обладающего индуцирующей иммунитет активностью, и молекулу HLA.

(16) Способ индукции иммунитета, включающий введение индивидууму по меньшей мере одного полипептида, обладающего индуцирующей иммунитет активностью и выбранного из следующих полипептидов (a), (b) и (c), или рекомбинантного вектора, содержащего полинуклеотид, кодирующий такой полипептид и способный экспрессировать такой полипептид in vivo:

(a) полипептид по меньшей мере из семи соседних аминокислот аминокислотной последовательности, показанной четным номером SEQ ID, выбранной из SEQ ID NO:2-30, перечисленных в разделе "Список последовательностей";

(b) полипептид по меньшей мере из семи соседних аминокислот, имеющий идентичность с полипептидом (a) 90% или более; и

(c) полипептид, содержащий полипептид (a) или (b) в качестве его частичной последовательности.

Эффекты изобретения

Настоящее изобретение относится к новому индуцирующему иммунитет агенту, который может использоваться для лечения и/или профилактики злокачественных опухолей. Как конкретно описано ниже в примерах, введение используемого в настоящем изобретении полипептида страдающему злокачественной опухолью животному обеспечивает возможность индукции иммуноцита в организме такого страдающего злокачественной опухолью животного, что, кроме того, обеспечивает возможность сокращения в размере и обратного развития существующей раковой опухоли.

Краткое описание чертежей

На фиг.1 показан тип экспрессии гена, кодирующего полипептид CAPRIN-1, в нормальной ткани и линии опухолевых клеток. Ссылочная позиция 1 представляет тип экспрессии гена, кодирующего белок CAPRIN-1, а ссылочная позиция 2 представляет тип экспрессии гена GAPDH.

На фиг.2 каждая из ссылочных позиций с 3 по 31 на горизонтальной оси представляет способность Т-клеток HLA-A0201+ CD8+ продуцировать IFN-γ, стимулированные T2-клетками, после импульсного воздействия пептидами SEQ ID NO:43-71. Ссылочная позиция 32 представляет результаты, относящиеся к пептиду отрицательного контроля SEQ ID NO:77 (пептида, имеющего последовательность вне объема настоящего изобретения).

На фиг.3 каждая из ссылочных позиций с 33 по 37 на горизонтальной оси представляет способность Т-клеток HLA-A24+ CD8+ продуцировать IFN-γ, стимулированные клетками JTK-LCL, после импульсного воздействия пептидами SEQ ID NO:72-76. Ссылочная позиция 38 представляет результаты, относящиеся к пептиду отрицательного контроля SEQ ID NO:77.

На фиг.4 каждая из ссылочных позиций с 39 по 67 на горизонтальной оси представляет цитотоксическую активность Т-клеток HLA-A0201+ CD8+, стимулированных применением пептидов SEQ ID NO:43-71, в отношении клеток U-87MG. Ссылочная позиция 68 представляет цитотоксическую активность Т-клеток CD8+, индуцированную применением пептида отрицательного контроля (SEQ ID NO:77).

На фиг.5 каждая из ссылочных позиций с 69 по 73 на горизонтальной оси представляет цитотоксическую активность Т-клеток HLA-A24+ CD8+, стимулированных применением пептидов SEQ ID NO:72-76, в отношении клеток JTK-LCL. Ссылочная позиция 74 представляет цитотоксическую активность Т-клеток CD8+, индуцированную применением пептида отрицательного контроля (SEQ ID NO:77).

ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Полипептиды

Полипептиды, содержащиеся в индуцирующем иммунитет агенте по настоящему изобретению в качестве активного агента, включают один или множество полипептидов, выбранных из следующих полипептидов (a), (b) и (c):

(a) полипептид по меньшей мере из семи соседних аминокислот в полипептиде, имеющем аминокислотную последовательность, показанную любым четным номером SEQ ID, выбранную из SEQ ID NO:2-30, перечисленных в разделе "Список последовательностей", и обладающую индуцирующей иммунитет активностью;

(b) полипептид, имеющий идентичность с полипептидом (a), состоящим по меньшей мере из 7 аминокислот, и обладающий индуцирующей иммунитет активностью 90% или более; и

(c) полипептид, содержащий полипептид (a) или (b) в качестве частичной последовательности и обладающий индуцирующей иммунитет активностью.

Используемый в настоящем описании термин «полипептид» относится к молекуле, образованной посредством пептидных связей среди множества аминокислот. Термин относится не только к молекуле полипептида, составленной большим числом аминокислот, но также к молекуле с низкой молекулярной массой, составленной небольшим числом аминокислот (олигопептиду), и белку полной длины. В настоящем изобретении термин «полипептид» также относится к белку последовательности полной длины, показанному любым четным номером SEQ ID среди SEQ ID NO:2-30.

Нуклеотидные последовательности полинуклеотидов, кодирующих отдельные белки, состоящие из аминокислотных последовательностей, как показано четными числами SEQ ID среди SEQ ID NO:2-30 (т.е. SEQ ID NO:2, 4, 6... 28 и 30), показано нечетными числами SEQ ID среди SEQ ID NO:1-29 (т.е. SEQ ID NO:1, 3, 5... 27 и 29).

Используемый в настоящем описании термин «имеющий аминокислотную последовательность» относится к последовательности, составленной из аминокислотных остатков в определенном порядке. Например, термин «полипептид, имеющий аминокислотную последовательность, показанную SEQ ID NO:2», относится к полипептиду длиной 709 аминокислотных остатков, обладающему аминокислотной последовательностью. Показанной SEQ ID NO:2, т.е. Met Pro Ser Ala Thr...(вырез)...Gln Gln Val Asn. Термин «полипептид, имеющий аминокислотную последовательность, показанную SEQ ID NO:2» может быть иногда сокращен и представлен в виде «полипептида SEQ ID NO:2». То же относится к выражению «имеющий нуклеотидную последовательность». В контексте этого, термин «имеющий» взаимозаменяем с выражением «состоящий из».

Используемый в настоящем описании термин «индуцирующая иммунитет активность» относится к способности индукции иммуноцита, который секретирует цитокин, такой как интерферон или интерлейкин in vivo.

То, имеет ли полипептид индуцирующую иммунитет активность или нет, может быть подтверждено, например, посредством известного анализа ELISPOT. В частности, клетки, такие как мононуклеарные клетки периферической крови, получают из живого организма, в который был введен полипептид, подлежащий анализу на индуцирующую иммунитет активность, такие клетки кокультивируются в присутствии такого полипептида, и количество продуцируемого из клеток цитокина и/или хемокина, такого как IFN-γ или интерлейкин (IL), измеряется с использованием специфического антитела, как описано, например, ниже в разделе «Примеры». Таким образом, можно провести анализ ряда иммуноцитов среди клеток. Это обеспечивает возможность оценки индуцирующей иммунитет активности.

Альтернативно, рекомбинантный полипептид, полученный на основании аминокислотной последовательности, показанной четным номером SEQ ID среди SEQ ID NO:2-30, может вводиться страдающему от злокачественной опухоли животному, чтобы опухоль могла подвергнуться обратному развитию индуцирующей иммунитет активностью, как описано ниже в разделе «Примеры». Таким образом, индуцирующую иммунитет активность можно оценить как способность подавления роста раковых клеток, экспрессирующих полипептид, показанный любым четным номером SEQ ID среди SEQ ID NO:2-30, или способность уменьшения объема или устранения раковой ткани (опухоли) (далее такая способность именуется «противоопухолевой активностью»). Противоопухолевую активность полипептидов можно определить, например, действительным введением такого полипептида в пораженный злокачественной опухолью живой организм и исследованием того, уменьшается ли опухоль в объеме или нет, как конкретно описано ниже в разделе "Примеры".

Альтернативно, то, проявляют ли Т-клетки, стимулированные полипептидом (т.е. Т-клетки, приведенные в контакт с антиген-презентирующими клетками, которые представляют такой полипептид) цитотоксическую активность в отношении опухолевых клеток in vitro или нет, может быть исследовано для оценки противоопухолевой активности полипептида. Т-клетки могут быть приведены в контакт с антиген-презентирующими клетками путем их кокультивирования в жидкой среде, как описано ниже. Цитотоксическая активность может анализироваться посредством известной методики, именуемой методикой анализа высвобождения 51Cr, описанной, например, в публикации Int. J. Cancer, 58: p. 317, 1994. Когда полипептиды используются для лечения и/или профилактики рака, предпочтительно, чтобы индуцирующая иммунитет активность оценивалась с использованием противоопухолевой активности в качестве индикатора, хотя способ оценки конкретно не ограничивается.

Аминокислотные последовательности, показанные четными числами SEQ ID среди SEQ ID NO:2-30, перечисленных в разделе "Список последовательностей", раскрытом в настоящем изобретении, представляют собой аминокислотные последовательности полипептидов CAPRIN-1, выделенных в качестве полипептидов, связывающихся с антителами, существующими специфически в сыворотке, полученной у страдающих от злокачественной опухоли собак, и человеческих, бычьих, лошадиных, мышиных и куриных гомологов таких полипептидов методом SEREX с использованием библиотеки кДНК, полученной из нормальной ткани собачьих семенников и сыворотки собаки, пораженной раком молочной железы (смотрите пример 1 ниже).

Указанный выше полипептид (a) состоит по меньшей мере из 7, а предпочтительно по меньшей мере из 8, 9, 10 или более соседних аминокислот в полипептиде, имеющем аминокислотную последовательность, показанную любым четным номером SEQ ID среди SEQ ID NO:2-30, и имеет индуцирующую иммунитет активность. Особенно предпочтительно такой полипептид имеет аминокислотную последовательность, показанную четным номером SEQ ID среди SEQ ID NO:2-30. Как известно в данной области, полипептид по меньшей мере из 7 аминокислотных остатков может обладать антигенностью. Соответственно, полипептид по меньшей мере из семи соседних аминокислотных остатков, показанный четным номером SEQ ID среди SEQ ID NO:2-30, может иметь индуцирующую иммунитет активность, и такой полипептидм может применяться для получения индуцирующего иммунитет агента по настоящему изобретению. На основании того, что антитела, продуцируемые против антигенного вещества in vivo, представляют собой поликлональные антитела, полипептид, составленный из большего числа аминокислотных остатков, может индуцировать большее разнообразие антител, распознающих различные сайты антигенного вещества, посредством этого усиливая индуцирующую иммунитет активность. Соответственно, для усиления индуцирующей иммунитет активности число аминокислотных остатков может предпочтительно составлять по меньшей мере 30 или более, 50 или более, предпочтительнее по меньшей мере 100 или более, 150 или более, а, кроме того, предпочтительно по меньше мере 200 или более, еще предпочтительнее 250 или более.

В качестве принципа индукции иммунитета посредством введения полипептида ракового антигена известно, что полипептид включается в антиген-презентирующую клетку, полипептид разрушается пептидазой в клетке на меньший фрагмент (далее он может именоваться «эпитопом»), такой фрагмент представлен на клеточной поверхности, цитотоксические Т-клетки или тому подобные распознают такой фрагмент и селективно уничтожают антиген-презентирующие клетки. Размер полипептида, представленного на поверхности антиген-презентирующей клетки, относительно мал и составляет примерно от 7 до 30 с точки зрения числа аминокислот. Соответственно, с точки зрения представления на антиген-презентирующей клетке, достаточно, чтобы полипептид (a) представлял собой примерно от 7 до 30, а предпочтительно примерно от 8 до 30 или от 9 до 30 соседних аминокислот в аминокислотных последовательностях, показанных любым четным номером SEQ ID среди SEQ ID NO:2-30. Такой полипептид относительно небольшого размера может быть непосредственно представлен на поверхности антиген-презентирующей клетки без включения в антиген-презентирующую клетку.

Полипептид, включенный в антиген-презентирующую клетку, расщепляется в случайных положениях пептидазой, присутствующей в клетках, генерируются разнообразные фрагменты полипептида, и такие фрагменты полипептида представлены на поверхности антиген-презентирующей клетки. Если вводится большой полипептид, такой как имеющий последовательность полной длины, показанный любым четным номером SEQ ID среди SEQ ID NO:2-30, то, соответственно, фрагменты полипептида, которые эффективны для индукции иммунитета, опосредованной антиген-презентирующими клетками посредством разрушения в антиген-презентирующей клетке, генерируются натурально. Таким образом, полипептид большого размера может предпочтительно применяться к индукции иммунитета, опосредованной антиген-презентирующими клетками, и число аминокислот может составлять по меньшей мере 30, предпочтительнее по меньшей мере 100, кроме того, предпочтительно по меньшей мере 200 и еще предпочтительнее по меньшей мере 250.

Кроме того, может проводиться скрининг полипептида по настоящему изобретению как пептида, являющегося возможным эпитопом, с использованием подходящего носителя информации, который может проводить поиск пептида, служащего в качестве возможного эпитопа, который имеет мотив связывания для каждого типа HLA, такого как Прогноз биоинформатики связывания HLA пептида и Выбор молекулярного анализа (BIMAS) (http://bimas.dcrt.nih.gov/molbio/hla_bind/index.html). В частности, предпочтителен полипептид по меньшей мере из семи соседних аминокислот в области аминокислотных остатков (aa) от 41 до 400 или аминокислотных остатков (aa) от 503 до 564 в аминокислотных последовательностях, показанных любым четным номером SEQ ID, выбранным среди SEQ ID NO:2-30, за исключением SEQ ID NO:6 и SEQ ID NO:18, или полипептида, содержащего такой полипептид в качестве его частичной последовательности. В полипептиде SEQ ID NO:2 предпочтительнее полипептид SEQ ID NO:43-76.

Указанный выше полипептид (b) получен из полипептида (a) замещением, делецией, добавлением и/или вставкой небольшого числа (предпочтительно, одного или нескольких) аминокислотных остатков; он имеет идентичность последовательностей 80% или более, 85% или более, предпочтительно 90% или более, предпочтительнее 95% или более, кроме того, предпочтительно 98% или более, 99% или более, 99,5% или более с первоначальной последовательностью, и он имеет индуцирующую иммунитет активность. Когда небольшое число (предпочтительно, один или несколько) аминокислотных остатков замещены в аминокислотной последовательности, подвергнуты делеции из или вставлены в аминокислотную последовательность белкового антигена, то в целом в данной области широко известно, что полученный белок иногда имеет по существу такую же антигенность или иммуногенность с таковыми первоначального белка. Таким образом, указанный выше полипептид (b) способен оказывать индуцирующее иммунитет воздействие и, таким образом, он может применяться для получения индуцирующего иммунитет агента по настоящему изобретению. Альтернативно, указанный выше полипептид (b) представляет собой предпочтительно полипептид, имеющий аминокислотную последовательность, полученную из аминокислотной последовательности, показанной четным номером SEQ ID среди SEQ ID NO:2-30, замещением, делецией, добавлением и/или вставкой одного или нескольких аминокислотных остатков. Термин «несколько», используемый в настоящем описании, относится к целому числу от 2 до 10, предпочтительно целому числу от 2 до 6, а, кроме того, предпочтительно целому числу от 2 до 4.

Термин «идентичность последовательности», используемый в настоящем описании в отношении аминокислотной последовательности или нуклеотидной последовательности, представляет процентную долю (%), определенную вправливанием двух аминокислотных последовательностей (или нуклеотидных последовательностей), подлежащих сравнению, чтобы максимизировать число совпадающих аминокислотных остатков (или нуклеотидов) и делением числа совпадающих аминокислотных остатков (или числа совпадающих нуклеотидов) на общее число аминокислотных остатков (или общее число нуклеотидов). При вправливании последовательностей, как описано выше, пропуск адекватно вставляется в одну или обе последовательности, подлежащие сравнению в соответствии с потребностью. Такое вправливание последовательностей может проводиться с использованием хорошо известной программы, например BLAST, FASTA или CLUSTAL W (Karlin and Altschul, Proc. Natl. Acad. Sci. U.S.A., 87: 2264-2268, 1993; Altschul et al., Nucleic Acids Res., 25: 3389-3402, 1997). Когда вставляется пропуск, то общее число аминокислотных остатков (или общее число нуклеотидов) представляет собой число остатков (или число нуклеотидов), подсчитанное обозначением пропуска в виде аминокислотного остатка (или нуклеотида). Когда определенное таким образом общее число аминокислотных остатков (или общее число нуклеотидов) различается между двумя подлежащими сравнению последовательностями, то идентичность (%) определяется делением числа совпадающих аминокислотных остатков (или числа нуклеотидов) на общее число аминокислотных остатков (или общее число нуклеотидов) более длинной последовательности.

Предпочтительное аминокислотное замещение представляет собой консервативное аминокислотное замещение. 20 типов аминокислот, составляющих естественно встречающийся белок, могут классифицироваться на группы аминокислот, имеющие одинаковые свойства: т.е. нейтральные аминокислоты, имеющие боковые цепи низкой полярности (Gly, Ile, Val, Leu, Ala, Met и Pro); нейтральные аминокислоты, имеющие гидрофильные боковые цепи (Asn, Gln, Thr, Ser, Tyr и Cys); кислотные аминокислоты (Asp и Glu); основные аминокислоты (Arg, Lys и His); и ароматические аминокислоты (Phe, Tyr, Trp и His). Известно, что замещение внутри таких групп, т.е. консервативное замещение, во многих случаях не изменило бы свойства полипептидов. Соответственно, когда аминокислотные остатки в полипептиде (a) настоящего изобретения замещаются, то замещение может проводиться внутри таких групп, чтобы можно было усилить возможность поддержания индуцирующей иммунитет активности. Однако в настоящем изобретении измененный полипептид может иметь неконсервативное замещение при условии, что полученный полипептид имеет индуцирующую иммунитет активность, эквивалентную или по существу эквивалентную таковой неизмененного полипептида.

Полипептид (c) содержит полипептид (a) или (b) в качестве его частичной последовательности и имеет индуцирующую иммунитет активность. В частности, полипептид (c) соответствует полипептиду (a) или (b), к которому добавляется другая аминокислота (аминокислоты) или полипептид (полипептиды) на одном или обоих его концах, и имеющий индуцирующую иммунитет активность. Такой полипептид может применяться для получения индуцирующего иммунитет агента по настоящему изобретению.

Указанный выше полипептид может быть химически синтезирован в соответствии, например, с Fmoc (фторенилметилоксикарбонильным) способом или tBoc (трет-бутоксикарбонильным) способом (издание Японского Биохимического Общества, Seikagaku Jikken Kouza (Проведение Биохимических Экспериментов) 1, Tanpakushitsu no Kagaku (Химия белка) IV, Kagaku Shushoku to Peptide Gousei (Химическая модификация и пептидный синтез), Tokyo Kagaku Dojin, Japan, 1981). Также разнообразные выпускаемые промышленностью пептидные синтезаторы могут применяться для синтеза полипептида в соответствии с обычной методикой. Кроме того, для получения полинуклеотида, кодирующего указанный полипептид, могут применяться методики генной инженерии (например, Sambrook et al., Molecular Cloning, vol. 2, Current Protocols in Molecular Biology, 1989, Cold Spring Harbor Laboratory Press; and Ausubel et al., Short Protocols in Molecular Biology, vol. 3, A compendium of Methods from Current Protocols in Molecular Biology, 1995, John Wiley & Sons), полученный полипептид может быть включен в вектор экспрессии и затем введен в клетку-хозяин, и полипептид может быть получен в такой клетке-хозяине для получения целевого полипептида.

Полинуклеотид, кодирующий указанный выше полипептид, может быть легко получен посредством известной методики генной инженерии или обычной методики с использованием выпускаемого промышленностью синтезатора нуклеиновых кислот. Например, ДНК, имеющая нуклеотидную последовательность SEQ ID NO:1, может быть получена выполнением PCR (полимеразной цепной реакцией, ПЦР) с применением библиотеки человеческой хромосомной ДНК или кДНК в качестве матрицы, и пары затравок, сконструированных так, чтобы амплифицировать нуклеотидную последовательность, показанную SEQ ID NO:1. Аналогичным образом, ДНК, имеющая нуклеотидную последовательность SEQ ID NO:5, может быть получена с использованием в качестве матрицы собачьей библиотеки ДНК или кДНК. Условия PCR могут быть определены соответствующим образом. Например, цикл реакции денатурации при 94ºC в течение 30 секунд, отжиг при 55°C в течение от 30 секунд до 1 минуты и удлинение при 72°C в течение 2 минут с использованием термоустойчивой ДНК-полимеразы (например, полимеразы Taq) и содержащего Mg2+ буфера PCR повторяется 30 раз с последующей реакцией при 72°C в течение 7 минут, хотя условия реакции не ограничиваются ими. Методики PCR и тому подобные описаны, например, в публикации Ausubel et al., Short Protocols in Molecular Biology, vol. 3, A compendium of Methods from Current Protocols in Molecular Biology, 1995, John Wiley & Sons (в частности, глава 15). Соответствующие зонды или праймеры могут быть также получены на основании информации о нуклеотидных последовательностях и аминокислотных последовательностях, показанных SEQ ID NO:1-30 в разделе "Список последовательностей" по настоящему изобретению, и может проводиться скрининг библиотек кДНК человека, собак, крупного рогатого скота или других животных с использованием таких зондов или затравок, чтобы можно было выделить представляющую интерес ДНК. Библиотеки кДНК предпочтительно получают из клеток, органов или ткани, в которых экспрессирован белок, показанный четным номером SEQ ID среди SEQ ID NO:2-30. Процедуры, такие как получение зондов и затравок, конструирование библиотеки кДНК, скрининг библиотеки кДНК и клонирование генов-мишеней, описанные выше, известны в данной области. Например, такие процедуры могут проводиться в соответствии со способами, описанными в публикациях Sambrook et al., Molecular Cloning, vol. 2, Current Protocols in Molecular Biology, 1989), Ausubel et al. (как указано выше). ДНК, кодирующая указанный выше полипептид (a), может быть получена из полученной таким образом ДНК. Поскольку известен кодон, кодирующий каждую аминокислоту, то может быть легко идентифицирована нуклеотидная последовательность полинуклеотида, кодирующего определенную аминокислотную последовательность. Соответственно, может быть легко идентифицирована нуклеотидная последовательность полинуклеотида, кодирующего полипептид (b) или (c), и такой полинуклеотид может быть также легко синтезирован с использованием выпускаемого промышленностью синтезатора нуклеиновых кислот в соответствии с обычной методикой.

Клетки-хозяева могут представлять собой любые клетки при условии, что в них может быть экспрессирован указанный выше полипептид. Клетки-хозяева включают без ограничения клетку E. coli в качестве прокариотических клеток; и почечные клетки обезьян (COS 1), клетки яичников китайских хомячков (CHO), линия человеческих эмбриональных почечных клеток (HEK293) и линии фетальных мышиных кожных клеток (NIH3T3), почкующиеся дрожжевые клетки, делящиеся дрожжевые клетки, клетки червей и клетки яиц Xenopus (африканской шпорцевой лягушки) в качестве эукариотических клеток.

Когда используются прокариотические клетки-хозяева, то используют векторы экспрессии, имеющие, например, происхождение, промотер, связывающий рибосому сайт, сайт множественного клонирования, терминатор, ген устойчивости и ауксотропный добавочный ген, который может быть реплицирован в прокариотических клетках. Примеры векторов экспрессии E. coli включают pUC, pBluescriptII, экспрессионную систему pET и экспрессионную систему pGEX. ДНК, кодирующая указанный выше полипептид, может быть включена в такой вектор экспрессии, прокариотические клетки-хозяева могут быть трансформированы таким вектором, и полученный трансформант может культивироваться. Таким образом, полипептид, кодируемый ДНК, может быть экспрессирован в прокариотических клетках-хозяевах. В данном случае, такой полипептид может быть экспрессирован в форме белка, слитого с другим белком.

Когда используются эукариотические клетки, то используются эукариотические векторы экспрессии, имеющие, например, промотер, область сплайсинга и сайт добавления поли(A). Примеры таких векторов экспрессии включают векторы pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV, pRS, pcDNA3 и pYES2. Как описано выше, ДНК, кодирующая указанный выше