Композиция и способ отвода закачиваемых флюидов для достижения улучшенной добычи углеводородных флюидов

Изобретение относится к композициям и способам, которые можно использовать для повышения нефтеотдачи. Предложена композиция, включающая сшитые расширяемые полимерные микрочастицы, имеющие средний диаметр неувеличенного объема 0,05-5000 мкм, и содержание сшивающих агентов 100-200000 частей на млн гидролитически лабильных сшивающих агентов на основе силиловых сложных эфиров или силиловых простых эфиров. Предложен также способ улучшения добычи углеводородных флюидов с использованием указанной композиции. Технический результат - предложенная композиция позволяет блокировать устья пор пористых сред и улучшить охват месторождения для более полной нефтеотдачи. 2 н. и 19 з.п. ф-лы, 2 пр.

Реферат

На первой стадии добычи углеводородов источники энергии, находящиеся в месторождении, обеспечивают продвижение нефти, газа, конденсата и т.д. к эксплуатационной(ым) скважине(нам), откуда они могут вытекать или их можно выкачивать на наземные погрузочно-разгрузочные устройства. Относительно небольшую часть углеводородов в месторождении обычно можно извлекать этими средствами. Наиболее широко используемое решение проблемы поддержания энергии в месторождении и обеспечения уверенности в том, что углеводороды перемещаются к эксплуатационной(ым) скважине(нам), состоит в закачивании флюидов вниз по смежным скважинам. Это широко известно как вторичная добыча.

Обычно используемые флюиды представляют собой воду (такую, как вода из водоносного слоя, речная вода, морская вода или попутно добываемая вода) или газ (такой, как добываемый газ, диоксид углерода, дымовой газ и различные другие газы). Если флюид способствует движению обычно неподвижной остаточной нефти или другого углеводорода, способ обычно называют третичной добычей.

Очень распространенная проблема с планированием вторичной и третичной добычи связана с неоднородностью пластов коллекторской породы. Подвижность закачиваемого флюида обычно отличается от подвижности углеводорода, и когда он является более подвижным, используют различные способы регулирования подвижности для получения более однородного охвата месторождения и последующей более эффективной добычи углеводородов. Такие способы имеют ограниченную ценность, когда внутри коллекторской породы существуют зоны высокой проницаемости, обычно называемые зонами поглощения или прожилками. Закачиваемый флюид течет по пути наименьшего сопротивления от места закачивания до эксплуатационной скважины. В таких случаях нагнетаемый флюид не охватывает эффективно углеводородные флюиды из примыкающих зон с более низкой проницаемостью. Когда добытый флюид используют повторно, это может привести к циклическому движению флюида через зону поглощения с малой пользой и с большими затратами на топливо и на поддержание системы нагнетания.

Множество физических и химических способов использовали для отвода закачиваемых флюидов от зон поглощения в эксплуатационные и нагнетательные скважины или в близкие к ним области. Когда эксплуатационную скважину подвергают обработке, такую обработку обычно называют изолированием водоносного (или газоносного и т.д.) горизонта. Когда обработке подвергают нагнетательную скважину, эту обработку называют регулированием профиля или выравниванием профиля приемистости.

В случаях, когда зона(ы) поглощения изолированы от прилегающих зон с более низкой проницаемостью и когда заканчивание скважины образует подходящее уплотнение с барьером (таким, как слой глинистого сланца, или «пропласток»), вызывающим изоляцию, механические уплотнения или «цементировочные пробки» можно расположить в скважине для блокирования входа закачиваемого флюида. Если флюид входит или покидает пласт со дна скважины, также можно использовать цемент для заполнения ствола скважины до уровня выше зоны проникновения.

Когда заканчивание скважины допускает проникновение нагнетаемого флюида как в зоны поглощения, так и в прилегающие зоны, так, например, когда обсадные трубы цементируют вокруг продуктивной зоны и цементирование плохо выполнено, нагнетание цемента под давлением часто является подходящим средством изолирования зоны прорыва воды в скважину.

Некоторые случаи не поддаются таким способам в силу таких фактов, что сообщения существуют между слоями коллекторской породы вне зоны, доступной для цемента. Типичными образцами этого являются трещины, или зоны обломочных россыпей, или размытые полости, существующие позади обсадных труб. В таких случаях применяют химические гели, способные проникать через поры в коллекторской породе для закупоривания опустошенных зон.

Когда такие способы терпят неудачу, остаются только альтернативные способы эксплуатации скважины с низкой величиной нефтеотдачи, зарезкой нового ствола скважины из преждевременно опустошенной зоны, или консервация скважины. Иногда эксплуатационную скважину преобразуют в нагнетательную скважину для флюида для увеличения скорости нагнетания в залежь выше чистого темпа добычи углеводородов и увеличения давления в месторождении. Это может привести к улучшенной общей добыче, однако следует отметить, что закачиваемый флюид в основном поступает в зону поглощения в новой нагнетательной скважине и, вероятно, вызывает похожие проблемы в ближайших скважинах. Все эти варианты являются дорогостоящими.

Способы выравнивания профиля приемистости околоскважинного пространства всегда терпят неудачу, когда зона поглощения обширно контактирует с прилегающими зонами с более низкой проницаемостью, содержащими углеводороды. Причина этого состоит в том, что закачиваемые флюиды могут обходить обработку и поступать обратно в зону поглощения, контактируя только с очень небольшой частью или даже не контактируя вообще с оставшимися углеводородами. Среди специалистов в данном уровне техники вообще известно, что такая обработка в околоскважинном пространстве значительно не улучшает добычу из месторождений, имеющих переток закачиваемых флюидов между зонами.

Было разработано несколько способов с целью уменьшения проницаемости существенной части зоны поглощения и, или на значительном расстоянии от скважин нагнетания и эксплуатационных скважин. Одним таким примером является способ Deep Diverting Gel (гель глубокого отклонения), запатентованный Morgan et al. (1). Его используют на практике, и его недостатком является чувствительность к неизбежным изменениям качества реагентов, которая приводит к плохому распространению. Гелеобразующая смесь представляет собой двухкомпонентный состав и полагают, что это вносит вклад в плохое распространение обработки в пласте.

Использование набухающих сшитых полимерных микрочастиц сверхабсорбентов для изменения проницаемости подземных пластов описано в патентах US 5465792 и 5735349. Однако описанное в них набухание микрочастиц сверхабсорбентов вызывают путем замены углеводородного флюида-носителя на водный или воды высокой солености на воду низкой солености.

Сшитые, расширяемые полимерные микрочастицы и их применение для изменения проницаемости подземных пластов и увеличения подвижности и/или темпа добычи углеводородных флюидов, присутствующих в пласте, описаны в патентах US 6454003 B1, US 6709402 B2, US 6984705 B2 и US 7300973 B2 и в опубликованной заявке на патент US 2007/0204989 А1.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Мы обнаружили новые полимерные микрочастицы, в которых конформация микрочастиц ограничена гидролитически лабильными сшивающими агентами на основе силиловых простых эфиров или силиловых сложных эфиров. Свойства микрочастиц, такие как распределение частиц по размерам и плотность микрочастиц с ограниченной конформацией, задают так, чтобы обеспечить эффективное распространение в пористой структуре вмещающей породы углеводородного месторождения, такой как песчаник. При нагревании до температуры месторождения и/или при заранее определенном рН, обратимые (лабильные) внутренние поперечные связи начинают разрушаться, обеспечивая расширение частиц посредством поглощения закачиваемого флюида (обычно воды).

Способность частицы увеличивать свой первоначальный размер (в точке нагнетания) зависит только от наличия условий, которые вызывают разрушение силиловых простых эфиров или силиловых сложных эфиров и других лабильных сшивающих агентов, присутствующих в микрочастицах. Она не зависит от природы флюида-носителя или солености пластовой воды. Частицы по этому изобретению могут распространяться в пористой структуре месторождения без использования заданного флюида или флюида более высокой солености, чем соленость флюида месторождения.

Расширенные частицы рассчитывают так, чтобы распределение частиц по размерам и их физические характеристики, например реология частиц, позволяли препятствовать течению закачиваемого флюида в пористой структуре. При этом обеспечивают возможность отклонять очищающий флюид в менее тщательно охваченные зоны месторождения.

Реологию и размер расширенной частицы можно разрабатывать в соответствии с целевым месторождением, например, путем подходящего выбора главной цепи мономеров или отношения сомономеров в полимере, или степени обратимого (лабильного) и необратимого поперечного сшивания, закладываемого в процессе изготовления.

В одном воплощении это изобретение представляет собой композицию, включающую сильносшитые расширяемые полимерные микрочастицы, имеющие средний диаметр неувеличенного объема от примерно 0,05 до примерно 5000 мкм и содержание сшивающих агентов от 0 до примерно 300 частей на млн нелабильного сшивающего агента и от примерно 100 до примерно 200000 частей на млн лабильного сшивающего агента, где указанный лабильный сшивающий агент включает один или более гидролитически лабильных сшивающих агентов на основе силиловых простых эфиров или силиловых сложных эфиров.

В альтернативных воплощениях также обеспечивают способы применения приведенных выше композиций.

В этом документе описаны дополнительные признаки и преимущества, и они очевидны из следующего подробного описания.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

«Акрилокси-группа» означает группу формулы СН2=СНС(O)O-. «Метакрилокси» означает группу формулы СН2=С(СН3)С(O)O-.

«Алкокси-группа» или «алкоксильная группа» означает определенную здесь алкильную группу, присоединенную к основному молекулярному фрагменту посредством атома кислорода. Типичные алкокси-группы включают метоксильную, этоксильную, пропоксильную, бутоксильную группы и т.п.

«Алкильная группа» означает замещенную или незамещенную группу, образованную из прямой или разветвленной цепи насыщенного углеводорода путем удаления одного атома водорода. Примерами алкильных групп являются метильная, этильная, н- и изопропильная, н-, втор-, изо- и третбутильная группы и т.п..

«Аллильная группа» означает группу формулы -СН2СН=СН2.«Аллилокси-группа» означает группу формулы -ОСН2СН=СН2.

«Амфотерная полимерная микрочастица» означает сшитую полимерную микрочастицу, содержащую как катионные заместители, так и анионные заместители, хотя необязательно в одинаковых стехиометрических соотношениях. Типичные амфотерные полимерные микрочастицы включают определенные здесь тройные сополимеры неионных мономеров, анионных мономеров и катионных мономеров. Предпочтительные амфотерные полимерные микрочастицы имеют молярное отношение анионного мономера к катионному мономеру более 1:1.

«Мономер с амфолитной ионной парой» означает кислотно-основную соль основных азотсодержащих мономеров, таких как диметиламиноэтилакрилат (ДМАЭА), диметиламиноэтилметакрилат (ДМАЭМ), 2-метакрилоилоксиэтилдиэтиламин и подобные соединения, и кислотных мономеров, таких как акриловая кислота и сульфоновые кислоты, такие как 2-акриламид-2-метилпропансульфоновая кислота, 2-метакрилоилоксиэтансульфоновая кислота, винилсульфоновая кислота, стиролсульфоновая кислота и подобные соединения.

«Анионный мономер» означает определенный здесь мономер, который обладает кислотной функциональной группой, и его соли присоединения основания. Типичные анионные мономеры включают акриловую кислоту, метакриловую кислоту, малеиновую кислоту, итаконовую кислоту, 2-пропеновую кислоту, 2-метил-2-пропеновую кислоту, 2-акриламид-2-метилпропансульфоновую кислоту, сульфопропилакриловую кислоту и другие растворимые в воде формы этих или других полимеризуемых карбоновых или сульфоновых кислот, сульфометилированный акриламид, аллилсульфоновую кислоту, винилсульфоновую кислоту, четвертичные соли акриловой кислоты и метакриловой кислоты, такие как акрилат аммония и метакрилат аммония, и подобные соединения. В одном воплощении анионные мономеры включают натриевую соль 2-акриламид-2-метилпропансульфоновой кислоты, натриевую соль винилсульфоновой кислоты и натриевую соль стиролсульфоновой кислоты. В одном воплощении анионный мономер представляет собой натриевую соль 2-акриламид-2-метилпропансульфоновой кислоты.

«Анионная полимерная микрочастица» означает сшитую полимерную микрочастицу, имеющую суммарный отрицательный заряд. Типичные анионные полимерные микрочастицы включают сополимеры акриламида и 2-акриламид-2-метилпропансульфоновой кислоты, сополимеры акриламида и акрилата натрия, тройные полимеры акриламида, 2-акриламид-2-метилпропансульфоновой кислоты и акрилата натрия и гомополимеры 2-акриламид-2-метилпропансульфоновой кислоты. В одном воплощении анионные полимерные микрочастицы получают из неионных мономеров в количестве от примерно 95 до примерно 10 мольн.% и анионных мономеров в количестве от примерно 5 до примерно 90 мольн.%. В одном воплощении анионные полимерные микрочастицы получают из акриламида в количестве от примерно 95 до примерно 10 мольн.% и 2-акриламид-2-метилпропансульфоновой кислоты в количестве от примерно 5 до примерно 90 мол. %.

«Арильная группа» означает замещенные и незамещенные ароматические карбоциклические радикалы и замещенные и незамещенные гетероциклические ароматические радикалы, которые включают, но не ограничивающиеся перечисленным, фенильную, 1-нафтильную или 2-нафтильную, флуоренильную, пиридильную, хинолильную, тиенильную, тиазолильную, пиримидильную, индолильную группы и т.п.

«Арилалкильная группа» означает определенную здесь арильную группу, присоединенную к основному молекулярному фрагменту посредством алкиленовой группы. Типичные арилалкильные группы включают фенилметильную, фенилэтильную, фенилпропильную, 1-нафтилметильную группы и т.п.

«Бетаинсодержащая полимерная микрочастица» означает сшитую полимерную микрочастицу, полученную полимеризацией бетаинового мономера и одного или более неионных мономеров.

«Бетаиновый мономер» означает мономер, содержащий в равных частях функциональные группы, заряженные катионным и анионным образом, так что мономер является суммарно нейтральным. Типичные бетаиновые мономеры включают N,N-диметил-N-акрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-метакрилоилоксиэтил-N-(3-су-льфопропил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N,N-диметил-N-акрилоксиэтил-N-(3-сульфопропил)-аммоний бетаин, N,N-диметил-N-акриламидопропил-N-(2-карбоксиметил)-аммоний бетаин, N-3-сульфопропилвинилпиридинаммоний бетаин, 2-(метилтио)этилметакрилоил-8-(сульфопропил)сульфоний бетаин, 1-(3-сульфопропил)-2-винилпиридиний бетаин, N-(4-сульфобутил)-N-метилдиаллиламинаммоний бетаин (МДАБС), N,N-диаллил-N-метил-N-(2-сульфоэтил)аммоний бетаин и подобные соединения. В одном воплощении бетаиновым мономером является N,N-диметил-N-метакрилоилоксиэтил-N-(3-сульфопропил)-аммоний бетаин.

«Катионный мономер» означает определенное здесь мономерное звено, которое обладает суммарным положительным зарядом. Типичные катионные мономеры включают четвертичные или кислые соли диалкиламиноалкилакрилатов и метакрилатов, четвертичная соль диметиламиноэтилакрилата и метилхлорида (ДМАЕАМХЧ), четвертичная соль диметиламиноэтилметакрилата и метилхлорида (ДМАЕММХЧ), соль диметиламиноэтилакрилата и соляной кислоты, соль диметиламиноэтилакрилата и серной кислоты, четвертичная соль диметиламиноэтилакрилата и бензилхлорида (ДМАЕАБХЧ) и четвертичная соль диметиламиноэтилакрилата и метилсульфата, четвертичные или кислые соли диалкиламиноалкилакриламидов и метакриламидов, соль диметиламинопропилакриламида и соляной кислоты, соль диметиламинопропилакриламида и серной кислоты, соль диметиламинопропилметакриламид и соляной кислоты и соль диметиламинопропилметакриламида и серной кислоты, хлорид метакриламидопропилтриметиламмония и хлорид акриламидопропилтриметиламмония, и галогениды N,N-диаллилдиалкиламмония, хлорид диаллилдиметиламмония (ДАДМАХ). В одном воплощении катионные мономеры включают четвертичную соль диметиламиноэтилакрилата и метилхлорида, четвертичную соль диметиламиноэтилметакрилата и метилхлорида и хлорид диаллилдиметиламмония. В одном воплощении катионный мономер является хлоридом диаллилдиметиламмония.

«Сшивающий мономер» означает этилен-ненасыщенный мономер, содержащий по меньшей мере два участка этилен-ненасыщенных связей, которые добавляют для ограничения конформации полимерных микрочастиц данного изобретения. Степень сшивания, используемую в этих полимерных микрочастицах, выбирают так, чтобы обеспечить поддержание жесткой нерасширяемой конфигурации микрочастицы. Сшивающие мономеры по этому изобретению включают как лабильные сшивающие мономеры, так и нелабильные сшивающие мономеры.

«Эмульсия», «микроэмульсия» и «обратная эмульсия» означает полимерную эмульсию типа «вода-в-масле», включающую полимерные микрочастицы по этому изобретению в водной фазе, углеводородное масло для масляной фазы, и один или более эмульгаторов для эмульсий типа «вода-в-масле». Эмульсионные полимеры представляют собой непрерывную углеводородную фазу с растворимыми в воде полимерами, диспергированными в углеводородной матрице. Эмульсионный полимер при необходимости «обращают» или преобразуют в форму непрерывной водной фазы, используя сдвиг, разбавление и, обычно, инвертирующее поверхностно-активное вещество. См. US 3734873, все содержание которого включено в этот документ путем ссылки.

«Подвижность флюида» означает отношение, которое определяет насколько легко флюид перемещается в пористой среде. Это отношение известно как подвижность и выражено в виде отношения коэффициента проницаемости пористой среды к вязкости для данного флюида.

1. λ = k x η x для одного флюида x, протекающего в пористой среде.

Когда через конечную точку протекает более чем один флюид, необходимо подставить относительные коэффициенты проницаемости вместо абсолютного коэффициента проницаемости, используемого в уравнении 1.

2. λ = k r x η x для флюида х, протекающего в пористой среде в присутствии одного или более других флюидов.

Когда протекают два или более флюидов, подвижности флюидов можно использовать для определения отношения подвижности.

3. M = λ x λ y = η y k r x η x k r y

Отношение подвижности применяют при изучении вытеснения флюида, например, при заводнении нефтяного месторождения, где х представляет собой воду, а у представляет собой нефть, так как с ним может быть связана эффективность процесса вытеснения. В качестве общего принципа, при отношении подвижности, равном 1, фронт флюида движется почти подобно «пробковому течению» и охват месторождения является хорошим. Когда подвижность воды в десять раз выше, по сравнению с нефтью, возникают нестабильности вязкости, известные как «образование языков», и охват месторождения является плохим. Когда подвижность нефти в десять раз выше по сравнению с водой, охват месторождения является почти полным.

«Гидролитически лабильные сшивающие агенты на основе силиловых простых эфиров или силиловых сложных эфиров» означают определенный выше сшивающий мономер, который дополнительно включает по меньшей мере одну группу -Si-О- или по меньшей мере одну группу -Si-O(CO)-, или их смесь, и по меньшей мере две винильные, винилокси-, аллилокси-, акрилокси-, метакрилокси- или аллильные группы, или их смесь.

«Полимерная микрочастица с ионной парой» означает сшитую полимерную микрочастицу, полученную полимеризацией мономера с амфолитной ионной парой и еще одного анионного или неионного мономера.

«Лабильный сшивающий мономер» означает сшивающий мономер, который можно разлагать при определенных условиях теплоты и/или рН, после того как он введен в полимерную структуру, чтобы уменьшить степень сшивания в полимерной микрочастице по этому изобретению. Вышеупомянутые условия таковы, что они могут разрушать связи в «сшивающем мономере» без существенного разложения остальной основной цепи полимера. Типичные лабильные сшивающие мономеры включают диакриламиды и метакриламиды диаминов, диакриламид пиперазина, акрилатные или метакрилатные сложные эфиры ди-, три-, тетрагидроксисоединений, включая этиленгликольдиакрилат, полиэтиленгликольдиакрилат, триметилпропантриметакрилат, этоксилированный триметилолтриакрилат, этоксилированный пентаэритритолтетракрилат и подобные соединения; дивиниловые или диаллиловые соединения, разделенные посредством азогруппы, диаллиламид 2,2'-азобис(изобутировой кислоты) и виниловые или аллиловые сложные эфиры ди- или трифункциональных кислот. В одном воплощении лабильные сшивающие мономеры включают растворимые в воде диакрилаты, диакрилат PEG 200 и диакрилат PEG 400, и многофункциональные винильные производные многоатомных спиртов, этоксилированный (9-20) триметилолтриакрилат.

«Мономер» означает полимеризуемое аллиловое, виниловое или акриловое соединение. Мономер может быть анионным, катионным, неионным или цвиттер-ионным. В одном воплощении мономеры включают виниловые мономеры. В другом воплощении мономеры включают акриловые мономеры.

«Неионный мономер» означает определенный здесь мономер, который является электрически нейтральным. Типичные неионные мономеры включают N-изопропилакриламид, М,М-диметилакриламид, М,М-диэтилакриламид, диметиламинопропилакриламид, диметиламинопропилметакриламид, акрилоилморфолин, гидроксиэтилакрилат, гидроксипропилакрилат, гидроксиэтилметакрилат, гидроксипропилметакрилат, диметиламиноэтилакрилат (ДМАЭА), диметиламиноэтилметакрилат (ДМАЭМ), малеиновый ангидрид, N-винилпирролидон, винилацетат и N-винилформамид. В одном воплощении неионные мономеры включают акриламид, N-метилакриламид, N,N-диметилакриламид и метакриламид. В другом воплощении неионный мономер представляет собой акриламид.

«Нелабильный сшивающий мономер» означает сшивающий мономер, который не разлагается при условиях температуры и/или рН, которые могли бы вызвать распад включенных в состав лабильных сшивающих мономеров и включенных в состав гидролитически лабильных сшивающих мономеров на основе силиловых эфиров или сложных силиловых эфиров. Нелабильный сшивающий мономер добавляют к лабильному сшивающему мономеру для регулирования расширенной конформации полимерной микрочастицы. Типичные нелабильные сшивающие мономеры включают метиленбисакриламид, диаллиламин, триаллиламин, дивинилсульфон, диаллиловый эфир диэтиленгликоля и подобные соединения. В одном воплощении нелабильным сшивающим мономером является метиленбисакриламид,

«Винильная группа» означает группу формулы -СН=СН2. «Винилокси-группа» означает группу формулы -ОСН=СН2.

Сильносшитые расширяемые полимерные микрочастицы, пригодные для использования в композиции и способе по этому изобретению, получают путем полимеризации мономеров в присутствии гидролитически лабильных сшивающих агентов на основе силиловых простых эфиров или силиловых сложных эфиров и возможных лабильных сшивающих агентов и нелабильных сшивающих агентов.

В одном воплощении гидролитически лабильные сшивающие агенты на основе силиловых простых эфиров или силиловых сложных эфиров и какие-либо лабильные сшивающие агенты присутствуют в суммарном количестве от примерно 100 до примерно 200000 частей на млн по отношению к общей массе мономера. В другом воплощении сшивающие агенты на основе силиловых простых эфиров или силиловых сложных эфиров и какие-либо лабильные сшивающие агенты присутствуют в суммарном количестве от примерно 1000 до примерно 200000 частей на млн. В другом воплощении сшивающие агенты на основе силиловых простых эфиров или силиловых сложных эфиров и какие-либо лабильные сшивающие агенты присутствуют в суммарном количестве от примерно 9000 до примерно 200000 частей на млн. В другом воплощении сшивающие агенты на основе силиловых простых эфиров или силиловых эфиров сложных и какие-либо лабильные сшивающие агенты присутствуют в суммарном количестве от примерно 9000 до примерно 100000 частей на млн. В другом воплощении сшивающие агенты на основе силиловых простых эфиров или силиловых эфиров сложных и какие-либо лабильные сшивающие агенты присутствуют в суммарном количестве от примерно 20000 до примерно 60000 частей на млн. В другом воплощении сшивающие агенты на основе силиловых простых эфиров или силиловых эфиров сложных и какие-либо лабильные сшивающие агенты присутствуют в суммарном количестве от примерно 500 до примерно 50000 частей на млн. В другом воплощении гидролитически лабильные сшивающие агенты на основе силиловых простых эфиров или силиловых эфиров сложных и какие-либо лабильные сшивающие агенты присутствуют в суммарном количестве от примерно 1000 до примерно 20000 частей на млн.

В одном воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0 до примерно 300 частей на млн по отношению к общей массе мономера. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0 до примерно 200 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0 до примерно 100 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 5 до примерно 300 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 2 до примерно 300 частей на млн. В другом воплощении нелабильный сшивающий агент присутствует в количестве от примерно 0,1 до примерно 300 частей на млн. В отсутствие нелабильного сшивающего агента полимерная частица, после полного распада лабильного сшивающего агента, превращается в смесь линейных полимерных нитей. Дисперсия частиц посредством этого превращается в полимерный раствор. Этот полимерный раствор, благодаря своей вязкости, изменяет подвижность флюида в пористой среде. В присутствии небольшого количества нелабильного сшивающего агента превращение частиц в линейные молекулы является неполным. Частицы становятся слабо связанной сеткой, однако сохраняют определенную «структуру». Такие «структурированные» частицы могут блокировать устья пор пористых сред и вызывать запирание потока.

В одном аспекте настоящего изобретения полимерные микрочастицы по изобретению получают, используя способ обратной эмульсии или микроэмульсии для обеспечения определенного диапазона размера частиц. В одном воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от примерно 0,05 до примерно 5000 мкм. В одном воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от примерно 0,1 до примерно 3 мкм. В другом воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от 0,1 до примерно 1 мкм. В еще одном воплощении средний диаметр полимерных микрочастиц неувеличенного объема составляет от примерно 0,05 до примерно 50 мкм.

Типичные способы получения сшитых полимерных микрочастиц с использованием микроэмульсионного способа описаны в патентах US 4956400, 4968435, 5171808, 5465792 и 5737349.

В способе обратной эмульсии или микроэмульсии водный раствор мономеров и сшивающих агентов добавляют к углеводородной жидкости, содержащей подходящее поверхностно-активное вещество или смесь поверхностно-активных веществ для образования обратной микроэмульсии мономера, состоящей из небольших водных капель, диспергированных в непрерывной углеводородной жидкой фазе, и проведение свободнорадикальной полимеризации микроэмульсии мономера.

Помимо мономеров и сшивающих агентов водный раствор может также содержать другие традиционные добавки, включающие хелатирующие агенты для удаления ингибиторов полимеризации, регуляторы рН, инициаторы и другие традиционные добавки.

Углеводородная жидкая фаза включает углеводородную жидкость или смесь углеводородных жидкостей. Предпочтительными являются насыщенные углеводороды или их смеси. Обычно углеводородная жидкая фаза включает бензол, толуол, нефтяное топливо, керосин, непахучие уайт-спириты и смеси любых из перечисленных соединений.

Описанные здесь поверхностно-активные вещества, пригодные для использования в способе полимеризации микроэмульсий, включают сорбитановые сложные эфиры жирных кислот, этоксилированные сорбитановые сложные эфиры жирных кислот и т.п., или их смеси. Предпочтительные эмульгаторы включают этоксилированный сорбитололеат и сорбитансесквиолеат. Дополнительные сведения об этих агентах можно найти в кн. McCuthceon. Detergents and Emulsifiers, North American Edition, 1980.

Полимеризацию эмульсии можно выполнять любым способом, известным специалистам в данной области техники. Инициирование можно проводить с помощью различных термических и окислительно-восстановительных инициаторов образования свободных радикалов, включающих азосоединения, азобисизобутиронитрил; пероксиды, третбутилпероксид; органические соединения, персульфат калия, и окислительно-восстановительные пары, бисульфит натрия/бромат натрия. Получение водного продукта из эмульсии можно осуществлять путем инверсии посредством добавления ее в воду, которая может содержать инвертирующее поверхностно-активное вещество.

Полимерные микрочастицы, сшитые с помощью гидролитически лабильных сшивающих агентов на основе силиловых простых эфиров или силиловых сложных эфиров, можно дополнительно сшивать путем внутреннего сшивания полимерных частиц, которые содержат полимеры с боковыми группами карбоновой кислоты и гидроксильными группами. Сшивания достигают посредством образования сложных эфиров из карбоновой кислоты и гидроксильных групп. Этерификацию можно выполнять путем азеотропной перегонки (US 4599379) или технологии тонкопленочного испарения (US 5589525) для удаления воды. Например, полимерные микрочастицы, получаемые способом полимеризации обратной эмульсии с использованием акриловой кислоты, 2-гидроксиэтилакрилата, акриламида и 2-акриламид-2-метилпропансульфоната натрия в качестве мономера, превращают в сшитые полимерные частицы путем процессов дегидратации, описанных выше.

При необходимости, полимерные микрочастицы получают в сухой форме путем добавления эмульсии к растворителю, который вызывает осаждение полимера, такому как изопропанол, изопропанол/ацетон или метанол/ацетон, или другим растворителям или смесям растворителей, которые смешиваются как с углеводородом, так и с водой, и фильтрования и сушки получаемого твердого вещества.

Водную суспензию полимерных микрочастиц можно получить путем повторного диспергирования сухого полимера в воде.

Гидролитически лабильные сшивающие агенты на основе силиловых простых эфиров или силиловых сложных эфиров можно получить конденсацией виниловых или аллиловых спиртов с алкоксисиланами, аминосиланами или галосиланами. Типичные алкоксисиланы, аминосиланы или галосиланы включают тетрапропоксисилан, тетраметоксисилан, 5-гексенилдиметилхлорсилан, 5-гексенилтрихлорсилан, аллилдиметилхлорсилан, 10-ундеценилтрихлорсилан, винилметилдихлорсилан, винилметилдиэтоксисилан, винилтриметоксисилан, бис(п-аминофенокси)диметилсилан, 3-аминопропилтриметоксисилан и подобные соединения. Например, гидролитически лабильный многофункциональный силоксановый сшивающий агент можно легко получить из тетрапропоксисилана путем алкоголиза с избытком аллилового спирта с последующей отгонкой пропанола. Изменение молярного отношения тетрапропоксисилана или винилтриметоксисилана к аллиловому спирту может привести к трифункциональным или бифункциональным сшивающим агентам.

Другой тип гидролитически лабильного силоксана включает полимеры сложных силиловых эфиров, в которых деструктивные свойства можно изменять в зависимости от заместителей, присоединенных к атомам кремния, и карбонильных групп силиловых сложноэфирных связей. Типичный материал на основе силилового сложного эфира, который можно легко преобразовать в сшивающий агент на основе силилового сложного эфира, представляет собой (3-акрилоксипропил)диметилметоксисилан. Сшивающие агенты на основе полимеров силиловых сложных эфиров можно получить путем реакций транссилилирования-переэтерификации. Получение полимеров силиловых сложных эфиров описано в литературе. См., например, М. Wang et al., Macromolecules, 2000, 33, 734.

В одном воплощении гидролитически лабильные сшивающие агенты на основе силиловых простых эфиров и силиловых сложных эфиров отвечают формуле R1R2R3Si[OSiR4R5]nR6, где R1, R2, R3, R4, R5 и R6 независимо выбраны из винильной, винилокси-, аллилокси- или аллил-, алкил-, арил-, алкокси-, арилалкильной и -OC(О)R6 групп, где n составляет от 0 до 100, при условии, что указанные сшивающие агенты включают по меньшей мере две винильные, винилокси-, аллилокси или аллильные группы, или их смесь.

В одном воплощении R1, R2, R4 и R5 являются алкильными группами, а R3 и R6 независимо выбраны из -СН2-СН=СН2 и -O-СН2-СН=СН2.

После закачивания в подземный пласт, полимерные микрочастицы протекают через зону или зоны с относительно высокой проницаемостью в подземном пласте в условиях увеличивающейся температуры, пока композиция не достигает места, где температура или рН являются достаточно высокими, чтобы способствовать расширению микрочастицы.

В отличие от традиционных блокирующих агентов, таких как полимерные растворы и полимерные гели, которые не могут проникать далеко и глубоко в пласт, композиция по этому изобретению, благодаря размеру частиц и низкой вязкости, может распространяться далеко от места закачивания до достижения высокотемпературной зоны.

Среди других факторов, снижение плотности сшивания зависит от скорости расщепления гидролитически лабильных сшивающих агентов на основе силиловых простых эфиров или силиловых сложных эфиров и каких-либо дополнительных лабильных сшивающих агентов. В частности, гидролитически лабильные сшивающие агенты на основе силиловых простых эфиров или силиловых сложных эфиров и другие лабильные сшивающие агенты имеют различные скорости разрыва связей при различных температурах. Температура и механизм зависят от природы сшивающих химических связей. Например, известно, что связи силиловых простых эфиров и силиловых сложных эфиров подвержены гидролизу при кислотных и основных условиях. Кривые распада этих связей можно настроить путем изменения заместителей, присоединенных к атомам кремния и углерода сшивающих агентов. Очень массивные заместители или заместители другой электронной природы могут изменять свойства разложения этих лабильных связей.

Вне связи с какой-либо теорией полагают, что помимо скорости разрыва поперечных связей скорость увеличения диаметра частиц также влияет на общее количество остающихся поперечных связей. Наблюдали, что частица расширяется вначале постепенно, по мере уменьшения количества поперечных связей. После того как общее количество поперечных связей становится меньше количества, соответствующего определенной критической плотности, вязкость резко увеличивается. Таким образом, путем правильного выбора гидролитически лабильных сшивающих агентов на основе силиловых простых эфиров или силиловых сложных эфиров и дополнительных лабильных сшивающих агентов, можно задавать как зависящие от температуры, так и зависящие от времени свойства расширения полимерных частиц.

Размер полимерных частиц перед расш