Способ преобразования энергии горения водорода в тепловую энергию воды водяного котла и устройства для его осуществления

Иллюстрации

Показать все

Изобретение относится к энергетике и может использоваться в проточных водогрейных котлах, где сжигание водорода происходит внутри котла. Согласно изобретению способ преобразования энергии горения водорода в тепловую энергию воды водяного котла заключается в том, что давление водорода и кислорода на входе устройства устанавливается одновременным регулированием согласно требуемым пропорциям и давлению, после чего газы поступают в две герметичные изменяющегося объема несвязанные между собой камеры, где смешиваются, поочередно сжимаются, воспламеняются, а полученная в результате горения тепловая энергия в виде пара непрерывно поступает в воду котла. Устройство включает цилиндр, размещенный внутри котла, полости которых связаны посредством клапанов, а Т-образный поршень имеет возможность свободного осевого перемещения, причем после отверстий подачи газов расположены камеры смешивания газов, состоящие из ряда Т-образных перфорированных пластин, отверстия которых выполнены в шахматном порядке, а устройства искрового зажигания прикреплены к перфорированным пластинам, которые являются ограничивающими для устройств смешивания. 4 н.п. ф-лы, 4 ил.

Реферат

Изобретение относится к проточным водогрейным котлам и устройствам для обеспечения их функционирования.

Известен генератор для получения горячей воды или водяного пара (см. патент на полезную модель №108569), содержащий водонагреватель, расположенный в топочной камере и горелочное устройство, установленное с возможностью нагрева воды в водонагревателе, при этом горелочное устройство представляет собой сопло Лаваля, работающее на водяном топливе.

Недостатком изобретения являются очень высокие энергетические затраты на единицу получаемой тепловой энергии. Электроэнергия, затрачиваемая на разложение воды, согласно закону сохранения и преобразования энергии равна энергии сжигания водорода. Очевидно проще это же количество электроэнергии сразу преобразовать в тепловую, например с помощью тена.

Целью изобретения является снижение затрат и повышение КПД на единицу получаемой тепловой мощности.

Указанная цель достигается за счет использования дешевого водорода и кислорода, получаемых согласно патенту №2456377, а также за счет сгорания водорода непосредственно в воде. Предложен способ преобразования энергии горения водорода в тепловую энергию воды водяного котла, включающий подачу водорода и кислорода, их смешивание с последующим сжиганием водорода. Давление водорода и кислорода на входе устройства устанавливается одновременным регулированием согласно требуемым пропорциям и давлению, после чего газы поступают в две герметичные изменяющегося объема несвязанные между собой камеры, где смешиваются, поочередно сжимаются, воспламеняются, а полученная в результате горения тепловая энергия в виде пара непрерывно поступает в воду котла. Для осуществления предложенного способа предлагается регулятор, который содержит корпус, состоящий из двух подпружиненных частей, имеющий соосно расположенные каналы для водорода и кислорода, между которыми расположен маховик, имеющий возможность осевого вращения, отверстия которого в рабочем положении соосно расположены с газовыми каналами и имеют вытянутую форму, расстояние между сторонами которых изменяется в зависимости от угла поворота маховика.

Предложен также преобразователь, включающий цилиндр, поршень, узлы искрового зажигания, отверстия с клапанами подачи газов, отличающийся тем, что цилиндр размещен внутри котла, полости которых связаны посредством клапанов, а Т-образный поршень имеет возможность свободного осевого передвижения, причем после отверстий подачи газов расположены камеры смешивания газов, состоящие из ряда Т-образных перфорированных пластин, отверстия которых выполнены в шахматном порядке, а устройства искрового зажигания прикреплены к перфорированным пластинам, которые являются ограничивающими для устройств смешивания.

Предложена также горелка, включающая камеру сгорания, узел искрового зажигания, причем подвод водорода и кислорода осуществляется под давлением, по фитилям, имеющим соответственно цилиндрическую и трубчатую формы, состоящие из термостойкой керамики, имеющей пористую с осевой проницаемостью структуру, которые расположены коаксиально и герметично изолированы термостойкой керамикой друг от друга и от внешней среды, причем в центральной термостойкой трубке после фитиля расположена камера предварительного воспламенения, содержащая узел искрового зажигания и отверстие, связывающее камеру с кислородным фитилем, а выше камеры предварительного воспламенения расположена камера сгорания, объем которой связан через клапаны с объемом котла.

На фиг.1 изображен регулятор, изменяющий одновременным дросселированием параметры входных газов в зависимости от угла поворота управляющего органа. Устройство содержит корпус, состоящий из двух частей 1 и 2. Каждая часть содержит совмещенные между собой каналы 3-5 для кислорода и 4-6 для водорода. Для гарантийного обеспечения сгорания водорода кислород за счет увеличения диаметра кислородных каналов подается в избыточном количестве. Между частями корпуса 1 и 2 размещен с возможностью вращения и герметизированный от частей корпуса уплотнениями 25 маховик 9, имеющий отверстия 7, 8 (см. сечение А-А), оси которых при вращении маховика совпадают с осями каналов 3, 4, 5, 6. Отверстия маховика имеют удлиненную форму, радиальный размер которых изменяется в функции угла поворота маховика. Для исключения поворота частей корпуса предусмотрены штифты 10. Части корпуса 1, 2 для обеспечения вращения маховика 9 подпружинены пружиной 11 и скреплены крепежными элементами 12, 13, 14. Отверстия под крепежные элементы закрыты декоративными крышками 26. Таким образом, корпус генератора состоит из двух подпружиненных частей, имеющих соосно расположенные каналы для водорода и кислорода, между которыми расположен маховик, имеющий возможность осевого вращения, отверстия которого в рабочем положении соосно расположены с газовыми каналами и имеют вытянутую форму, расстояние между сторонами которых изменяются в зависимости от угла поворота маховика.

Регулятор работает следующим образом. В положении закрыто каналы поступления водорода и кислорода перекрыты корпусом маховика (сечения каналов 4, 6 и 3, 5 не совпадают с сечениями отверстий 7, 8). При повороте маховика происходит одновременное плавное дросселирование, пропорционально и одновременно изменяющее истечение газов. Для работы маховик устанавливают на угол, обеспечивающий подачу заданного количества газов при сохранении необходимых газовых соотношений.

На фиг. 2 изображено устройство (преобразователь), преобразующее энергию горения водорода в тепловую энергию воды водяного котла. Преобразователь состоит из корпуса 15 котла, содержащего входное 20 и выходное 17 отверстия для проточной воды или пара. Клапаны 18, 19 отверстий определяют направление истечения воды через полость 16 котла. Отверстия 5 и 6 являются входными отверстиями для кислорода и водорода, полости которых являются общими с полостями аналогичных выходных каналов регулятора. Для предотвращения обратной реакции газов служат клапаны 29. Газы под давлением через отверстия 5, 6 попадают в камеры смешивания 28, которые расположены между торцами цилиндра 21 и перфорированными пластинами 24, находящимися в полости 16 котла. Т-образный поршень 33 находится в цилиндре 21 и имеет возможность перемещения вдоль оси цилиндра, образуя между собой и перфорированными пластинами 24 две изменяющиеся по объему полости 22 и 23. Свечи зажигания 31 и 32 закреплены со стороны поршня на перфорированных пластинах 24. Цилиндр разделен на две равные части по сечению клапанами 30. Камеры смешивания 24 содержат Т-образные перфорированные пластины, причем отверстия на них выполнены в шахматном порядке. Камеры смешивания могут заполняться пористой керамикой, имеющей пористую осевой направленности структуру.

Преобразователь работает в следующем порядке. При подаче через отверстия 5, 6 кислорода и водорода газы, попадая в камеры смешивания, образуют гремучий газ, который заполняет объем полостей 22 и 23, при этом давление поступающих газов должно превышать максимальное давление воды (пара) котла и клапаны 30 должны быть отрегулированы на давление пропускания, несколько превышающее давление газовой смеси. При подаче на свечу 32 напряжения зажигания смесь газов, например в полости 23, воспламеняется, и поршень занимает крайнее левое положение, замыкая контакты свечи зажигания 31 (см. фиг.3). Тепловая энергия, образованная в полости 23, выходит через клапаны 30 в объем котла, нагревая воду или пар. В полости 22 газовая смесь воспламеняется, и поршень переходит в правое положение, сжимая газовую смесь в полости 23 и завершая цикл работы.

На фиг.4 изображена горелка, которая может использоваться вместо преобразователя. Она содержит корпус 35, размещенный внутри котла, в котором выполнены входные отверстия 5 и 6 с клапанами 29 для подачи кислорода и водорода. В корпусе размещены внутренняя огнеупорная керамическая (фаянсовая) глухая трубка 39 и такая же труба 36 большего диаметра. Промежуток между трубкой и трубой заполнен пористым проницаемым огнеупорным керамическим составом (фаянсом), играющим роль фитиля 37, подающего кислород в камеру сгорания 38. Трубка 39 в нижней ее части заполнена таким же составом, играющим роль фитиля 46 и обеспечивающим подачу водорода сначала в камеру воспламенения 45, а затем в камеру сгорания 38. Камера воспламенения 45 трубки 39 сообщается через отверстие 44 с объемом фитиля 37, а объем трубки 39 сообщается посредством отверстий 42 с объемом камеры сгорания 38. Напротив отверстия 44 расположен узел 43 искрового зажигания. В полости 41 корпуса 35 установлены клапаны 40, соединяющие полость 41 корпуса 35 с объемом котла.

Работа устройства заключается в том, что при открытии запорных органов для подачи воздуха (кислорода) и водорода и при некотором их избыточном давлении, регулируемым условным проходом запорных органов, избыточное количество кислорода по фитилю 37 попадает в объем 41 корпуса 35. Водород, подымаясь по фитилю 46, попадает в камеру воспламенения 45, где из-за нехватки кислорода, поступающего через отверстие 44 с помощью узла зажигания 43, происходит его неполное сгорание. Выделяемое незначительное количество тепловой энергии при этом не может вывести узел зажигания 43 из строя. Полное сгорание водорода происходит в камере сгорания 38 при избыточном количестве кислорода. Количество подаваемых в камеру сгорания газов может регулироваться структурой фитилей и давлением газов. При горении водорода давление в полости 41 повышается и при достижении давления, превышающего давление воды (пара) котла, происходит через клапаны 40 передача энергии сгорания водорода воде (пару), находящейся в котле.

Указанные изобретения при их использовании дают значительный экономический эффект, т.к. позволяют исключить такие дорогостоящие устройства как топочные печи, трубы, теплообменники и т.д. Позволяют значительно расширить ассортимент энергетических установок от бытового использования до промышленного применения, например в электростанциях, где дешевый водород получают способом разложения (например, по российскому патенту №2456377) речной, озерной, морской воды за счет тепловой энергии самой воды. Устройство получения водорода при этом имеет положительную плавучесть и находится на поверхности воды. Использование изобретений позволяет обеспечить идеальную экологическую обстановку, т.к. замыкается неисчерпаемый энергетический круг преобразования энергии вода-водород-вода, при этом первичная вода получает энергию от Солнца.

1. Способ преобразования энергии горения водорода в тепловую энергию воды водяного котла, включающий подачу водорода и кислорода, их смешивание с последующим сжиганием водорода, отличающийся тем, что давление водорода и кислорода на входе устройства устанавливается одновременным регулированием согласно требуемым пропорциям и давлению, после чего газы поступают в две герметичные изменяющегося объема несвязанные между собой камеры, где смешиваются, поочередно сжимаются, воспламеняются, а полученная в результате горения тепловая энергия в виде пара непрерывно поступает в воду котла.

2. Регулятор, отличающийся тем, что содержит корпус, состоящий из двух подпружиненных частей, имеющий соосно расположенные каналы для водорода и кислорода, между которыми расположен маховик, имеющий возможность осевого вращения, отверстия которого в рабочем положении соосно расположены с газовыми каналами и имеют вытянутые отверстия, расстояние между сторонами которых изменяется в зависимости от угла поворота маховика.

3. Преобразователь, включающий цилиндр, поршень, узлы искрового зажигания, отверстия с клапанами подачи газов, отличающийся тем, что цилиндр размещен внутри котла, полости которых связаны посредством клапанов, а Т-образный поршень имеет возможность свободного осевого передвижения, причем после отверстий подачи газов расположены камеры смешивания газов, состоящие из ряда Т-образных перфорированных пластин, отверстия которых выполнены в шахматном порядке, а устройства искрового зажигания прикреплены к перфорированным пластинам, которые являются ограничивающими для устройств смешивания.

4. Горелка, включающая камеру сгорания, узел искрового зажигания, отличающаяся тем, что подвод водорода и кислорода осуществляется под давлением, по фитилям, имеющим соответственно цилиндрическую и трубчатую формы, состоящие из термостойкой керамики, имеющей пористую с осевой проницаемостью структуру, которые расположены коаксиально и герметично изолированы термостойкой керамикой друг от друга и от внешней среды, причем в центральной термостойкой трубке после фитиля расположена камера предварительного воспламенения, содержащая узел искрового зажигания и отверстие, связывающее камеру с кислородным фитилем, а выше камеры предварительного воспламенения расположена камера сгорания, объем которой связан через клапаны с объемом котла.