Жидкостно-газовый реактивный двигатель

Иллюстрации

Показать все

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и реактивное сопло. В камере жидкостно-газового реактивного двигателя установлен на выходе из бака разделитель фаз рабочего тела, после которого установлен регулировочный клапан с пружиной и электромагнитом. В ЖГРД камера снабжена устройством подогрева рабочего тела в области, прилегающей к выходному отверстию бака. Жидкостно-газовый реактивный двигатель создает реактивную тягу за счет истечения паров воды, которые образуются за счет процесса парообразования газа из жидкой фазы. Изобретение обеспечивает регулирование тяги, снижение энергопотребления двигателя и применение экологически чистого рабочего тела. 1 з.п. ф-лы, 1 ил.

Реферат

Предлагаемое изобретение предназначено для использования в ракетно-космической технике в качестве корректирующей двигательной установки (КДУ) космического аппарата (КА).

Известен жидкостный реактивный двигатель с дополнительным электромагнитным разгоном рабочего тела, содержащий источник электрической энергии, кольцевую камеру сгорания, смесительную головку, тарельчатое сопло и накопитель энергии с коммутирующим устройством (Патент Российской Федерации № 2374481 по МПК: F02K99/00, 2008 г.). Этот двигатель имеет такие недостатки, как относительно высокая цена тяги, наличие двух баков для хранения топлива и окислителя. Для нормальной работы такого двигателя необходимо дозированная подача компонентов.

Известен жидкостно-газовый реактивный двигатель (ЖГРД), содержащий бак, заполненный жидким рабочим телом, с выходным отверстием в крышке, камеру и реактивное сопло, после выходного отверстия установлена капиллярная трубка, за которой находится полость двигателя, из нее рабочее тело поступает в сопло (Вопросы электромеханики. Т.109. 2009 г. В.П.Ходненко, А.В.Хромов (ФГУП «НПП ВНИИЭМ») Корректирующие двигательные установки для малого космического аппарата.). Этот двигатель выбран в качестве прототипа. В качестве топлива данного двигателя применяется гидразин.

Этот двигатель имеет более низкую цену тяги, один бак с жидким рабочим телом. Но у данного двигателя есть ряд других недостатков - невозможность регулирования в широких пределах тягу двигателя из-за особенностей применяемого топлива, относительно большое энергопотребление из-за необходимости осуществлять нагрев полости двигателя для осуществления термокаталитической реакции, а также есть такой недостаток, как токсичность применяемого топлива.

Техническим результатом заявленного изобретения является получение возможности регулирования тяги двигателя в широких пределах, снижение энергопотребления двигателя и применение экологически чистого рабочего тела.

Технический результат достигается тем, что в жидкостно-газовый реактивный двигатель, содержащий бак, заполненный жидким рабочим телом, с выходным отверстием в крышке, камеру и реактивное сопло, согласно изобретению введен регулировочный клапан с электромагнитом и пружиной, установленный в камере на выходе из бака после разделителя фаз рабочего тела, а в качестве рабочего тела используют воду.

При этом рабочую камеру предлагается снабдить устройством подогрева области, прилегающей к выходному отверстию бака.

В предлагаемом техническом решении для создания тяги используется явление парообразования, а не термокаталитическая реакция, как в прототипе.

На чертеже изображен пример конкретного выполнения заявленного реактивного двигателя.

Жидкостно-газовый реактивный двигатель состоит из бака 1, регулировочного клапана 2 с электромагнитом 3 и пружиной 4, установленного в камере 5 на выходе из бака 1 после разделителя фаз 6 рабочего тела, и сопла 7, установленного после камеры 5 и корпуса клапана 8.

Суть работы двигателя состоит в том, что рабочая жидкость из бака 1 испаряется и, пройдя по капиллярам разделителя фаз 6, поступает в камеру 5, откуда в случае поступления сигнала на электромагнит 3 пар через клапан 2 по каналам в корпусе клапана 8 поступает в сопло 7. В отсутствие сигнала на электромагните 3 пружина 4 обеспечивает поджатие клапана (автоматическое выключение двигателя). Так как давления в области перед соплом превышает давление за бортом, то возникает реактивная тяга. Двигатель может работать, пока не испариться вся жидкость в баке 1. Благодаря клапану осуществляется регулирование двигателя вплоть до полного выключения с возможностью неоднократных включений. Преимуществами данного двигателя является его низкое энергопотребление, нетоксичность топлива, невзрывоопасность, регулирование в широком диапазоне. В случае кристаллизации рабочего тела происходит падение удельного импульса и тяги, но работоспособность сохраняется, в отличие от термокаталитического двигателя. Согласно формуле (А.А.Дорофеев. Основы теории тепловых ракетных двигателей (Общая теория ракетных двигателей) МГТУ им. Н.Э.Баумана Москва 1999 г.):

W max = 2 k k − 1 R T               [ 1 ]

где Wmax - скорость истечения газа через сопло Лаваля в вакууме при оптимальном профиле сопла, k - показатель адиабаты водяного пара, R - газовая постоянная водяного пара, T - абсолютная температура в камере. При температуре T=273 K, Wmax достигает 1065 м/с. При диаметре клапана d=10 мм и максимальной высоте подъема x=2.5 мм площадь цилиндрической щели в клапане при его максимальном подъеме составит:

f=xdπ=7.85×10-5 м2

При температуре в 273 K давление насыщенных паров воды составляет примерно Рнп=600 Па, при этом плотность газа (если считать газ идеальным) составит:

ρ г = M r V m × P н   п Р о

где Mr - молярная масса воды, Vm - молярный объем газа при н.у., Ро - давление газа при н.у. Таким образом, ρг=4.82*10-3 кг/м3. Примем, что гидравлические потери давления на клапане примерно равны давлению насыщенных потерь, тогда массовый расход через клапан составит:

Q = μ × f × ρ г × 2 × Р н   п ρ г = 1.133 × 10 − 4 к г с

Тогда тяга двигателя составит:

F=Q×Wmax=120 мН,

что превышает тягу по сравнению с прототипом. Из формулы [1] следует, что чем выше температура, тем выше скорость истечения и как следствие выше импульс и тяга двигателя. Таким образом, при наличии больших доступных мощностей становится целесообразным установить устройство подогрева непосредственно в камеру, в область, прилегающую к выходному отверстию бака, для повышения импульса двигателя.

Литература

1. Патент Российской Федерации N 2374481, МПК F02K 99/00, 2008 г.

2. Вопросы электромеханики Т.109. 2009 г. В.П.Ходненко, А.В.Хромов (ФГУП «НПП ВНИИЭМ») Корректирующие двигательные установки для малого космического аппарата, с.30-31 (прототип).

3. А.А.Дорофеев. Основы теории тепловых ракетных двигателей (Общая теория ракетных двигателей) МГТУ им. Н.Э.Баумана Москва 1999 г.

1. Жидкостно-газовый реактивный двигатель, содержащий бак, заполненный жидким рабочим телом, с выходным отверстием в крышке, камеру и реактивное сопло, отличающийся тем, что в него введен регулировочный клапан с электромагнитом и пружиной, установленный в камере на выходе из бака после разделителя фаз рабочего тела, а в качестве рабочего тела используют воду.

2. Жидкостно-газовый реактивный двигатель по п.1, отличающийся тем, что камера снабжена устройством подогрева рабочего тела в области, прилегающей к выходному отверстию бака.