Производные индола и бензоксазина в качестве модуляторов метаботропных глутаматных рецепторов
Иллюстрации
Показать всеИзобретение относится к новым производным индола и бензоксазина, обладающим положительной аллостерической модулирующей активностью в отношении mGluR2 рецептора. В формуле (I) R1 представляет собой С1-3алкил, замещенный трифторметилом, R2 представляет собой циано или галогено, R3 представляет собой водород, С1-3алкил, С1-3алкил, замещенный С3-7циклоалкилом, пиридинил, гидроксиС2-4алкил, С1-3алкилоксиС2-4алкил, 4-тетрагидропиранил, 4-(гидрокси)-циклогексанил, 4-(гидрокси)-4-(С1-3алкил)циклогексанил, фенил, пиридинилметил, пиридинилметил, замещенный одной С1-3алкил группой, или фенил или пиридинил, замещенные одним или двумя заместителями, выбранными из группы, состоящей из галогено и С1-3алкила, R4 представляет собой водород или галогено, А представляет собой радикал формулы -СН=СН-(а) или -СН2-СН2-O-(б), где один или два атома водорода могут быть замещены С1-3алкилом. Изобретение также относится к фармацевтической композиции, содержащей указанные соединения, и к соединению для применения в лечении или предупреждении расстройства центральной нервной системы, выбранного из группы: тревожные расстройства, психотические расстройства, расстройства личности, расстройства настроения, мигрень, эпилепсия или судорожные расстройства, когнитивные расстройства, синдром дефицита внимания/гиперактивности, нервная анорексия, нейрогенная булимия, нейродегенерация, нейротоксичность, ишемия, алкогольная зависимость, амфетаминовая зависимость, кокаиновая зависимость, никотиновая зависимость, опиоидная зависимость. 3 н. и 12 з.п. ф-лы, 3 табл., 6 пр.
Реферат
Область техники
Настоящее изобретение относится к новым производным индола и бензоксазина, которые представляют собой положительные аллостерические модуляторы метаботропных глутаматных рецепторов подтипа 2 ("mGIuR2") и которые являются полезными для лечения или предупреждения неврологических и психиатрических расстройств, ассоциированных с глутаматной дисфункцией, и заболеваний, в которые вовлечен подтип mGIuR2 метаботропных рецепторов. Изобретение также направлено на фармацевтические композиции, содержащие такие соединения, на способы получения таких соединений и композиций и на применение таких соединений для предупреждения или лечения неврологических и психиатрических расстройств и заболеваний, в которые вовлечен mGIuR2.
Предшествующий уровень техники
Глутамат является важным аминокислотным нейромедиатором в центральной нервной системе млекопитающих. Глутамат играет важную роль в многочисленных физиологических функциях, таких как обучение и память, а также сенсорное восприятие, развитие синаптической пластичности, регуляция моторики, дыхание и регуляция сердечно-сосудистой функции. Кроме того, глутамат находится в центре нескольких различных неврологических и психиатрических заболеваний, в которых имеется нарушение баланса глутаматергической нейротрансмиссии.
Глутамат опосредует синаптическую нейротрансмиссию через активацию каналов ионотропных глутаматных рецепторов (iGluRs) и рецепторов NMDA (N-метил-О-аспартат), АМРА (2-альфа-амино-3-гидрокси-5-метил-4-изоксазольпропионовая кислота) и каинатных рецепторов, которые являются ответственными за быструю возбудительную трансмиссию.
Кроме того, глутамат активирует метаботропные глутаматные рецепторы(mGluR), играющие дополнительную модуляторную роль, способствующую тонкой корректировке синаптической эффективности.
Глутамат активирует mGluR посредством связывания с большим внеклеточным амино-концевым доменом рецептора, называемым в данном описании изобретения ортостерическим центром связывания. Это связывание вызывает конформационное изменение в рецепторе, что приводит к активации G-белка и внутриклеточных сигнальных путей.
Подтип mGluR2 негативно связан с аденилатциклазой через активацию Gai-белка, и его активация приводит к ингибированию высвобождения глутамата в синапсе. В центральной нервной системе (CNS) рецепторы mGluR2 распространены главным образом в коре головного мозга, таламических участках, придаточной обонятельной луковице, гиппокампе, миндалевидном теле, хвостатом ядре-путамене и прилежащем ядре.
Активирование mGluR2, как показали клинические исследования, является эффективным в лечении тревожных расстройств. Кроме того, активирование mGluR2 в различных животных моделях показало их эффективность, таким образом предоставляя возможный новый терапевтический подход к лечению шизофрении, эпилепсии, аддикции/наркотической зависимости, болезни Паркинсона, боли, расстройств сна и болезни Гентингтона.
В настоящее время большинство доступных фармакологических средств, нацеленных на mGluR, представляют собой ортостерические лиганды, которые активируют некоторые члены семейства, так как они являются структурными аналогами глутамата.
Новым направлением для развития селективных соединений, действующих на mGluR, является идентификация соединений, которые действуют посредством аллостерических механизмов, модулируя рецептор путем связывания с сайтом, отличным от высококонсервативного ортостерического центра связывания.
Недавно положительные аллостерические модуляторы mGluR выступили в качестве новых фармакологических объектов, предлагающих эту привлекательную альтернативу. В качестве положительных аллостерических модуляторов mGluR2 были описаны различные соединения. В WO 2004/092135 (NPS & Astra Zeneca), WO 2004/018386, WO 2006/014918 и WO 2006/015158 (Merck), WO 2001/56990 (Eli Lilly) и WO 2006/030032 и WO 2007/104783 (Addex & Janssen Phamnaceutica) описаны, соответственно, фенилсульфонамид, ацетофенон, инданон, пиридилметилсульфонамид и производные пиридинона в качестве положительных аллостерических модуляторов mGluR2. Ни одно из конкретно раскрытых в них соединений не является структурно родственным соединениям по настоящему изобретению.
Показано, что такие соединения не активируют рецептор сами по себе. Скорее они обеспечивают возможность для рецептора продуцировать максимальный ответ на концентрацию глутамата, которая самостоятельно индуцирует минимальный ответ. Мутационный анализ однозначно продемонстрировал, что связывание положительных аллостерических модуляторов mGluR2 происходит не в ортостерическом центре, но вместо этого на аллостерическом сайте, расположенном внутри семитрансмембранного участка рецептора.
Данные на животных позволяют предположить, что положительные аллостерические модуляторы mGluR2 оказывают эффекты в моделях тревоги и психоза, аналогичные полученным с ортостерическими агонистами. Аллостерические модуляторы mGluR2, как было показано, активны при страхе, усиленном испугом и в стресс-индуцированных гипертермических моделях тревоги. Кроме того, такие соединения, как показано, активны в реверсировании кетамин- или амфетамин-индуцированной гиперлокомоции и в реверсировании амфетамин-индуцированного нарушения преимпульсного ингибирования акустической реакции испуга в модели шизофрении (J. Pharmacol. Exp. Тhеr. 2006, 318, 173-185; Psychopharmacology 2005, 179, 271-283).
Современные исследования на животных также выявили, что селективный положительный аллостерический модулятор метаботропных глутаматных рецепторов подтипа 2, бифенилинданон (BINA), блокирует модель психоза на основе галлюциногенных лекарственных средств, поддерживая стратегию нацеливания рецепторов mGluR2 на лечение глутаматергической дисфункции при шизофрении (Mol. Pharmacol. 2007, 72, 477-484).
Положительные аллостерические модуляторы обеспечивают возможность усиления глутаматного ответа, но, кроме того, было доказано, что они потенциируют ответ на ортостерические агонисты mGluR2, такие как LY379268 или DCG-IV. Такие данные обеспечивают доказательство в отношении еще одного нового терапевтического подхода к лечению указанных выше неврологических и психиатрических заболеваний, в которые вовлечен mGluR2, с использованием комбинации положительного аллостерического модулятора mGluR2 вместе с ортостерическим агонистом mGluR2.
Подробное описание изобретения
Настоящее изобретение относится к соединениям, имеющим активность модулятора метаботропных глутаматных рецепторов 2, где указанные соединения имеют Формулу (I)
или их стереохимически изомерной форме, где
R1 представляет собой С1-6алкил; С3-7 циклоалкил; трифторметил; C1-3залкил, замещенный трифторметилом, 2,2,2-трифторэтокси, С3-7циклоалкил, фенил, или фенил, замещенный галогеном, трифторметилом или трифторметокси; фенил; фенил, замещенный 1 или 2 заместителями, выбранными из группы, состоящей из галогено, трифторметила и трифторметокси; или 4-тетрагидропиранил;
R2 представляет собой циано, галогено, трифторметил, C1-3алкил или циклопропил;
R3 представляет собой водород; C1-3алкил; C1-3алкил, замещенный С3-7циклоалкилом, фенилом, фенилом, замещенным 1 или 2 заместителями, выбранными из группы, состоящей из галогено, циано, C1-3залкил, C1-3залкокси и трифторметила; пиридинил или пиридинил, замещенный 1 или 2 C1-3алкильными группами; гидрокси С2-4алкил; С1-3залкилалкилокси С2-4алкил; 4-тетрагидропиранил; 1-окса-спиро[3,5]нон-7-ил; 2-окса-спиро[3,5]нон-7-ил; 1-окса-спиро[4,5]дец-8-ил; 2-окса-спиро[4,5]дец-8-ил; 4-(гидрокси)-циклогексанил; 4-(гидрокси)-4-(С1-3алкил)циклогексанил; 4-(гидрокси)-4-(С3-7циклоалкил)-циклогексанил; 4-(С1-3алкилокси)циклогексанил; фенил; пиридинил; пиридинилметил; или фенил, пиридинил или пиридинилметил, замещенный одним или двумя заместителями, выбранными из группы, состоящей из галогено, C1-3алкила, C1-3алкокси и трифторметила;
R4 представляет собой водород или галогено;
А представляет собой радикал формулы
-СН=СН- (а) или
-СН2-СН2-O- (б);
где одни или два атома водорода могут быть заменены C1-3алкилом или полигалогено С1-3алкилом;
или их фармацевтически приемлемой соли или сольвату.
В одном воплощении настоящее изобретение относится к соединению формулы (I) или его стереохимически изомерной форме, где
R1 представляет собой C1-6алкил; C1-3алкил, замещенный трифторметилом или С3-7циклоалкилом;
R2 представляет собой циано или галогено;
R3 представляет собой водород; C1-3алкил; C1-3алкил, замещенный С3-7циклоалкилом; гидрокси С2-4алкил; С1-3залкилокси С2-4алкил; 4-тетрагидропиранил; 4-(гидрокси)-циклогексанил; или 4-(гидрокси)-4-(С1-3залкил)циклогексанил;
R4 представляет собой водород, хлоро или фторо;
А представляет собой радикал формулы
-СН=СН- (а), или
-СН2-СН2-O- (б);
или его фармацевтически приемлемой соли или сольвату.
В одном воплощении настоящее изобретение относится к соединению формулы (I) или его стереохимически изомерной форме, где
R1 представляет собой C1-3алкил, замещенный трифторметилом;
R2 представляет собой циано или хлор;
R3 представляет собой водород; метил; метилил, замещенный циклопропилом; 2-гидрокси-2,2-диметилэтил; 1-метил-этилоксиэтил; 4-тетрагидропиранил; 4-(гидрокси)-циклогексанил; или 4-(гидрокси)-4-(метил)циклогексанил;
R4 представляет собой водород или хлоро;
А представляет собой радикал формулы
-СН=СН- (а), или
-СН2-СН2-O- (б);
или его фармацевтически приемлемой соли или сольвату. В одном воплощении настоящее изобретение относится к соединению формулы (I) или стереохимически изомерной его форме, где
R1 представляет собой 2,2,2-трифторэтил;
R2 представляет собой циано или хлоро;
А представляет собой радикал формулы -СН=СН- (а);
или его фармацевтически приемлемой соли или сольвату.
В одном воплощении настоящее изобретение относится к соединению формулы (I) или его стереохимически изомерной форме, где
R1 представляет собой 2,2,2-трифторэтил;
R2 представляет собой циано или хлоро;
А представляет собой радикал формулы -СН2-СН2-O- (б);
или его фармацевтически приемлемой соли или сольвату.
Типичные соединения по настоящему изобретению представляют собой:
8-хлор-7-(7-хлор-1H-индол-5-ил)-3-(2,2,2-трифторэтил)имидазо[1,2-а]пиридин;
транс-4-[5-[8-хлор-3-(2,2,2-трифторэтил)имидазо[1,2-а]пиридин-7-ил]-1H-индол-1-ил] циклогексанол;
транс-7-[1-(4-гидрокси-4-метилциклогексил)-1H-индол-5-ил]-3-(2,2,2-трифторэтил)-имидазо[1,2-а]пиридин-8-карбонитрил;
4-[7-[8-хлор-3-(2,2,2-трифторэтил)имидазо[1,2-а]пиридин-7-ил]-2,3-дигидро-4H-1,4-бензоксазин-4-ил]циклогексанол;
транс-4-[5-[8-хлор-3-(2,2,2-трифторэтил)имидазо[1,2-а]пиридин-7-ил]-1H-индол-1 -ил]-1 -метилциклогексанол.
Обозначение "C1-3алкил" в качестве группы или части группы означает насыщенный, прямой или разветвленный, углеводородный радикал, содержащий от 1 до 3 атомов углерода, такой как метил, этил, 1-пропил и 1-метилэтил.
Обозначение "C1-6алкил" в качестве группы или части группы означает насыщенный, неразветвленный или разветвленный, углеводородный радикал, содержащий от 1 до 6 атомов углерода, такой как метил, этил, 1-пропил, 1-метилэтил, 1-бутил, 2-метил-1-пропил, 3-метил-1-бутил, 1-пентил, 1-гексил и тому подобное.
Обозначение "циклоС3-7алкил" в виде группы или части группы означает насыщенный, циклической углеводородный радикал, содержащий от 3 до 7 атомов углерода, такой как циклопропил, циклобутил, циклопентил, циклогексил и циклогептил.
Галогено может представлять собой фторо, хлоро, бромо или йодо, предпочтительно фторо или хлоро.
Для терапевтического применения соли соединений формулы (I) представляют собой те соли, где противоион является фармацевтически приемлемым. Однако, соли кислот и оснований, которые не являются фармацевтически приемлемыми, также могут находить применение, например, в получении или очистке фармацевтически приемлемого соединения. Все соли, как фармацевтически приемлемые, так и нет, включены в объем настоящего изобретения.
Определено, что фармацевтически приемлемые соли включают терапевтически активные нетоксичные формы соли присоединения кислоты, которые способны образовывать соединения Формулы (I). Указанные соли могут быть получены путем обработки основной формы соединений Формулы (I) подходящими кислотами, например неорганическими кислотами, например галогеноводородными кислотами, в частности соляной кислотой, бромистоводородной кислотой, серной кислотой, азотной кислотой и фосфорной кислотой; органическими кислотами, например уксусной кислотой, гидроксиуксусной кислотой, пропионовой кислотой, молочной кислотой, пировиноградной кислотой, щавелевой кислотой, малоновой кислотой, янтарной кислотой, малеиновой кислотой, фумаровой кислотой, яблочной кислотой, винной кислотой, лимонной кислотой, метансульфоновой кислотой, этансульфоновой кислотой, бензолсульфоновой кислотой, пара-толуолсульфоновой кислотой, цикламовой кислотой, салициловой кислотой, пара-аминосалициловой кислотой и памовой кислотой.
Наоборот, указанные солевые формы можно превращать в форму свободного основания путем обработки подходящим основанием.
Соединения Формулы (I), содержащие кислотообразующие протоны, можно также превращать в их терапевтически активные нетоксичные формы основной соли обработкой подходящими органическими и неорганическими основаниями. Подходящие формы основной соли включают, например, соли аммония, соли щелочного и щелочноземельного металла, в частности соли лития, натрия, калия, магния и кальция, соли органических оснований, например соли бензатина, N-метил-D-глюкамина, гидрабамина и соли аминокислот, например аргинина и лизина.
Наоборот, указанные солевые формы могут быть превращены в формы свободной кислоты обработкой подходящей кислотой.
Термин "сольват" включает формы присоединения растворителя, а также их соли, которые способны образовывать соединения формулы (I). Примерами таких форм присоединения растворителя являются, например, гидраты, алкоголяты и тому подобное.
Термин "стереохимически изомерные формы", при использовании выше в данном описании изобретения, означает все возможные изомерные формы, которые могут иметь соединения Формулы (I). Если не упомянуто или не указано иное, химическое наименование соединений означает смеси всех возможных стереохимически изомерных форм, где указанные смеси содержат все диастереомеры и энантиомеры основной молекулярной структуры. Изобретение также включает в себя каждую из отдельных изомерных форм соединений Формулы (I) и их соли и сольваты, по существу не содержащую, то есть ассоциированную менее чем с 10%, предпочтительно менее 5%, в частности менее 2% и наиболее предпочтительно менее 1% других изомеров. Таким образом, если соединение формулы (I), например, определено как (R), это означает, что соединение по существу не содержит (S)-изомер. Стереогенные центры могут иметь R- или S-конфигурацию; заместители на бивалентных циклических (частично) насыщенных радикалах могут иметь либо цис-, либо транс-конфигурацию.
Следуя соглашениям о CAS-наименовании, если в соединении присутствуют два стереогенных центра известной беспримесной конфигурации, то дескриптор R или S присваивают (на основании правила последовательности Кана-Ингольда-Прелога) хиральному центру с самым низким порядковым номером, центру отсчета. Конфигурацию второго стереогенного центра обозначают, используя относительные дескрипторы [R*, R*] или [R*, S*], где R* всегда указывают в качестве центра отсчета и [R*, R*] указывает центры с одинаковой хиральностью, и [R*, S*] указывает центры с разной хиральностью. Например, если хиральный центр с самым низким порядковым номером в соединении имеет S-конфигурацию и второй центр имеет S-конфигурацию, стереодескриптор следует указать как S-[R*, S*]. Если используют «а» и «Р»: положение заместителя с высшим приоритетом на асимметрическом атоме углерода в кольцевой системе, имеющей самый низкий номер кольца, всегда произвольно является положением «а» средней плоскости, определяемой кольцевой системой. Положение заместителя с высшим приоритетом на другом асимметрическом атоме углерода в кольцевой системе (атом водорода в соединениях Формулы (I)) относительно положения заместителя с высшим приоритетом на атоме отсчета обозначают «α», если он находится на той же стороне средней плоскости, определяемой кольцевой системой, или «β», если он находится на другой стороне средней плоскости, определяемой кольцевой системой.
В рамках данной заявки, элемент, в частности при упоминании в отношении соединения Формулы (I), содержит все изотопы и изотопные смеси данного элемента, или имеющиеся в природе, или полученные синтетически, или с распространённостью элементов в природе или в изотопно обогащенной форме. Меченные радиоактивным изотопом соединения Формулы (I) могут содержать радиоактивный изотоп, выбранный из группы 3H 11С, 18F, 122I, 123I, 125I, 131I, 75Br, 76Br, 77Br и 82Br. Предпочтительно радиоактивный изотоп выбран из группы 3H, 11С и 18F.
Получение
Соединения по изобретению, как правило, могут быть получены посредством последовательности стадий, каждая из которых известна специалисту. В частности, соединения могут быть получены согласно следующим способам синтеза.
Соединения Формулы (I) можно синтезировать в форме рацемических смесей энантиомеров, которые можно отделять друг от друга, следуя известным в области техники способам разделения. Рацемические соединения Формулы (I) можно превращать в соответствующие диастереомерные солевые формы путем взаимодействия с подходящей хиральной кислотой. Указанные диастереомерные солевые формы затем разделяют, например, посредством селективной или фракционной кристаллизации и энантиомеры выделяют из них щелочами. Альтернативный способ разделения энантиомерных форм соединений Формулы (I) включает жидкостную хроматографию с использованием хиральной неподвижной фазы. Указанные чистые стереохимически изомерные формы также могут быть произведены из соответствующих чистых стереохимически изомерных форм соответствующих исходных веществ, при условии, что взаимодействие происходит стереоспецифически.
А. Получение конечных соединений
Экспериментальная методика 1
Конечные соединения Формулы (I) могут быть получены посредством взаимодействия промежуточного соединения Формулы (II) с соединением Формулы (III) согласно схеме взаимодействия (1), где взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, 1,4-диоксан, или в смеси реакционно-инертных растворителей, таких как, например, 1,4-диоксан/DМF(диметилформамид), в присутствии подходящего основания, такого как, например водный NаНСО3 или Na2CO3, комплексного Pd-катализатора, такого как, например, Рd(РРh3)4, в тепловых условиях, таких как, например, нагревание реакционной смеси при 150°С в микроволновом излучении, например в течение 10 минут. В схеме взаимодействия (1) все переменные определены как в Формуле (I), и W представляет собой группу, подходящую для Pd-опосредованного сочетания с бороновыми кислотами или бороновыми эфирами, такую как, например, галогено или трифлат. R5 и R6 могут представлять собой водород или алкил, или могут быть взяты вместе с образованием, например бивалентного радикала формулы -CH2CH2-, -СН2СH2СН3- или -С(СН3)2С(СН3)2-.
Схема взаимодействия 1
В. Получение промежуточных соединений
Экспериментальная методика 2
Промежуточные соединения Формулы (II), где W представляет собой галогено, могут быть получены путем взаимодействия промежуточного соединения Формулы (IV) с подходящим галогенирующим агентом, таким как, например, оксихлорид фосфора (V), где взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, DMF, при умеренно повышенной температуре, такой как, например, 110°С, в течение подходящего периода времени, который позволяет завершить взаимодействие, например, 1 ч. В схеме взаимодействия (2) все переменные определены как в Формуле (I) и W представляет собой галогено.
Схема взаимодействия 2
Экспериментальная методика 3
Промежуточные соединения Формулы (IV) могут быть получены посредством взаимодействия промежуточного соединения Формулы (V) с промежуточным соединением Формулы (VI) согласно схеме взаимодействия (3). Данное взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, этанол, в тепловых условиях, таких как, например, нагревание реакционной смеси, например, при 160°С в микроволновом излучении в течение 45 минут. В схеме взаимодействия (3) R1 и R2 определены как в Формуле (I), и галогено представляет собой, например, хлоро или бромо.
Схема взаимодействия 3
Экспериментальная методика 4
Промежуточные соединения Формулы (VI) могут быть получены посредством взаимодействия промежуточного соединения Формулы (VII) с источником аммония, таким как, например, гидроксид аммония, в тепловых условиях, таких как, например, нагревание реакционной смеси, например, при температуре дефлегмации в течение 3 ч. В схеме взаимодействия (4), R2 определен как в Формуле (I).
Схема взаимодействия 4
Экспериментальная методика 5
Промежуточные соединения Формулы (VII) могут быть получены посредством взаимодействия промежуточного соединения Формулы (VIII) с N,N-диметилформамид-диметил-ацеталем согласно схеме взаимодействия (5). Данное взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, метанол, в тепловых условиях, таких как, например, нагревание реакционной смеси, например, с обратным холодильником в течение 2 ч. В схеме взаимодействия (5) R2 определен как в Формуле (I).
Схема взаимодействия 5
Промежуточные соединения Формулы (VIII) или имеются в продаже (R2=CN; C.A.S. 5515-16-2), или могут быть получены, следуя методикам взаимодействия, известным специалисту в данной области техники. Промежуточные соединения Формулы (VIII), где R2 представляет собой галогено, например, могут быть получены согласно методике, описанной в Chemische Berichte (1976), 109(8), 2908-13.
Экспериментальная методика 6
Промежуточные соединения Формулы (II), где R2 представляет собой галогено, обозначенные (II-а), могут быть получены посредством взаимодействия промежуточного соединения Формулы (IX) с промежуточным соединением Формулы (V) согласно схеме взаимодействия (6). Данное взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, этанол, в тепловых условиях, таких как, например, нагревание реакционной смеси, например при 150°С в микроволновом излучении в течение 50 минут. В схеме взаимодействия (6) R1 определен как в Формуле (I), галогено может представлять собой хлоро, бромо или йодо, и W определен как в Формуле (II).
Схема взаимодействия 6
Экспериментальная методика 7
Промежуточные соединения Формулы (IX) могут быть получены путем обработки промежуточного соединения Формулы (X) кислотой, такой как, например, трифторуксусная кислота, согласно схеме взаимодействия (7). Данное взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, DCM (дихлорметан), при комнатной температуре в течение периода времени, который позволяет завершить взаимодействие, например 2 ч. В схеме взаимодействия (7) галогено может представлять собой хлоро, бромо или йодо, и W определен как в Формуле (II).
Схема взаимодействия 7
Экспериментальная методика 8
Промежуточные соединения Формулы (X) могут быть получены согласно схеме взаимодействия (8) посредством взаимодействия промежуточного соединения Формулы (XI) с сильным основанием, таким как, например н-бутиллитий, и дальнейшей обработки галогенирующим агентом, таким как, например, М-хлорсукцинимид. Данное взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, THF, при низкой температуре, такой как, например -78°С, в течение периода времени, который позволяет завершить взаимодействие, например 2 ч. В схеме взаимодействия (8) галогено может представлять собой хлоро, бромо или йодо, и W определен как в Формуле (II).
Схема взаимодействия (8)
Экспериментальная методика 9
Промежуточные соединения Формулы (IX), где W представляет собой йод, обозначенные (IХ-а), могут быть получены посредством взаимодействия промежуточного соединения Формулы (XII) с гидроксидом аммония согласно схеме взаимодействия (9). Данное взаимодействие осуществляют в тепловых условиях, таких как, например, нагревание реакционной смеси, например при 130°С в течение 12 ч.
Кроме того, промежуточные соединения Формулы (IХ-а) могут быть получены посредством взаимодействия промежуточного соединения Формулы (XII) с дифенилметанимином, с последующим расщеплением иминной двойной связи согласно схеме взаимодействия (9), где взаимодействие осуществляют в подходящем реакционно-инертном растворителе, таком как, например, толуол, в присутствии подходящего основания, такого как, например, натрия трет-бутилат, катализатора на основе металла, более конкретно палладиевого катализатора, такого как ацетат палладия(Н), и подходящего лиганда, такого как, например, 1,1'-[1,1-бинафталин]-2,2'-диилбис[1,1-дифенил-фосфин] (BINAP), нагревания в течение подходящего периода времени, которое позволяет завершить взаимодействие, например при 100°С в течение 16 ч в герметично закрытой пробирке, с последующим расщеплением промежуточной иминной двойной связи подходящей кислотой, такой как, например, водная соляная кислота. В схеме взаимодействия (9) галогено может представлять собой хлоро, бромо или йодо.
Схема взаимодействия 9
Экспериментальная методика 10
Промежуточные соединения Формулы (III) могут быть получены согласно известным в данной области техники методикам посредством взаимодействия промежуточного соединения Формулы (XIII) с подходящим источником бора, таким как, например, бис(пинаколато)дибор, в присутствии палладиевого катализатора, такого как, например, 1,1'-бис(дифенилфосфино)ферроценпалладий(II)дихлорид, в реакционно-инертном растворителе, таком как, например, DCM, как показано в схеме взаимодействия (10). Взаимодействие можно осуществлять в присутствии подходящей соли, такой как, например, ацетат калия, при умеренно высокой температуре, такой как, например, 110°С, в течение, например, 16 ч.
Кроме того, промежуточные соединения Формулы (III) могут быть получены посредством известных в области техники способов обмена галоген-металл и последующего взаимодействия с подходящим источником бора из промежуточных соединений Формулы (XIII). Данный тип взаимодействия можно осуществить, используя, например, промежуточное соединение Формулы (XIII) и литийорганическое соединение, такое как, например, н-бутиллитий. Взаимодействие можно осуществлять при умеренно низкой температуре, такой как, например, -40°С, в инертном растворителе, таком как, например, THF. За данным взаимодействием следует последующее взаимодействие с подходящим источником бора, таким как, например, триметоксиборан.
В схеме взаимодействия (10) все переменные определены как в Формуле (I), R5 и R6 могут представлять собой водород или алкил, или могут быть взяты вместе с образованием, например, бивалентного радикала формулы -СН2СН2-, -СН2СН2СН2- или -С(СН3)2С(СН3)2-, галогено представляет собой подходящий галоген, такой как, например, бром, и все другие переменные определены как в Формуле (I).
Схема взаимодействия 10
Экспериментальная методика 11
Промежуточные соединения Формулы (XIII), где R3 такой как определено в Формуле (I), но не является водородом, обозначенные (ХIII-а), могут быть получены, следуя известным в области техники методикам путем взаимодействия промежуточного соединения Формулы (XIII), где R3 представляет собой водород, обозначенного (XIII-b), с промежуточным соединением Формулы (XIV) в условиях алкилирования, например, в присутствии основания, такого как, например, К2СО3 или NaH, в подходящем реакционно-инертном растворителе, таком как, например, DMF. Взаимодействие можно осуществлять в микроволновом излучении, при подходящей температуре, обычно 150°С, в течение подходящего периода времени, который позволяет завершить взаимодействие. В схеме взаимодействия (11) все переменные определены как в Формуле (I), X представляет собой подходящую уходящую группу для реакций алкилирования, такую как, например, галогено, тозил, мезил и галогено может представлять собой хлоро, бромо или йодо.
Схема взаимодействия 11
Экспериментальная методика 12
Промежуточные соединения Формулы (XIII), где галогено представляет собой бромо или йодо, могут быть получены, следуя известным в области техники методикам путем взаимодействия промежуточного соединения Формулы (XV) с подходящим галогенирующим агентом. Данное взаимодействие показано в схеме взаимодействия (12). Взаимодействие можно осуществлять с помощью галогенирующих агентов, таких как N-бромсукцинимид, N-йодсукцинимид, при температурах в диапазоне от комнатной температуры до температуры дефлегмации, в реакционно-инертном растворителе, таком как DMF, DCM, СНСl3 или уксусная кислота. Обычно реакционные смеси можно перемешивать в течение от 15 минут до 48 ч при температуре от 0 до 100°С. В схеме взаимодействия (12) все переменные определены как в Формуле (I), и галогено может представлять собой хлоро, бромо или йодо.
Схема взаимодействия 12
Экспериментальная методика 13
Промежуточные соединения Формулы (XV), где R3 такой, как определено в Формуле (I), но не является водородом, обозначенные (XV-a), могут быть получены известными в области техники способами путем взаимодействия промежуточного соединения Формулы (XV), где R3 представляет собой водород, обозначенного (XV-b), с промежуточным соединением Формулы (XIV) в условиях алкилирования, как проиллюстрировано в схеме взаимодействия (13). В схеме взаимодействия (13) все переменные определены как в Формуле (I), X представляет собой подходящую уходящую группу для алкилирования, такую как, например, галогено, тозил, мезил, и галогено может представлять собой хлоро, бромо или йодо.
Схема взаимодействия 13
Экспериментальная методика 14
Промежуточные соединения Формулы (XIII), где R3 представляет собой 4-гидрокси-4-метилциклогексан-1-ил, обозначенные (ХIII-с), могут быть получены известными в области техники способами посредством взаимодействия промежуточного соединения Формулы (XVI) с подходящим металлорганическим источником алкила, таким как, например R7-M, где М представляет собой галогенид магния или литий. Данное взаимодействие показано в схеме взаимодействия (14). Взаимодействие можно осуществлять в инертном растворителе, таком как, например, THF, диэтиловый эфир или 1,4-диоксан. Обычно смеси можно перемешивать от 1 до 48 ч при температуре от 0 до 100°С. В схеме взаимодействия (14) все переменные определены как в Формуле (I), галогено может представлять собой хлоро или бромо, и R7 представляет собой C1-3алкил или С3-7циклоалкил.
Схема взаимодействия 14
Экспериментальная методика 15
Промежуточные соединения Формулы (XIII), где R3 представляет собой 4-гидрокси-циклогексан-1-ил, обозначенные (XIII-d), могут быть получены посредством взаимодействия промежуточного соединения Формулы (XVI) в восстановительных условиях, которые известны специалисту в данной области техники. Взаимодействие проиллюстрирована в схеме взаимодействия (15). Взаимодействие можно осуществлять в присутствии восстанавливающего агента, такого как, например, боргидрид натрия, в подходящим растворителе, таком как, например, метанол. Взаимодействие можно осуществлять при подходящей температуре, обычно комнатной температуре, в течение подходящего периода времени, который позволяет завершить взаимодействие. В схеме взаимодействия (15) все переменные определены как в Формуле (I), и галогено может представлять собой хлоро, бромо или йодо.
Схема взаимодействия 15
Экспериментальная методика 16
Промежуточные соединения Формулы (XVI) могут быть получены путем подвергания ацетального промежуточного соединения Формулы (XVII) подходящим условиям снятия защиты для карбонильной функциональной группы, которые известны специалисту в данной области техники. Данное взаимодействие проиллюстрировано в схеме взаимодействия (16). Взаимодействие можно осуществлять в присутствии кислоты, такой как, например, пара-толуолсульфоновая кислота, в подходящем реакционном растворителе, таком как, например, ацетон. Взаимодействие может быть легко осуществлено в микроволновом излучении при подходящей температуре, обычно при 100°С, в течение подходящего периода времени, который позволяет завершить взаимодействие. В схеме взаимодействия (16) все переменные определены как в Формуле (I) и галогено может представлять собой хлоро, бромо или йодо.
Схема взаимодействия 16
Экспериментальная методика 17
Промежуточные соединения формулы (XVII) и промежуточные соединения Формулы (XIII), где А представляет собой радикал формулы -СН=СН- и R3 представляет собой , где Q представляет собой -O-, , , и каждый n равен 1 или 2, обозначенные (Xlll-f), могут быть получены посредством взаимодействия промежуточного соединения Формулы (XIII), где А представляет собой радикал формулы -СН=СН-, и R3 представляет собой Н, обозначенные (ХIII-е), с промежуточным соединением Формулы R3-Х (Формула XIV), где R3 такой, как определено выше, обозначенным (XIV-a), согласно схеме взаимодействия (17). Взаимодействие можно осуществлять в условиях алкилирования, которые известны специалистам в данной области техники, например в присутствии основания, такого как, например, гидроксид калия, в подходящем реакционном растворителе, таком как, например, диметилсульфоксид. Взаимодействие можно осуществлять при подходящей температуре, обычно при 60°С, в течение подходящего периода времени, который позволяет завершить взаимодействие. В схеме взаимодействия (17) все переменные определены как в Формуле (I), X представляет собой подходящую уходящую группу для алкилирования, такую как, например, галогено, тозил, мезил, и галогено может представлять собой хлоро, бромо или йодо.
Схема взаимодействия 17
Экспериментальная методика 18
Промежуточные соединения Формулы (XIII), где А представляет собой радикал формулы -СН2-СН2-O-, обозначенные (ХIII-g), могут быть получены посредством взаимодействия орто-аминофенольного производного Формулы (XVIII) с имеющимся в продаже 1,2-дибромэтаном в условиях алкилирования, таких как, например, осуществление взаимодействия в присутствии основания, такого как, например, К2С