Деформируемый термически неупрочняемый сплав на основе алюминия
Иллюстрации
Показать всеИзобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов и в качестве конструкционного материала. Сплав, содержит, мас.%: магний 5,6-6,3; титан 0,01-0,03; бериллий 0,0001-0,005; цирконий 0,05-0,12; скандий 0,18-0,3; марганец 0,3-0,6; группу элементов, включающую железо и кремний 0,05-0,2; никель 0,01-0,05; кобальт 0,01-0,05; алюминий - остальное, при этом отношение суммарного содержания железа, никеля и кобальта к содержанию кремния равно или больше единицы. Техническим результатом является повышение прочностных характеристик материала. 1 пр., 2 табл.
Реферат
Предлагаемое изобретение относится к области металлургии, в частности к деформируемым термически неупрочняемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде поковок, в качестве конструкционного материала в космической технике, авиастроении, судостроении, транспортном машиностроении и других областях техники.
Известны в металлургии термически неупрочняемые сплавы на основе алюминия, в частности сплав АМг61 следующего химического состава, мас.%:
Магний | 5,5-6,5 |
Марганец | 0,8-1,1 |
Цирконий | 0,02-0,1 |
Бериллий | 0,0001-0,005 |
Алюминий | Остальное |
(см. Алюминиевые сплавы. Промышленные деформируемые, спеченные и литейные алюминиевые сплавы. Справочное руководство. М.: Металлургия. 1972. С.44).
Однако существующий сплав имеет низкие прочностные свойства, в частности низкий предел текучести в отожженном состоянии.
Известен деформируемый термически неупрочняемый сплав на основе алюминия, предназначенный для использования в виде деформированных полуфабрикатов в качестве конструкционного материала (см. патент RU №2233345, М. кл. C22C 21/08 - прототип), следующего химического состава, мас.%:
Магний | 5,0-5,6 |
Титан | 0,01-0,03 |
Бериллий | 0,0002-0,005 |
Цирконий | 0,05-0,12 |
Скандий | 0,16-0,26 |
Церий | 0,0002-0,0009 |
Марганец | 0,15-0,5 |
Группа элементов, включающая | |
железо и кремний | 0,05-0,12 |
Алюминий | Остальное |
при этом величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.
Известный сплав имеет недостаточно высокие прочностные характеристики при хорошей деформируемости в горячем состоянии, высокой коррозионной стойкости, хорошей свариваемости и высокой вязкости разрушения.
Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан, берилий, цирконий, скандий, марганец и группу элементов, включающую железо и кремний, который дополнительно содержит никель и кобальт и компоненты взяты в следующем соотношении, мас.%:
Магний | 5,6-6,3 |
Титан | 0,01-0,03 |
Бериллий | 0,0001-0,005 |
Цирконий | 0,05-0,12 |
Скандий | 0,18-0,3 |
Марганец | 0,3-0,6 |
Группа элементов, включающая | |
железо и кремний | 0,05-0,2 |
Никель | 0,01-0,05 |
Кобальт | 0,01-0,05 |
Алюминий | Остальное |
при этом величина отношения суммарного содержания железа, никеля и кобальта к содержанию кремния должна быть равна или больше единицы.
Предлагаемый сплав отличается от известного тем, что он дополнительно содержит никель и кобальт и компоненты взяты в следующем соотношении, мас.%:
Магний | 5,6-6,3 |
Титан | 0,01-0,03 |
Бериллий | 0,0001-0,005 |
Цирконий | 0,05-0,12 |
Скандий | 0,18-0,3 |
Марганец | 0,3-0,6 |
Группа элементов, включающая | |
железо и кремний | 0,05-0,2 |
Никель | 0,01-0,05 |
Кобальт | 0,01-0,05 |
Алюминий | Остальное |
при этом величина отношения суммарного содержания железа, никеля и кобальта к содержанию кремния должна быть равна или больше единицы.
Технический результат - повышение прочностных характеристик, что позволяет повысить характеристики весовой отдачи конструкций, в частности конструкций летательных аппаратов.
При предлагаемом содержании и соотношении компонентов в предлагаемом сплаве за счет выделений дисперсных вторичных интерметаллидов, содержащих в своем составе алюминий, скандий, цирконий и другие переходные металлы, входящие в состав сплава, обеспечивается высокий уровень прочностных свойств. В то же время матрица, представляющая собой, в основном, твердый раствор магния и марганца в алюминии и обладающая большим запасом пластичности, обеспечивает высокую пластичность и хорошую деформируемость при горячей обработке давлением. Регламентируемая величина отношения суммарного содержания железа, никеля и кобальта к содержанию кремния при их низком суммарном содержании оптимизирует морфологию интерметаллидов эвтектического происхождения, содержащих, в основном, алюминий, железо, никель, кобальт и кремний, способствующих повышению прочностных свойств сплава при сохранении пластичности.
Пример
Получили предлагаемый сплав из шихты, состоящей из алюминия марки А85, магния марки Мг95, двойных лигатур алюминий-титан, алюминий-бериллий, алюминий-цирконий, алюминий-скандий, алюминий-марганец, алюминий-железо, алюминий-никель, алюминий-кобальт и силумина. Сплав готовили в электрической печи сопротивления и методом полунепрерывного литья отливали круглые слитки диаметром 178 мм.
Химический состав сплава приведен в таблице 1.
Слитки гомогенизировали, после чего резали на заготовки длиной 350 мм, которые затем обтачивали до диаметра 165 мм. Обточенные заготовки осаживали при температуре 390°C на вертикальном гидравлическом прессе с максимальным усилием 6000 тс на плоских бойках за один жим. Степень деформации при этом составляла 65%. Получили круглые осесимметричные поковки высотой 122,5 мм. Механические свойства (предел прочности σB, предел текучести Сод и относительное удлинение δ) поковок в отожженном состоянии определяли при испытании на растяжение в соответствии с ГОСТ 1497-84 цилиндрических образцов, вырезанных из поковок в хордовом направлении. Также определяли механические свойства изготовленных тем же способом поковок из сплава-прототипа, химический состав которого приведен в таблице 1.
Результаты испытаний приведены в таблице 2.
Примечания: (Fe+Ni+Co)/Si - отношение суммарного содержания железа, никеля и кобальта к содержанию кремния; Fe/Si - отношение содержания железа к содержанию кремния.
Как видно из таблицы 2, предлагаемый сплав обладает более высокими прочностными характеристиками по сравнению с известным. Применение предлагаемого сплава в качестве конструкционного материала позволит на 8-10% снизить вес конструкции, что особенно важно для космической техники. Благодаря хорошей свариваемости и высокой коррозионной стойкости, свойственным деформируемым термически неупрочняемым сплавам на основе алюминия, предлагаемый сплав может быть использован в нагруженных сварных конструкциях как в качестве основного материала, так и в качестве присадочного материала при сварке плавлением.
Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, титан, бериллий, цирконий, скандий, марганец и группу элементов, включающую железо и кремний, отличающийся тем, что он дополнительно содержит никель и кобальт при следующем соотношении компонентов, в мас.%:
магний | 5,6-6,3 |
титан | 0,01-0,03 |
бериллий | 0,0001-0,005 |
цирконий | 0,05-0,12 |
скандий | 0,18-0,3 |
марганец | 0,3-0,6 |
группа элементов, включающая | |
железо и кремний | 0,05-0,2 |
никель | 0,01-0,05 |
кобальт | 0,01-0,05 |
алюминий | остальное, |